
Project Emohawk – programmer documentation

Table of Contents
1 Introduction ..3
2 IVAs interactions ..4
3 IVAs memory ..5
4 IVAs architecture ..5

4.1 Agent states ...6
4.1.1 state agent alone ..7
4.1.2 state follow agent with ...7
4.1.3 state going somewhere with ...7
4.1.4 state interrupted ...8
4.1.5 state wait ...8
4.1.6 state with somebody ..8
4.1.7 state approach boys ...9

5 IVAs environmental perception ..9
6 List of all emotion events in the scenario ...10

6.1 generateActionKissEvent ..10
6.2 generateActionKissOtherEvent ..10
6.3 generateActionKissByEvent ...10
6.4 generateActionSlapByEvent ...11
6.5 generateActionSlapOtherEvent ...11
6.6 generateActionKickOtherEvent ..11
6.7 generateActionKickByEvent ..11
6.8 generateActionByeByEvent ..11
6.9 generateActionByeOtherEvent ...11
6.10 generateActionComplimentByEvent ..12
6.11 generateActionComplimentOtherEvent ..12
6.12 generateActionCuddleByEvent ..12
6.13 generateActionInsultByEvent ...12
6.14 generateActionInsultOtherEvent ..12
6.15 generateActionSexByEvent ..12
6.16 generateActionSexOtherEvent ..12
6.17 generateActionLeaveByEvent ..13
6.18 generateActionLeaveOtherEvent ..13
6.19 generateAloneEvent ..13
6.20 generatePickupEvent ..13
6.21 generatePlayerLostEvent ..13
6.22 generatePlayerTogetherEvent ...14
6.23 generatePlayerAppearedEvent ..14
6.24 generateAngerFearMessageEvent ..14
6.25 generateHappySadMessageEvent ...14
6.26 generateLikeDislikeMessageEvent ...14
6.27 generateMessageToOtherEvent ..15
6.28 generateConversationIgnoreByEvent ...15
6.29 generateInterruptedEvent ..15
6.30 generateReceivedItemEvent ...15
6.31 generateItemJelausyEvent ..16
6.32 generateProposalToOtherEvent ..16
6.33 generateProposalToOtherByAgentWithEvent ..16

6.34 generateProposalOtherResponseEvent ...16
6.35 generateProposalResponseToOtherByAgentWithEvent ...16
6.36 generateProposalByOtherToAgentWithEvent ..17
6.37 generateProposalResponseEvent ..17
6.38 generateProposalIgnoreEvent ...17
6.39 generateReceivedProposalEvent ...17
6.40 generatePolymorphActionBiteEvent ..17
6.41 generatePolymorphDislikeFearEvent ...17
6.42 generatePolymorphBiteEvent ...18
6.43 generatePolymorphLikeEvent ..18
6.44 generateWaitAgentNotReturnedEvent ..18
6.45 generateWaitAgentReturnedEvent ..18
6.46 generateWaitInProgressEvent ...18
6.47 generateWeHitPolymorphEvent ...18

7 Java packages and classes overview ...18
7.1 Package AlmaBasedModel (almabasedmodel) ...19

7.1.1 Class Aemotion ...19
7.1.2 Class AEmotionState ...19
7.1.3 Class AEventGenerator ...19
7.1.4 Class AMood ...19
7.1.5 Class PogamutALMA ...19

7.2 Package bot ...19
7.2.1 Class EmotionalBot ...19
7.2.2 Class EmotionalBotModule ..19
7.2.3 Class EmotionalBotTestCase ..19
7.2.4 Class EmotionalFemaleBot ...19
7.2.5 Class EmotionalFemaleBotModule ..20
7.2.6 Class EmotionalMaleBot ..20
7.2.7 Class EmotionalMaleBotModule ..20
7.2.8 Class EventGenerator ..20
7.2.9 Class PolymorphBot ...20
7.2.10 Class PolymorphBotModule ...20

7.3 Package info ..20
7.3.1 Class ActionType ..20
7.3.2 Class ConversationInfo ...20
7.3.3 Class ConversationType ..20
7.3.4 Class EventId ..20
7.3.5 Class ItemRequest ...20
7.3.6 Class PlaceType ..21
7.3.7 Class PlayerInfo ..21
7.3.8 Class PolymorphEventInfo ...21
7.3.9 Class ProposalInfo ..21
7.3.10 Class ProposalType ...21
7.3.11 Class ScenarioItemType ..21
7.3.12 Class StateType ...21
7.3.13 Class ScenarioType ...21
7.3.14 Class TimerType ..21

7.4 Package logging ..21
7.4.1 Class ActionLog ..21
7.4.2 Class AgentLogProcessor ...21
7.4.3 Class AgentLogging ..22
7.4.4 Class AgentStateLog ...22

7.4.5 Class EmotionEventLog ...22
7.4.6 Class EmotionsLog ...22
7.4.7 Class FeelingLog ...22
7.4.8 Class FeelingSceneResult ...22
7.4.9 Class ItemLog ...22
7.4.10 Class LocationLog ..22
7.4.11 Class MoodLog ...22
7.4.12 Class RotationLog ...22

7.5 Package utils ...22
7.5.1 Class Algeb ...22
7.5.2 Class Time ...23

8 UT04 part ..23

1 Introduction
This document is a programmer documentation for project Emohawk. The purpose is to provide the
developer an overview of the project, which will enable him to be better oriented in project JavaDoc
(the main part of project programmer documentation). Some of the text here is based on the text
present in the diploma thesis. The images here are present also in the diploma thesis.

Project Emohawk is a Java implementation of a simple story occurring in the 3D virtual
environment of the action game Unreal Tournament 2004 (UT04). The story features four
intelligent virtual agents (IVAs) with emotions (Fig. 1). Project Emohawk used platform Pogamut 3
as a base tool for connecting to UT04 and programming the IVAs decision making system. Emotion
model ALMA was used to provide IVAs with emotions. The agents are able to interact with each
other through actions and communication. Everything is handled symbolically with text messages.

Fig. 1. Two Emohawk IVAs interacting. On the figure we can two Emohawk IVAs interacting in the

environment of the game UT04 with text messages. Copyright Epic Games 2004-2009.

The implementation of project Emohawk can be divided into two parts. A minor part of
implementation took place in UT04 – we have used native UT04 scripting language UrealScript to
add and modify some of the game content. A major part took place in Java. Here we have
programmed the IVAs, connected the emotion model ALMA and programmed the methods for
Emohawk story analysis. From now on, we will be concerned with Java part of Emohawk
implementation. The details about UT04 part will be provided in a chapter with the same name at
the end of this document. This documentation is organized as follows: First we will describe the
ways of IVAs interactions, then we will briefly mention IVAs memory, afterwards we will concern
IVAs control architecture, next we will dig into IVAs environmental perception followed by a list of
all emotion events in the project. We will end this document with brief packages and classes
overview and brief overview of UT04 implementation.

2 IVAs interactions
Emohawk IVAs can communicate between each other through actions, proposals (special kinds of
actions) and casual conversation. These three types of communications are all handled through text
messages. For this purpose we have defined a simple keywords based protocol to parse the
messages.

An example of interaction between agents may look like this:

Bruno: “To:Anne, making proposal kiss”.
Anne: “To:Bruno, proposal kiss accepted”.
Bruno: “To:Anne, ACTION KISS”

First Bruno made a proposal to kiss Anne, Anne accepted the proposal. After that Bruno
performed action kiss toward Anne.

Keywords. The “To:” keyword followed by a set of names separated by commas determines the
agents this message is for. If the “To:” keyword is missing the message is considered to be for
everyone. If there is “To:” and no names are after, the message will not be parsed by anyone. Note
that the agents need to see the one who is speaking to them in order to receive the message.

Now to determine if the message is an action, a proposal or simple text message another set
of keywords is used. This set includes:

– “proposal” – followed by one of the proposal types. Marks that this message is a proposal of
input proposal type. To further determine if the agent is responding to some proposal or is
making a new proposal, one of following three keywords is added: “making”, “accepted” or
“rejected”

– “ACTION” – followed by one of action types. Marks that this message is an action of input
action type.

If the message does not include any action or proposal keyword, it is treated as a casual
conversation. For casual conversation agents parse a set of smilies to evaluate the conversation
emotional value. Following smilies are parsed in the text messages:

– “:-)” and “:-(” – substitutes emotions joy and distress. More positive “:-)” smilies mean the
emotion joy will be generated upon receiving this message. The intensity depends on the
number of smilies. The highest joy intensity will occur if the result is that in the message there
is five more positive smilies than negative ones.

– “:-*” and “>:@” – substitutes emotions liking and disliking. More positive “:-*” smilies mean
the emotion liking will be generated upon receiving this message. The intensity depends on the
number of smilies. The highest liking intensity will occur if the result is that in the message

there is five more positive smilies than negative ones.

– “#!” and “:-O” – substitutes emotions anger and fear. More “#!” smilies mean the emotion anger
will be generated upon receiving this message. The intensity depends on the number of smilies.
The highest anger intensity will occur if the result is that in the message there is five more “#!”
smilies than “:-O” smilies.

Our agents are generating the smilies in the text messages according the actual emotions joy
and distress toward the target agent (smilies “:-)” and “:-(”), according the actual feeling value
(smilies “:-*” and “>:@”) and according the emotions anger and fear (smilies “#!” and “:-O”).

3 IVAs memory
Our agent remembers interaction between him and other agents. He remembers last times of
actions, proposals and communication he did toward target agent and last times of actions,
proposals and communication other agent did toward our agent. Also our agent remembers last time
he have seen certain player, the time when he lost sight of him and last times when he/she was at
cinema, at park or at home with target agent. This information is used to generate emotion events
properly and to pick actions and proposals toward another agents properly.

For storage of these information classes PlayerInfo and ConversationInfo are used. The lists
of these objects are defined in EmotionalBot class.

4 IVAs architecture
Project Emohawk IVAs are controlled by finite state machine. They feature reactive behavior. In
Pogamut agents reasoning is based on doLogic method, that is called periodically (usually each 250
ms – depends on settings). To get information about surrounding environment the agent can use
either Pogamut modules (providing information like a list of all currently visible other agents) or
Pogamut listeners, which are invoked each type certain event occurs in the environment (e.g.
someone sent text message).

The overview of Emohawk IVA architecture can be seen on Fig. 2. The information from the
environment is got through Pogamut sensory modules and Pogamut listeners. This information is
processed by agent state logic (in classes EmotionalMaleBot for male IVAs and
EmotionalFemaleBot for female IVAs) and may cause the state transitions. The text messages are
processed by EventGenerator class, that provides more complex percepts for our agent (or more
complex events), which is needed to provide emotion model ALMA with correct inputs. The
information from EventGenerator are a) stored in agents memory (if they contain some information
about other agents) and b) processed by other class (AEventGenerator), that is responsible for
appraising the events with ALMA variables and providing the ALMA with input.

The agent decision making is then affected by a) Pogamut sensory information, b) agents
history (history of interaction with the agent we are currently interacting with), c) ALMA affects –
we count a feeling attitude (positive or negative) toward other agents based on ALMA affects and d)
agents current state he is in.

Moreover in EmotionalBot class, there are many constants define that affects decision
making and action generation – namely minimal delays between actions or behavior, feeling
intensity needed to trigger certain actions etc. Some constants are as well in EventGenerator class.

Fig. 2. Project Emohawk IVAs architecture. The information from environment are processed by a)
Pogamut sensors providing our agent with basic sensory information and by b) agent perception module,
that generates input for ALMA emotion model and stores relevant data into agent memory. The decision

making is then affected by sensory information, agent history and agent affects got from ALMA.

Now we will provide more detailed overview of the agent's states – what do they monitor, what
actions and proposals they can trigger etc.

4.1 Agent states
In our scenario we have two types of characters – boy and girls. For controlling these characters we
use basically the same states with slightly different implementations for a boy and a girl. We will
list the states of our agents here describing the behavior they produce and the mechanisms our
agents use.

There are two important variables, that are used in our states. It is “agent with” and
interrupters list. “Agent with” is some agent of opposite sex, that we generally like. To this agent we
can make intimate proposals, with him we can go to cinema and to home. We can imagine this as
someone of opposite sex, we are interested in. The interrupters on the other hand are the other
agents we are not interested in, but who require our attention. For example they have approached us
and speak to us, or they interrupted the agent we have currently selected as “agent with”. The
interrupters can be agents of same sex, agent of opposite sex we do not like and animals.

The possible state to state transitions can be seen on Fig. 3.

Fig. 3. Project Emohawk IVAs FSM transitions. On the figure we can see possible transitions between
states for project Emohawk IVAs. State “approach boys” is reachable only for girls. Bruno and Anne begin
the scenario in state “with somebody”, Clementine in state “agent alone” (later she will go to near cinema
location and switch to “wait” state waiting for Bruno). Emohawk is scripted and not controlled by states.

Image created by GraphViz 2.0.

4.1.1 state agent alone
This state handles a situation when the agent is alone in the environment. Implementation for a boy
and a girl differs. The boy will start exploring the environment with a goal of meeting someone,
while the girl just goes to her home.

Both of the genders first check if there are any interrupters – if yes, they will shift to
interrupted state. The girl in this state goes to home straightforward and if she reaches the home
place she will start to wait until the timer expires.

Except the interruption check, boy is also checking if he sees some agent, he wants to start
interaction with. This can be only girls he has feeling attitude above zero. If he sees the girl, he will
start to walk to her. For this path finding will be used. When he reaches the interaction range, he
shifts to agent with state and selects the girl as his “agent with”.

4.1.2 state follow agent with
This state is active when our agent is leaded by “agent with” somewhere. A typical situation –
“agent with” proposed our agent to go to the cinema together. Our agent accepted and switched to
this state. Now “agent with” is leading the way to the cinema with our agent following him.

Our agent is simply following the “agent with”, but he knows where they both are going –
so he can check if they are already there. If yes, the state will be switched back to “with somebody”
state. Also in this state again the condition if there are any interrupters is checked – if yes, we will
switch to state interrupted.

4.1.3 state going somewhere with
This state is used when we are leading “agent with” somewhere. This time it was our agent who

proposed to “agent with” to go somewhere. When “agent with” accepted our proposal, we have
taken the initiative and switched to this state, which will make us to go to desired location with the
“agent with”. We will wait for “agent with” to catch up – if the distance between us will be above
certain threshold, we will stop and turn toward the agent that should follow us. If the distance
decreases we will continue to go to the goal place.

Again the interruption routine is at the beginning of this state. If someone speaks to us, we
will switch to state interrupted.

4.1.4 state interrupted
This states implementation is the same for a boy and a girl. It is used when we are already with
“agent with” or when we are doing some other activity in the environment and someone approaches
us and speak to us. We will switch to this state, which handles the communication with multiple
agents.

In this state we will first check if someone is selected as our “agent with”. If no, we will
process the interrupters list if someone would be suitable to be set as our agent with. It can happen
that no one is. In this case we will simply have our “agent With” set to null.

Secondly, we will check if all the interrupters are in our communication range – if some of
them are not, we will perform action bye toward them and remove them from the list. After this
check we will pick focus – this means the agent we will turn to and perform action and/or
conversation to. Focus is picked according to the current feeling attitude and on the fact if other
agent performed some action and/or conversation toward us, which we have not reacted to yet.

Thirdly we will a) check if our recent proposal we could make was accepted and b) respond
to proposals someone has made to us (this is actually not synchronized with our focus). If no
proposals occurred we will pick some action toward our focus (but we do not have to). After that if
we are still in interrupted state we will send some conversation message to the agent – the
conversation method will be invoked (if the time is right we will communicate with the agent).

We will immediately leave this state and switch to previous state if a) interruption timer has
run out or b) the list of interrupters is empty.

4.1.5 state wait
This state is active when we are waiting for someone. We will leave this state when the agent we are
waiting for returns or when the waiting timer runs out. The agent we are waiting for is marked as
our current “agent with” – even when we do not see him (this is an exception to the rule that we will
reset our “agent with” when we lost sight of him). If there are some interrupters we will handle
them in this state except of switching to interrupted state. We are not moving when we are at this
state. Our agent can only turn to some interrupter.

4.1.6 state with somebody
This is the main state handling “agent with” interaction. In this state we pick proposals to the other
agent. Which proposal will be picked depends on where we currently are (for example the sex
proposal can be made just at home). Also we look on our proposal history. We will not propose to
go to the cinema if we were recently there with the agent.

First we will check here if any interrupters are present – if yes, we switch to interrupted
state. Second we will check if our recent proposal was accepted and change our state accordingly or
if “agent with” made proposal to us – if yes, we will respond. Then we will try to pick some
proposal to “agent with” – just if the time is right. If no proposal occurred, we will try to pick some

action. After that we can make a conversation with the other agent by sending text message
containing causal conversation.

The proposals that we can make in this state and that can affect our behavior are (note that
girl is limited just to make a kiss proposal):

– Cinema – character one will propose character two to go to the cinema with him. If this proposal
is accepted, the character one will lead the way to cinema followed by character two. Reaching
the cinema location, the characters will start to watch the film – this lasts for 15 seconds, where
the characters will not speak interact with anyone. After this the characters resume the
interaction between them.

– Park – character one will propose character two to go to the park with him. If this proposal is
accepted, the character one will lead the way to park followed by character two. Nothing special
happens when they reach the park place.

– Home – character one will propose character two to go to home of character two. If this
proposal is accepted, the character one will lead the way to character two home followed by
character two. Nothing special happens when they reach the home place. However the home
place allows for extended set of proposals to be selected.

– Kiss – character one asks character two if he/she can kiss him/her. When accepted character one
will perform action kiss toward character two. This proposal can be made at cinema or at home.

– Sex – character one asks character two if he/she wants to make love with him/her (possible just
between opposite gender). When accepted character one and two will make love with each
other. This is visualized by text messages in the environment. This proposal can be made just if
our agent is at home of the other agent.

4.1.7 state approach boys
This state is used just by the girls. Since normally the girls just go home when they are alone, we
have added this state that can be triggered after some time the girl is waiting at home. The girl will
explore the environment when in this state searching for opposite gender characters approaching
them and starting the interaction. Also the interruption routine is present in this state (switching to
interrupted state when there are some interrupters present).

5 IVAs environmental perception
Here we will consider the mechanism of agent perception of the environment as well as technique
we use for mapping environment events to ALMA inputs.

The agent perception is based on Pogamut sensory methods and Pogamut listeners. Sensory
methods allow are agent to ask for example: “Do I see any player right now? And if yes, who is it?”
The listeners allow our agents to listen to certain message types, that brings information about
certain environmental events. For example we can “listen” to all of the text messages our agent
receives.

These methods and listeners provides us with basic information about environment – what
do we see or what we recently heard. However, since we wanted our agents to be able to react to
various types of situations emotionally, we needed to built upon these basic methods to provide our
agent with more complex percepts. For example we are not interested just if we see someone, but
we would like to know how long we are seeing him, when was the last time we saw him, if we
actually like him and so on. We solved this by post-processing some of the environment events in
EventGenerator class. This provided our agents with more complex percepts. Using these our
agents are able among other things to recognize pre-defined set of events affecting their emotion
state. These events are appraised by a set of ALMA emotion variables (in AEventGenerator class)

and processed by ALMA. This can result in a change of agents emotions and mood. In Chapter
below we will list a set of all emotional events we are able to generate as well with emotions they
trigger.

Emotion model ALMA is configured by two XML files (AffectComputation.aml and
CharacterDefinition.aml). We have used slightly modified default XML configuration files to
configure project Emohawk IVAs. Especially we have modified CharacterDefinition.aml so
emotion computation and decaying is the same for all the three characters.

6 List of all emotion events in the scenario
List of all generated emotional events will follow. The name of the events is taken from the name of
methods that generate the events. One event can generate more emotions. Every emotion is
associated with some elicitor or eliciting condition – this will usually be the agent who have caused
the event. For simplicity there will be three categories of emotion intensities low (0.01 – 0.3),
medium (0.3 – 0.6) and high (0.6 to 1). To elicit the events we have used three ALMA EEC
variables – desirability, praiseworthiness and appealingness.

The names of the methods here follow certain logic. If the keyword Action is present it
means the event is result of some action. If the proposal keyword is present, it means that the event
is associated with proposals somehow etc. “By” keyword means that the cause of the action was not
our agent (someone else has done the action). Keyword “Other” means that our agent was not
involved at all in the event.

6.1 generateActionKissEvent
Result of Action KISS – we have kissed the agent.

Emotions generated depends on the feeling toward other agent.

Emotions:

– joy and love – high intensities – associated with other agent

– distress and hate – high intensities – associated with other agent

6.2 generateActionKissOtherEvent
Result of Action KISS – someone has kissed some other agent in the scenario (our agent wasn't
involved). Emotions are dependent on the feeling – if the feeling is positive we will generate
emotions towards kisser.
Emotions:
– distress and disliking – from medium to high intensities (higher when the feeling is bigger) –

associated with the kisser

6.3 generateActionKissByEvent
Result of Action KISS. Someone has kissed us. Emotions depend on the feeling toward the agent –
the higher the feeling, the bigger positive emotions and vice versa.

Emotions

– joy and love – low to high intensities – toward the other agent

– distress and hate – low to high intensities – toward the other agent

6.4 generateActionSlapByEvent
Result of Action SLAP – we have been slapped by some other agent. Emotions are not dependent
on the feeling towards agent.

Emotions:

– distress and disliking and anger – high intensities – associated with other agent

6.5 generateActionSlapOtherEvent
Result of Action SLAP. Someone has slapped some other agent. We will generate emotions if the
feeling toward the agent slapped exceeds a certain threshold.

Emotions:

– distress and anger – high intensities – associated with the slapping agent

6.6 generateActionKickOtherEvent
Result of Action KICK. Someone has kicked some other agent. We will generate emotions if the
feeling toward the agent kicked exceeds a certain threshold.

Emotions:

– distress and anger – high intensities – associated with the kicking agent

6.7 generateActionKickByEvent
Not implemented yet. Just animals should be kicked, not agents. Called when someone kicks us.

6.8 generateActionByeByEvent
Result of Action BYE. Some other agent has said bye to us. Emotions depends on the feeling
toward agent (if positive or negative).

Emotions:

– joy – low intensity – associated with the other agent (if the feeling is negative)

– distress – low intensity – associated with the other agent (if the feeling is positive)

6.9 generateActionByeOtherEvent
Result of Action BYE. Someone has left other agent. Emotions depend on the feelings toward both
of the agents.

Emotions:

– joy – low to medium intensity – toward both of the agents – if someone we don't like said bye to
someone we like or else.

– distress – low intensity – toward both of the agents – if someone we like said bye to someone
we like

6.10 generateActionComplimentByEvent
Result of Action COMPLIMENT. Someone has said compliment to us. Emotions intensities depend
on the feeling toward other agent.

Emotions:

– joy and liking – low to medium intensities (higher the feeling, higher the emotions)

6.11 generateActionComplimentOtherEvent
Result of Action COMPLIMENT. Someone has said compliment to other agent. Emotions
intensities depend on the feeling toward the agent who said the compliment.

Emotions:

– distress and anger – low intensities – toward the agent who said the compliment

6.12 generateActionCuddleByEvent
Not implemented yet – just animals should be cuddled, not real agents.

6.13 generateActionInsultByEvent
Result of Action INSULT. Other agent has insulted us. Emotions don't depend on the feeling.

Emotions:

– disliking and anger – high intensities – toward the other agent.

6.14 generateActionInsultOtherEvent
Result of Action INSULT. Someone has insulted other agent. Depends on the feeling toward the
agent who was insulted.

Emotions:

– joy and pride – medium intensities – toward the agent who made the insult (feeling toward the
insulted agent is negative)

– distress and anger – medium intensities – toward the agent who made the insult (feeling toward
the insulted agent is positive)

6.15 generateActionSexByEvent
Result of Action SEX. We are making love with other agent or vice versa. This is the result of
accepted proposal sex. The emotions depend on the feeling (for positive emotions the feeling should
be higher than sexFeelingConst – this should be true, otherwise we wouldn't accept the proposal
anyway).

Emotions:

– liking and love – high intensities – toward the other agent – if the feeling exceeds threshold

– disliking and hate – high intensities – toward the other agent – if the feeling does not exceed
threshold

6.16 generateActionSexOtherEvent
Result of Action SEX. Someone is making love with some other agent. Emotions depend on the

feeling toward the agent of opposite sex in the couple. The higher the feeling the higher the
intensities of emotions. The emotions here are associated toward to both of the agents.

Emotions:

– distress and hate – medium to high intensities – toward both of the agents

6.17 generateActionLeaveByEvent
Result of Action LEAVE. Someone has left us – said bye in a bad way. Emotions depend on the
feeling toward the agent.

Emotions:

– joy and gratitude – low intensities – toward the other agent (feeling negative)

– distress and anger – high intensities – toward the other agent (feeling positive)

6.18 generateActionLeaveOtherEvent
Result of Action LEAVE. Someone has left other agent. Emotions depend on the feelings toward
both of the agents.

Emotions:

– joy – low to medium intensity – toward both of the agents – if someone we don't like left
someone we like or else.

– distress – low intensity – toward both of the agents – if someone we like left someone we like

6.19 generateAloneEvent
Generated every 90 seconds when we are alone (agent doesn't see anyone).

Emotions

– distress – medium intensity – towards no one

6.20 generatePickupEvent
We have picked up some item – can be flower, condom or gun. Emotions do not depend on the type
of the item.

Emotions:

– joy – low intensity – towards nothing

6.21 generatePlayerLostEvent
Generated when we have lost sight of other agent (we have stopped seeing him and this state lasts
for some time now). Emotions depend on the feeling toward the agent are more intense if the agent
is of the opposite sex.

Emotions:

– joy – low to medium intensity – toward the other agent (if the feeling is negative)

– distress – low to medium intensity – toward the other agent (if the feeling is positive)

6.22 generatePlayerTogetherEvent
Generated every 60 seconds we are together with some other agent. Emotions depend on the feeling
toward the other agent. Emotions are more intense if the agent is of opposite sex.

Emotions:

– joy – medium intensity – toward the other agent (if the feeling is positive)

– distress – medium intensity – toward the other agent (if the feeling is negative)

6.23 generatePlayerAppearedEvent
This event is generated when we have spotted the agent for the first time or when we haven't seen
the agent for some time and we see him again (emotions are lower in the second case). Emotions
depend on the feeling toward the agent. Emotions are more intense if the agent is of opposite sex.

Emotions:

– joy – low to high intensity – toward the other agent (if the feeling is positive)

– distress – low to high intensity – toward the other agent (if the feeling is negative)

6.24 generateAngerFearMessageEvent
Someone has sent us message that contains anger and/or fear smilies. We will generate anger or fear
emotion toward the agent based on the number of the smilies (more anger smilies = anger and vice
versa). The emotion intensity is affected by the number of messages we got from the agent in last 30
seconds. The more messages we got the lower the intensity of the emotion. The intensity of the
emotions decrease rapidly.

Emotions:

– fear – low to medium intensity – toward the other agent

– anger – low to medium intensity – toward the other agent

6.25 generateHappySadMessageEvent
Someone has sent us message that contains joy and/or distress smilies. We will generate joy or
distress emotion toward the agent based on the number of the smilies (more joy smilies = joy and
vice versa). The emotion intensity is affected by the number of messages we got from the agent in
last 30 seconds. The more messages we got the lower the intensity of the emotion. The intensity of
the emotions decrease rapidly.

Emotions:

– joy – low to medium intensity – toward the other agent

– distress – low to medium intensity – toward the other agent

6.26 generateLikeDislikeMessageEvent
Someone has sent us message that contains like and/or dislike smilies. We will generate like or
dislike emotion toward the agent based on the number of the smilies (more like smilies = like and
vice versa). The emotion intensity is affected by the number of messages we got from the agent in
last 30 seconds. The more messages we got the lower the intensity of the emotion. The intensity of

the emotions decrease rapidly.

Emotions:

– like – low to medium intensity – toward the other agent

– dislike – low to medium intensity – toward the other agent

6.27 generateMessageToOtherEvent
Someone has sent a message to some other agent that contains like and/or dislike smilies. We will
generate emotions based on the smilies. We will generate the emotions just in case the feeling
toward the agent who said the message is positive. There is big reduction in emotion intensity based
on the number of the messages that the agent said to other agent.

Emotions:

– distress and anger – low to medium intensity – toward the speaker (if the message contains
more liking smilies)

– joy and gratitude – low to medium intensity – toward the speaker (if the message contains more
disliking smilies)

6.28 generateConversationIgnoreByEvent
This event is generated after some time we have spent together with some other agent who is not
responding to our conversation. When the conditions are met the event will be generated every 35
seconds.

Emotions:

– anger – low intensity – toward the other agent

6.29 generateInterruptedEvent
We are with some other agent and we are doing something with him – speaking or going
somewhere – and we are interrupted by other agent or agents – someone is speaking to us,
polymorph approached us or else and we want to react to these other agents (we are not ignoring
him, he is close enough etc.). Emotions depend on the feeling toward the agents.

Emotions:

– joy and gratitude – medium intensity – toward interrupting agents (feeling is positive)

– distress and anger – medium intensity – toward interrupting agents (feeling is negative)

6.30 generateReceivedItemEvent
We have received item from someone. We will react based on the feeling toward the giver and on
the type of the item. Generally we will be pleased, just if the item is condom, then we will be
offended unless the feeling toward the agent is high.

Emotions:

– joy and liking – low to medium intensities – toward the giver (medium for flower or condom
and feeling high)

– distress and disliking – medium intensities – toward the giver (condom and feeling low)

6.31 generateItemJelausyEvent
Some agent gave item to other agent. We will generate emotions if we have positive feeling to the
giver and the item is a flower – we will be jelaous.

Emotions:

– distress and anger – medium intensity – toward the giver (if the feeling is positive and item is
flower)

6.32 generateProposalToOtherEvent
Someone is making proposal to other agent (and none of them is currently with us). We will
generate emotions just in case we have positive feelings toward the agent who is making the
proposal. The emotion intensities are dependent on the type of proposal – kiss and sex proposals
generate high negative emotions while other proposals just low negative emotions.

Emotions:

– distress and disliking – low or high intensity – toward the agent who is proposing something

6.33 generateProposalToOtherByAgentWithEvent
The agent we are currently with is making proposal to other agent. This is the same as above with
generateProposalOtherMaking, except the emotions generated are slightly higher.

Emotions:

– distress and disliking – low or high intensity – toward the agent who is proposing something

6.34 generateProposalOtherResponseEvent
Someone is responding to proposal to other agent (and none of them is currently with us). We will
generate emotions just in case we have positive feelings toward the agent who is responding to the
proposal. If he accepts the proposal we will generate negative emotions and vice versa. The
intensity is also dependent on the type of proposal – kiss and sex proposals generate medium
positive/negative emotions while other proposals just low positive/negative emotions.

Emotions:

– joy and liking – low to medium intensity – toward the responding agent (in case the proposal
was rejected)

– distress and disliking – low to medium intensity – toward the responding agent (in case the
proposal was accepted)

6.35 generateProposalResponseToOtherByAgentWithEvent
The agent we are currently with is responding to proposal made by some other agent. This is the
same as with generateProposalOtherResponse event above, except the emotion intensities are
medium to high.

Emotions:

– joy and liking – medium to high intensity – toward the responding agent (in case the proposal
was rejected)

– distress and disliking – medium to high intensity – toward the responding agent (in case the
proposal was accepted)

6.36 generateProposalByOtherToAgentWithEvent
Someone is making a proposal toward agent we are currently with! We will generate negative
emotions with intensities depending on the type of the proposal. Sex and kiss proposals will trigger
emotions with higher intensities.

Emotions:

– distress and disliking – medium to high intensities – toward the agent who made the proposal

6.37 generateProposalResponseEvent
Someone has responded to our proposal. If accepted we will generate positive emotions and vice
versa. The feeling toward agent is not important here.

Emotions:

– joy and liking – medium intensity – toward the other agent (if the proposal was accepted)

– distress and disliking – medium intensity – toward the other agent (if the proposal was rejected)

6.38 generateProposalIgnoreEvent
Someone we have made proposal to is not responding to it (he ignored our proposal). We will be a
bit unhappy by this.

Emotions:

– anger – low intensity – toward other agent

6.39 generateReceivedProposalEvent
Someone has made proposal to us. We will react based on the feelings toward the other agent. If the
proposal will be accepted we are happy, if we will reject it we will be offended by kiss or sex
proposals. If we don't like the agent (feeling negative) we will be offended a little by any proposal
and vice versa (except the kiss and sex proposals, that are handled separately).

Emotions:

– joy and gratitude – low to medium intensities – toward proposing agent

– distress and anger – low to medium intensities – toward proposing agent

6.40 generatePolymorphActionBiteEvent
The polymorph has bitten us! We will generate negative emotions.

Emotions:

– fears confirmed and fear – high intensities – toward polymorph. Fears confirmed emotion will
lead probably to other negative emotions such as distress. Otherwise it is not monitored by the
agents.

6.41 generatePolymorphDislikeFearEvent
We are close to hostile polymorph who is making bad noises. We are afraid of him and do not like
him. There is ongoing reduction of intensity based on the number of the negative messages the
polymorph has made to us.

Emotions:

– dislike and fear – low to high intensity – towards polymorph

6.42 generatePolymorphBiteEvent
The polymorph has damaged us – caused our health to be lower. Not generated right now, will be
probably erased and just PolymorphActionBiteEvent will be used.

Emotions:

– fear confirmed and fear – high intensity – toward polymorph

6.43 generatePolymorphLikeEvent
We have encountered friendly polymorph and he is making friendly noises toward us. There is
ongoing reduction of intensity based on the number of messages the polymorph has made to us.

Emotions:

– liking – low to medium intensity – toward polymorph

6.44 generateWaitAgentNotReturnedEvent
We were waiting for the agent and the agent didn't come to us in time.

Emotions:

– distress and disliking – medium intensity – toward the other agent

6.45 generateWaitAgentReturnedEvent
We were waiting for the agent and the agent returned in time.

Emotions:

– joy and liking – medium intesity – toward other agent

6.46 generateWaitInProgressEvent
We are currently waiting on the agent. Every few seconds (30) this event is generated while waiting.

Emotions:

– distress and anger – low intensities – toward the agent we are waiting for

6.47 generateWeHitPolymorphEvent
We have hit the polymorph with the gun – we are proud on ourselves.

Emotions:

– joy and pride – high intensities – toward us

7 Java packages and classes overview
Here we will present a brief project Emohawk Java packages overview. We will list what is the
package responsible for and what classes it contains.

7.1 Package AlmaBasedModel (almabasedmodel)
This package contains classes that provides the connection to ALMA emotion model. We need to
make a new instance of emotion model and provide it with our inputs. ALMA is configured through
XML configuration files. Also this package is used to provide classes, where we can store the
ALMA affect outside ALMA (currently emotions and mood), and contains our affect computation
methods.

7.1.1 Class Aemotion
Class used to store ALMA emotion outside ALMA.

7.1.2 Class AEmotionState
Here we compute our own affects based on the affects got from ALMA. (the feeling attitude)

7.1.3 Class AEventGenerator
Here all the emotion events for ALMA are appraised and sent as input to ALMA.

7.1.4 Class AMood
Class used to store ALMA mood outside ALMA.

7.1.5 Class PogamutALMA
Here we create an instance of ALMA emotion model. Main class for Pogamut -> ALMA
connection.

7.2 Package bot
This is the main behavior package. The IVAs finite state machines are defined in classes here. Also
the classes needed to make a new instance of our IVAs in Pogamut are here. This classes also
provide the connection with the UT04 environment.

7.2.1 Class EmotionalBot
The parent class of our agent decision making class. Some methods providing decision making are
defined here (the methods that are the same for both the girl and the boy). The only state
preprapareScenario is defined here.

7.2.2 Class EmotionalBotModule
This module provide information for Guice, so our agent can be properly instantiated.

7.2.3 Class EmotionalBotTestCase
This is the main class we use for running our scenario. It will instantiate all the four IVAs we use
and as well quit the scenario after 10 minutes and invoke methods for storing the scenario run.

7.2.4 Class EmotionalFemaleBot
Here the girl control logic is defined (all states and gender based decision making methods).

7.2.5 Class EmotionalFemaleBotModule
This module provide information for Guice, so our female agent can be properly instantiated.

7.2.6 Class EmotionalMaleBot
Here the boy control logic is defined (all states and gender based decision making methods).

7.2.7 Class EmotionalMaleBotModule
This module provide information for Guice, so our male agent can be properly instantiated.

7.2.8 Class EventGenerator
This class is responsible for processing of the text messages in order to generate emotion events.
Also the information about last time of actions and proposals someone did to us are got here and
stored in agent memory.

7.2.9 Class PolymorphBot
Here the polymorphs reactive behavior based on doLogic method is defined.

7.2.10 Class PolymorphBotModule
This module provide information for Guice, so our polymorph agent can be properly instantiated.

7.3 Package info
In this package we have classes that we use to a) store the IVAs history (e.g. What actions or
proposals or etc. our IVA made to other IVAs and/or what actions etc. some other IVAs made to our
IVA). Also the enumeration constants we use in Emohawk are defined in classes here.

7.3.1 Class ActionType
Here we have all scenario action identifiers defined.

7.3.2 Class ConversationInfo
This class stores information about a casual conversation with some other agent. When was the last
time we have sent some message to target agent and vice versa...

7.3.3 Class ConversationType
Here we have all scenario conversation identifiers defined.

7.3.4 Class EventId
Here we have all scenario emotion events identifiers defined.

7.3.5 Class ItemRequest
This class stores information about item request we have received from some agent.

7.3.6 Class PlaceType
Here we have all scenario places identifiers defined.

7.3.7 Class PlayerInfo
This class is used to store information about agent to agent interaction. Here we will have the
information about last times we have issued some action toward the agent and as well about last
time the agent issued some action toward us. Moreover information about the last time we were at
cinema with the agent or at park are stored here as well.

7.3.8 Class PolymorphEventInfo
This class stores information about an event the polymorph may triggered for our agent. This will
help us to habituate toward polymorph events that are triggered regularly.

7.3.9 Class ProposalInfo
This class stores information about one proposal. E.g. if this proposal was accepted or rejected.
Who is the agent this proposal if for/from etc.

7.3.10 Class ProposalType
Here we have all scenario proposals identifiers defined.

7.3.11 Class ScenarioItemType
Here we have all scenario item identifiers defined.

7.3.12 Class StateType
Here we have all state identifiers defined.

7.3.13 Class ScenarioType
Here we have all scenario identifiers defined.

7.3.14 Class TimerType
Here we have all timer identifiers defined.

7.4 Package logging
In this package all the objects needed to store and process the scenario run are present. In other
words the automatic part of the analysis of our scenario is defined in class here.

7.4.1 Class ActionLog
Class used for storing of action issued in the scenario to a binary file.

7.4.2 Class AgentLogProcessor
This class is used to create a graph and text files outputs for all the experiments. Also simple
analysis is conducted (output again in text files and graphs).

7.4.3 Class AgentLogging
This class provides a storage of all events, action, proposals etc. occurred for one agent during the
scenario. This information will be stored to Java binary file for future analysis.

7.4.4 Class AgentStateLog
Class containing a snapshot of some of the agent internal variables at certain time in the scenario.

7.4.5 Class EmotionEventLog
Class holding one emotion event that occurred at certain time for our agent in the scenario.

7.4.6 Class EmotionsLog
Class used to store a complete list of agents emotions at certain time in the scenario.

7.4.7 Class FeelingLog
Class used for storing a feeling of agent to other agent in the scenario to a binary file.

7.4.8 Class FeelingSceneResult
Used for scenario analysis – holds the feeling development result for certain sub-scene in the
scenario.

7.4.9 Class ItemLog
Here we log information about item we have given to someone or item we have received from
someone.

7.4.10 Class LocationLog
Class used for storing a location of agent in the scenario to a binary file.

7.4.11 Class MoodLog
Class used for storing a mood of agent in the scenario to a binary file.

7.4.12 Class RotationLog
Class used for storing a rotation of agent in the scenario to a binary file.

7.5 Package utils
This helper package contains two classes with static methods we use in project Emohawk. The
classes here are never instantiated.

7.5.1 Class Algeb
This class contains methods for our simple obstacle avoidance code implementation.

7.5.2 Class Time
Through this class we retrieve information about current time.

8 UT04 part
In UT04, we have modified package GBScenario. This is UT04 mod based on GameBots2004
classes. We have performed following modifications:

1. Our agents are able to see other agents when they are less than 300 UT units (~3 meters)
away from them – even if our agent is turned with his back to them.

2. We have created a command that triggers sending all of the players in the environment
through synchronous PLR messages (even of those that are not visible). This is used at the
beginning of the scenario to get Ids of all the agents for all the agents.

3. We have added civil non-violent models for our IVAs – we needed to set up classes that
holds information about meshes and textures.

4. We have added command and message for handling the item exchanges between our agents.

5. We have implemented an emitter that is capable of emitting flares we use for emotions
visualization. Also we have created a command that can set up and control this emitter.

	1 Introduction
	2 IVAs interactions
	3 IVAs memory
	4 IVAs architecture
	4.1 Agent states
	4.1.1 state agent alone
	4.1.2 state follow agent with
	4.1.3 state going somewhere with
	4.1.4 state interrupted
	4.1.5 state wait
	4.1.6 state with somebody
	4.1.7 state approach boys

	5 IVAs environmental perception
	6 List of all emotion events in the scenario
	6.1 generateActionKissEvent
	6.2 generateActionKissOtherEvent
	6.3 generateActionKissByEvent
	6.4 generateActionSlapByEvent
	6.5 generateActionSlapOtherEvent
	6.6 generateActionKickOtherEvent
	6.7 generateActionKickByEvent
	6.8 generateActionByeByEvent
	6.9 generateActionByeOtherEvent
	6.10 generateActionComplimentByEvent
	6.11 generateActionComplimentOtherEvent
	6.12 generateActionCuddleByEvent
	6.13 generateActionInsultByEvent
	6.14 generateActionInsultOtherEvent
	6.15 generateActionSexByEvent
	6.16 generateActionSexOtherEvent
	6.17 generateActionLeaveByEvent
	6.18 generateActionLeaveOtherEvent
	6.19 generateAloneEvent
	6.20 generatePickupEvent
	6.21 generatePlayerLostEvent
	6.22 generatePlayerTogetherEvent
	6.23 generatePlayerAppearedEvent
	6.24 generateAngerFearMessageEvent
	6.25 generateHappySadMessageEvent
	6.26 generateLikeDislikeMessageEvent
	6.27 generateMessageToOtherEvent
	6.28 generateConversationIgnoreByEvent
	6.29 generateInterruptedEvent
	6.30 generateReceivedItemEvent
	6.31 generateItemJelausyEvent
	6.32 generateProposalToOtherEvent
	6.33 generateProposalToOtherByAgentWithEvent
	6.34 generateProposalOtherResponseEvent
	6.35 generateProposalResponseToOtherByAgentWithEvent
	6.36 generateProposalByOtherToAgentWithEvent
	6.37 generateProposalResponseEvent
	6.38 generateProposalIgnoreEvent
	6.39 generateReceivedProposalEvent
	6.40 generatePolymorphActionBiteEvent
	6.41 generatePolymorphDislikeFearEvent
	6.42 generatePolymorphBiteEvent
	6.43 generatePolymorphLikeEvent
	6.44 generateWaitAgentNotReturnedEvent
	6.45 generateWaitAgentReturnedEvent
	6.46 generateWaitInProgressEvent
	6.47 generateWeHitPolymorphEvent

	7 Java packages and classes overview
	7.1 Package AlmaBasedModel (almabasedmodel)
	7.1.1 Class Aemotion
	7.1.2 Class AEmotionState
	7.1.3 Class AEventGenerator
	7.1.4 Class AMood
	7.1.5 Class PogamutALMA

	7.2 Package bot
	7.2.1 Class EmotionalBot
	7.2.2 Class EmotionalBotModule
	7.2.3 Class EmotionalBotTestCase
	7.2.4 Class EmotionalFemaleBot
	7.2.5 Class EmotionalFemaleBotModule
	7.2.6 Class EmotionalMaleBot
	7.2.7 Class EmotionalMaleBotModule
	7.2.8 Class EventGenerator
	7.2.9 Class PolymorphBot
	7.2.10 Class PolymorphBotModule

	7.3 Package info
	7.3.1 Class ActionType
	7.3.2 Class ConversationInfo
	7.3.3 Class ConversationType
	7.3.4 Class EventId
	7.3.5 Class ItemRequest
	7.3.6 Class PlaceType
	7.3.7 Class PlayerInfo
	7.3.8 Class PolymorphEventInfo
	7.3.9 Class ProposalInfo
	7.3.10 Class ProposalType
	7.3.11 Class ScenarioItemType
	7.3.12 Class StateType
	7.3.13 Class ScenarioType
	7.3.14 Class TimerType

	7.4 Package logging
	7.4.1 Class ActionLog
	7.4.2 Class AgentLogProcessor
	7.4.3 Class AgentLogging
	7.4.4 Class AgentStateLog
	7.4.5 Class EmotionEventLog
	7.4.6 Class EmotionsLog
	7.4.7 Class FeelingLog
	7.4.8 Class FeelingSceneResult
	7.4.9 Class ItemLog
	7.4.10 Class LocationLog
	7.4.11 Class MoodLog
	7.4.12 Class RotationLog

	7.5 Package utils
	7.5.1 Class Algeb
	7.5.2 Class Time

	8 UT04 part

