Charles University in Prague, Czech Republic
Faculty of Mathematics and Physics

BACHELOR THESIS

Radim Vansa

Vyukové scénare v projektu Pogamut
Educational scenarios in the Pogamut project

Department of Software and Computer Science Education

Supervisor: Mgr. Rudolf Kadlec

Study program: Computer science
Field of study: Programming

2009

I would like to give thanks to my supervisor, Mgr. Rudolf Kadlec, for his
time and support. I would also like to express thanks to all other developers
of the Pogamut project, namely to Mgr. Jakub Gemrot, Bc. Michal Bida,
Jan Havli¢ek and Mgr. Ondiej Burkert. Special thanks belong to the team-
leader of AMIS team, Mgr. Cyril Brom, Ph.D.

My thanks to my parents and family, whose support and guidance have
helped me sail through difficult chapters of my life.

I hereby certify that I wrote the thesis by myself, using only referenced
sources. | agree with lending the thesis.

In Prague Radim Vansa

Table of Contents

INEEOAUCTION. ...ttt et e e et e e e aeaee e 5
Related WOTKS.eeiiiiiiieiee e 7
2.1 FEarNOt! ...t e 7
2.2 SECUTE....ceutiteaiiieeeiie ettt ettt ettt et e ettt e et e st e e st e e eatee e e 7
2.3 SCIIPLEASE....ccuvieeiieiieiieeeee e e 8
2.4 CItY GAME.....eeeeeiieeiieeeieeeeiee et e et e et eeesaveeetaeessaeessaeesnnsssaeaeeeennnnns 8
2.5 ADMS ..ttt 9
Problem analysiS......c.cceciieiiiieiiieeciie e s 10
Background OVEIVIEW.........cccuiiiiiiiiieiieeit ettt ettt 12
4.1 POGAMULCOTE.eeeeeiiiieeeeiiiee e et e ee e ee e et e e e etaee e s et e e e s naaeeeeeeeaeas 12
4.2 PogamutUT2004.......cc.oeiiiieeiie et 13
4.3 GAMEBOLS. ...coiiiiiiiiiii e 14
4.4 DITOOIS. c.cieitieeit ettt ettt et et 14
Design and implementation.............ccvieeeueeeriieeriieeeriie e e e 16
5.1 ATChiteCture OVEIVIEW.....cccuiiiiieiieeiieiie ettt ettt eiae e esaeee e 16
5.2 A CES e e e e e e 19
I LY £ o OO UPURRPPPPPPPIIN 19
5.4 Drools SUPPOTt CLASSES......veieririeeeiiieeiiie et e e e 21
5.5 Variables. .. .coeuiiiiieiiee e 22
5.6 Changes to GameBOLS..........coooviiiiiiieiieceeeeeee e 22
5.7 DialogUES SYSTEIM........vieiieeiiieniieeiieeiie et eieeete et e sere et e e eireeeesnnaeeeenes 24
5.8 UT2004 dependent part of ES........ccooviieiiiiiiiieeeeeceeeee e 26
5.9 MAP ©AILOT.....eeuiieiieiie ettt ettt e e 27
S.T0 PUPPELBOL..ccoiiiee e 29
Additional diSCUSSION.eeuiiriieiieiiieiie ettt ettt e e et e e e ebeee e 30
6.1 Choice Of DIOOIS.......eoiiiiiiiiiiiee e 30
6.2 Process of development...........ocveeiieriieiiienieeiiee e 30
FULUIE WOTK.eiiiiiii e 32
7.1 DSL €NhanCemenNtS.cc.eevuieeieerieeiieniieeieenieeieeeesireeeenereeeesneeeeens 32
7.2 Porting to other virtual environments...........cccceeeveeeriieeeeesinvieeeeeeeens 33
CONCIUSION. ...ttt ettt ettt e et e e e nbaeeeennreeaes 34
RETRIENICES. ...t 35
APPENAICES.eeneieeiiieiieeie ettt ettt stteste et e et e et e eabeeabeeeennbaeeeenbeeeenneas 38
Appendix A: SIMPIE SCENATIO.....ccvvieeirieeiieeeieeeciee et e e e e e e 38
Appendix B: Example scenario description...........ccceeeeveereeenieeneeeieennnne. 40

Appendix C: Contents of the enclosed CD..........c.ccoeevveveiieiniiieeeeene, 43

Nazev prace: Vyukové scénate v projektu Pogamut
Autor: Radim Vansa

Katedra (Gstav): Kabinet software a vyuky informatiky
Vedouci bakalaiské prace: Mgr. Rudolf Kadlec

e-mail vedouciho: rudolf.kadlec@gmail.com

Abstrakt: Tento projekt si klade za cil rozsitit platformu Pogamut o nastroj
pro neprogramatory, zvlast¢ pedagogy, ktetfi cht&ji vyuzit 3D virtualni
prosttedi jako vyukovy prostfedek. Mél by jim umoZnit jednodusSe
navrhovat scénare, ve kterych mohou testovat své zaky v riznych situacich.
Tyto scénafe by mély byt =zapisovany v piirozené vyhlizejicim,
lokalizovatelném jazyku interpretovaném v produkénim systému Drools.
Jednou ze soucasti této bakaldiské prace je 1 implementace ukazkového
scénafe, ktery zkousi schopnosti Zakl orientovat se v méstské zastavbé.
Projekt Pogamut umoziluje prezentovat tyto scénafe ve Spickovych
virtualnich svétech, naptiklad ve hife Unreal Tournament 2004.

Klicova slova: vyukové hry, virtudlni realita

Title: Educational scenarios in the Pogamut project

Author: Radim Vansa

Department: Department of Software and Computer Science Education
Supervisor: Mgr. Rudolf Kadlec

Supervisor's email address: rudolf.kadlec@gmail.com

Abstract: The goal of this project is to extend Pogamut platform with a tool
for non-programmers, especially teachers, who want to use 3D virtual
environment as a learning medium. They should be able to easily write
scenarios, where they can test their students in different situations. One part
of this bachelor thesis is the implementation of sample scenario proving
student's abilities of orientation in urban environment. These scenarios can
be scripted in naturally looking, localizable language interpreted in the
Drools rule based engine. The Pogamut project allows to present these
scenarios in first-class virtual reality worlds, for instance in Unreal
Tournament 2004.

Keywords: serious games, virtual reality

Section 1
Introduction

In the last years we can notice a growing number of attempts to use
computers at schools. They vary from basic applications for form filling
(e.g. those used for english grammar tests as [1]), over interactive tutors and
virtual laboratories [2] to very complex simulators requiring special
hardware etc. Educational Scenarios (ES) can be classified as a tool for
serious games [3], although they need not to be funny. These involve the use

of games in education, training, health and public policy.

ES differ in the relationship between application's author and the person
who creates the content of these applications. In hereinbefore mentioned
applications, the content author (domain expert - teacher, psychologist,
sociologist) usually needs to highly cooperate with the application's author
because he himself cannot express his problem in computer terms. In ES the

content author should be independent as much as possible.

ES is intended to be only a tool, not a complete application. Therefore it has
to offer a way to be scripted by everyone, without any need for computer
science knowledge or skills. To make computer-assisted training useful and
serious part of the education, we have to produce sufficient amount of
quality content. For this, we would need many specialists and we have to
offer them an opportunity for standalone development. This is what ES

does.

The example scenario that the submission contains should support training
of orientation in urban environment which is part of the elementary schools'
curriculum. Even some early-teenage children cannot properly navigate in
unfamiliar city or town, although they have a map. This scenario tests basic
navigation skills (using commands as turn left, go ahead), orientation using
cardinal points as well as following path marked up in the map or even free
movement between two locations within time limit. Tested player should
also keep an eye on another character (e.g. his/her younger brother), evade
losing him etc. Actions that are not linked with movement selection can be

performed through dialogues.

Pogamut [4] platform provides platform-independent and environment-
independent (game-independent) framework. The basic feature is Java API
for agents control, but other projects on Pogamut platform also enable
support for emotional model ALMA [5], gestures and face expressions or
cognitively plausible architecture ACT-R [6][7]. Unreal Tournament 2004
(UT2004) [8] is used for ES as the virtual environment because this game is

the only one supported in Pogamut so far.

UT2004 offers several game modes, but the basic principle is always the
same: you (and your team) should shoot your opponents. There are many
types of guns with different characteristics placed in the level'. You have to
run around the level and collect better guns, ammunition for them and health
packs in case that you are wounded. If you die, the opponent who killed you
will increase his score and you will revive somewhere else with only the

basic equipment.

It may seem not very suitable for educational purposes — it is a game full of
violence, weapons and blood, but this is just one utilization of the UT2004
engine. With proper civil models and maps it can be used very well for

serious games and education.

For scripting of scenarios was chosen the Drools [9] rules engine as it

fulfilled all our needs.

1 The virtual area where the game is running.

6

Section 2
Related works

Thousands of computer-learning applications have been developed in last
fifteen years. Here will be described a few of them which are using 3D

virtual reality in an immersive way.

2.1 FearNot!

FearNot! [10] is a European framework V project that concentrates on
improvised dramas addressing bullying problems. Children at the age of 8-
12 were targeted. One of the main aims of this project was to create
believable synthetic creatures allowing the user to build empatic relations

with them.

FearNot! Provides various scenarios concerning bullying behaviour
compiled by pedagogues but also automatically generates the story through

emergent narrative techniques.

The interesting position of the player is not the major figure in the drama
but his/her invisible friend, talking to the character through chat and
viewing his actions and their consequences. This position was chosen
because the situation of being the victim of bullying would appear too

stressful for the child and would not satisty the pedagogical objectives.

This project has been extensively tested in the UK, Germany and Portugal

on more than 1000 children with satisfactory results.

2.2 Secure

Secure [11] is a virtual 3D online game for four players. It aims at epistemic
problem-solving relative to work safety in the field of construction. The
players should build a customer ordered hut within 60 to 90 minutes. They
can move in the virtual world, dislocate objects, equip with them and use

them. According to the website the environment and scenario are scripted.

There was a study [12] evaluating this project. The game was tested by 64

16-18 year old vocational students. Next to their score and speed was

7

observed the amount of communication between the players because the
game is deeply aligned on players' cooperation. The authors of this study

consider its results as positive.

2.3 ScriptEase

ScriptEase [13] project is the most similar to Educational Scenarios from all
the projects that are mentioned here. It was introduced in [14] not as a final
product but also a tool for non-programmers. ScriptEase utilizes
Neverwinter Nights (NWN) [15] engine which already uses scripting but
not in a very user-friendly way. On the contrary, ScriptEase provides a set of

templates together with GUI tool.

The ScriptEase model is pattern template based, allowing designers to build
up complex behaviors quickly without doing explicit programming. There is
a library of event triggers and possible actions, which can be performed and

the author only picks and joins them through the GUI.
When everything is set up, it generates the scripting code for the NWN.

ScriptEase is rather event-oriented. It allows to react very easily to opening
a chest, entering some space etc. On the contrary, ES assumes that the
scenario has some story line and the events just affect it. Although
ScriptEase allows to change NPC's' dialog if the player had already talked

to it, this is not actually a story line.

Somebody could see as a great advantage of ScriptEase no need to write

code (even in user friendly DSL) but this is a matter of personal affection.

2.4 City Game

The City Game [16] does something very similar to the example scenario
provided with ES. It creates a virtual city where the student can travel also
using a map or compass. Additionally they can use photos and street signs.

The program is proprietary but the city is defined in VRML [17].

The authors of the project have performed a study on 10 elementary school

children and 10 university students and compared the results. The tested

1 NPC —non player character

subjects were asked to find a way from various initial positions to different
target positions. The study concerned in methods how the tested subjects
recognized the right way. The results showed that the subjects have used the
map and road signs in small scope, they used mainly significant objects as

museum with dinosaur or petrol station.

The City Game includes larger city than the UnrealVille provided with ES
and it is more fitted to spatial navigation testing. Nevertheless the graphics
looks rather amateurish. The fact that it is 11 years old (6 years older than
UT2004) could be an excuse. But the major difference is that it has fixed

abilities because the scenarios themselves are hard-coded into the program.

2.5 ADMS

ADMS - the Advanced Disaster Management Simulator [18] is a
commercial simulator used for training incident command and vehicle
operation. The learning scenarios can be open-ended and the development
of situation is driven by trainee's actions. The virtual environment uses
realistic physics and effects in contrast to games where the playability goes

at the expense of realism and believability.

This project has been examined because testing of children behavior in
emergency situations as wildfire or car accident was considered during the
early specification of ES example scenario. Although such scenarios are not
implemented (mainly because of the need of special graphics which is not

available now), ES could serve very well for this purpose.

Section 3
Problem analysis

Although the aim of this project is to create a general system for writing
educational scenarios, in fact it has a particular goal to be accomplished —
functional example scenario. Here should the player move through a virtual
city. He is navigated through messages on screen but also sometimes he can
use map of the city and compass. If he gets lost and is not able to return
back, he should loose the control over his movements and be returned back.
There is also another character representing player's younger sibling. He
follows the player but when the player runs too far from the sibling, the
sibling stops and the player has to return back to him. Actions that are not
linked with movement selection can be performed through dialogues. The

complete description of the example scenario is enclosed as Appendix B.
Such task forces following components to be implemented:

* detection of player's movement and transcription from cartesian

coordinates to named areas
» external control of player movements
* interaction with player through messages, sounds and dialogues
* ability to place another character into the environment and control it
« user friendly scripting system to control the scenario
These modules are the major contribution of this thesis.

The classic structured programming would be very abstruse for authors with
no previous programming experience. That is why some other way of
expressing the algorithms has been looked for. Here came the idea of using
business rules engine came. It is a production system [19] that consists of a
set of rules and according to the world state, it executes one or more of
them. Each rule has only single condition block and single block of

commands. This simplifies the code.

A great advantage would be the possibility of writing the statements

10

(conditions and commands) in simple sentences in human language. This is
called domain specific language (DSL) [20]. It is another method that brings

the programming closer to the author.

Drools [9] rules engine was chosen because it fulfills the requisites
mentioned above. It allows declaring domain specific language [21] (DSL)
and create proprietary syntax understandable for any English speaker. The
translation, for example into Czech or German, could be done with almost
no additional effort. Drools have been also successfully tested in games with
variable laws [22]. According to [23] or [24] the Drools rules engine offers

satisfactory performance.

11

Section 4
Background overview

According to the thesis submission, this work extends the Pogamut project.
This section briefly describes Pogamut architecture and the way how it is

used. The last section is related to the Drools rules engine.
To clarify our terms here is a short definition list:
* Agent is any being “living” in the simulated virtual reality.
* Bot is an agent that is controlled by artificial intelligence (Al).

* Game is third-party virtual reality that Pogamut connects to. These
are actually not limited to games - it can theoretically be also a pure
virtual world like Second Life or military simulator. Nevertheless the

support of such environment is not implemented at this moment.

* Player is an agent that is controlled by human using graphical
interface to immerse into the agent. The word player can also be
used for identification of the human itself. For exact denotation of

the agent we can use the word character.

* World is the sum of all objects and their interactions in the virtual

reality.

Pogamut 3 running on UT2004 consists of three parts: PogamutCore,

PogamutUT2004 and GameBots2004 (GB).

The general architecture of Pogamut is shown on figure 4.1.

4.1 PogamutCore

The kernel of Pogamut with codename GAVIAL - General autonomous
virtual intelligent agent library - provides platform-independent
communication with the game. On the control program's side it offers world
view where you can listen to any event that occurs in the world and the

agent can sense it." New agents can be instantiated in the world and the

1 You can also have server which can listen to any event in the world without limitation.
The agents are connected through bot connection while this server uses control
connection.

12

control program can send commands to be obeyed by their body. On the
bottom side is a communication link with the game itself, concretely
implemented by the game dependent part. This core library also provides
basic algorithms as A* [25] or Floyd-Warshall [26] on the navigation points'

as well as another useful general utilities.

Pogamut

Java
Vi Y

Agent Modules Agent (Bot)

) T

Commands —" Messages —’~

]
b

TAct inperface World¥iew

e
Command
Serializer Parser
A~

text messages
commands | over TCP/IP informs

UT2004

- GameBots2004

Figure 4.1 Pogamut architecture

4.2 PogamutUT2004

The PogamutUT2004 part contains the code dependent on the concrete
virtual environment. The connection is implemented as TCP/IP socket
connection between the game and the translator. Agent's request (command
object executed on the agent's body) is serialized into single string message

using the Command Serializer and sent over the network link. New events

1 Navigation grid is a graph with navigation points as vertices and links between them as
edges. It is used to simplify the navigation in complex 3D enironment so the bots do not
need to analyze its 3D shape. They are navigating between these points and they know
that it is possible to safely travel between them without getting stuck.

13

in world, coming also as strings, are deserialized in Parser into info objects

and passed through the world view.

PogamutUT2004 also provide more comfortable access to world view
through modules that concentrate some information to be used any time, e.g.

long-term memory. Nevertheless this is not the essential function.

4.3 GameBots

A great deal of UT2004's code describing the game rules is not compiled
into binaries but it is scripted in language known as Unreal Script [27] [28].
This is object oriented language with C-like syntax, which is precompiled

into bytecode to be interpreted during the game session.

GameBots2004 manages the second side of network connection mentioned
hereinbefore - it translates command messages from Pogamut to relevant
method calls, serializes another method calls into info messages and sends

them over the network.

GBScenario is GameBots2004's shell which concentrates the UT2004's code
which does not only control the bots but offers additional support for
scenario-like modules as ES. It enables camera movement, provides civil
mode skins and such improvements which are not used in regular death-

match games.

4.4 Drools

Each rule has following structure:

rule “Rule name”
modifiers
when
conditionl
condition?2 LHS!

then
commandl

command?2 RHS?

end

1 RHS —right hand side of the rule, the block of commands
2 LHS - left hand side of the rule, the block of conditions

14

All the objects we are working with are called facts and are stored in a
working memory. When some object is inserted (sometimes also called as
“assertion”) or updated, the conditions in all rules the rules that can be
affected by the new fact are tested in a top-down order. If all the conditions
are satisfied, the rule is activated. After all rules have been tested the active
rules fire. Their succession is determined according to their position in the
rule file and mainly according to the modifiers and their commands are

executed also in a top-down order.

The conditions have usualy the form:

Rectangle (width>50, height=30 || color=“blue”)

This condition tests if there is an object of Rectangle class in working

memory which is wider than 50 and either has height of 30 or is blue.

Such object can be also stored in variable and used in following conditions

Srect: Rectangle (width>50, color=“blue”)
Circle(perimeter = S$rect.width)

Such condition block (LHS) tests whether there is a blue rectangle and

circle with the same perimeter as rectangle's width.

The command block (RHS) is piece of regular Java code but it can use the

variables declared in LHS.

Drools cannot come to know if some fact is modified. The user is

responsible for reporting object's change by calling the update method.

The DSL statements are nothing more complicated than abridged regular
expressions with “slots”. The first condition above could be written in DSL

as:

there is a rectangle wider than {width} with the
height of {height} or coloured with “{color}”

Rectangle (width>{width}, height={height} ||
color = “{color}”)

This is just a brief look on Drools, for details see Drools Documentation [9].

15

Section 5
Design and implementation

This section describes the work that have been done to implement easy
scenarios scripting support into Pogamut. The first subsection refers to
project's architecture generally, following sections analyze the detail of

implementation of particular components.
Definitions of terms used in this section:
* Scenario is the story that we perform.

* Act is one part of scenario. Acts form a tree structure — any act can

be a leaf in this structure or include several another acts.

* Area is a segment of space. Those areas represented by single
geometrical shape are called simple areas, those which are

composed of more areas are called complex areas.

* Designer is a person who writes the scenario, usually teacher or

psychologist with user computer knowledge.
* Rulebase is an object where all rules are stored during run-time.

* Working memory is a system of references to all objects the rules can

work with.

5.1 Architecture overview

The overall architecture of connection between Pogamut, GameBots and
Educational Scenarios is summarized in the figure 5.1. ScenarioAddons and
UT2004ScenarioAddons are separate modules that have been created for
ES' needs but they are general and can be used also in other independent

projects. They are described in section 5.7 in detail.

The root object is an instance of Scenario class. During start-up it loads the
rules related to this scenario, the structure of acts, the map, connects to
UT2004 server using control connection (see footnote 1 in section 4) and

waits for required number of players to join.

16

UT20045cenarioAddons (impelementing ScenarinAddons)
PlayerCommunication
PlayerControl BotControl
Dialogs
7~
A~
send
Y
Commands —H MMessages —’~ are received LUSES
- C
A~
Pogamut Educational
h 4 Scenarios
o
IAct interface WorldView UT2004
ControlServer
P
commands informs
h QFTgIRal Fogaminl s
] inal F :
zBScenario coMmponenis
[[] aitered components
GameBots2004
[] #ew components

Figure 5.1: Connection between Pogamut, GameBots and ES

Localization was also taken into account — TranslatorFactory produces
Translators which enable translation of words or phrases between different
languages. The author's input data are in configuration file, map files and
rule files. Because the rule files are written in pre-translated DSL the

Translator is used only during the configuration file and map files parsing.

The internal structure of Scenario and the data flow is demonstrated in the
figure 5.2. All the components are elaborated in following sections, this

figure shows their connections.

17

Scenario

selects

Pogamut
> ControlServer
notifies
/\E:mmﬁmm /\ﬂm.mm_“mn /\Eﬂ.nmﬁmn
Configuration file > Acts Bots Players Dialogs
[I
W
>
Rule files ¢ RulePackage Rules H\
|
_ .
| . Rulehase Working
Memory
Map
2
Area Il
DSL expander i
MapGraph {JuadTree m
A~ A~ &r A~
constict
Translator MapData
Map files)
3 Marks Areas Variahles
_ _ translates

Figure 5.2 EduScenaniosCore architecture

18

5.2 Acts

Our experience reflects that the scenario has often a hierarchical finite state
machine structure. Sketching of the scenario before the actual
implementation eases thinking the scenario over and also simplifies
referring to parts of the story. For example a scenario “workday” should
include acts “morning”, “work-shift” and “evening”, where “morning”
includes “waking up”, “breakfast” etc. The workday is in one of these states

in each moment.

Nevertheless such straight division is frequently not enough. When you see
a car rushing at you, you'll try to get out from the road regardless of whether
it's morning or evening and then continue with previous tasks. Therefore in
ES the designer can sketch several such trees of acts, where the scenario is

in one node of each tree at every moment.

The structure of these acts should be written down in the configuration file.

5.3 Map

The Map object is not absolutely necessary for every scenario but in most
cases, including the example scenario, it is essential. The hierarchical
structure of map should be described in standalone XML files based on the
UT2004 map. All the information can be stored in a single file but is is
recommended to use two files: first file describing the static layout of the
city (streets, squares etc.) and second one with scenario-specific objects

such as paths and points of interest.

These files can be created and edited using any text editor but such approach
would be very uncomfortable. Therefore a WYSIWYG' editor is provided
as an Eclipse’ plug-in. More detailed description of this plug-in will be

provided later in this document.

The structure of map should follow the way how we think about the parts —

city consists of districts, districts consist of streets, streets of houses and

1 What You See Is What You Get — common abbreviation for editing tools with user
friendly graphical interface.

2 Eclipse IDE is the recommended IDE for ES. This IDE was chosen because Drools
already provide an Eclipse plug-in.

19

houses have floors and rooms. You can use any language you need for
labeling of the levels of abstraction but it is strongly recommended to be
consistent. If you label all streets with the same label (e.g. only “street”, not
“avenue”, “street”, “road” etc. together), you can enumerate them very

easily.

The lowest level of map are simple geometric shapes — squares, rectangles,
circles and polygons. These don't care about the depth and height (z-
coordinates), simply setting them from negative infinity to positive infinity.

For 3-dimensional description you can use cuboids or cylinders.

All shapes are internally represented as polygons (with z-coordinate limits),
because it simplifies union and intersection operations. An open-source
library General Polygon Clipping Library [29] offered implementation for
most of our needs. However it lacked some functionality and therefore it
was modified and few minor improvements have been added. For example
the original version of GPCL has not exposed the intersection interface and
it has not contained the polygons collision testing or queries if polygon

contains specified point.

Although it would be technically possible, the unions and intersections of
basic shapes are not instantiated for the complex areas — these would have a
lots of vertices causing performance problems. Complex areas generate few
rules in run-time and insert them into the rules engine instead. These rules
differ according to type of the complex area and subareas the area contains.
If the agent enters some of these subareas these rules propagate the event

and cause that the agent is also noted in the superior areas.

You can also test whether is the agent between two areas (e.g. whether he is
on some street between two crossings with another streets). After all the
map data are loaded the map generates a graph with all areas as vertices and
their collisions as edges. There Dijkstra's algorithm can be used to test
whether the agent is on shortest path between these two locations.
Unfortunately, this forces us to instantiate some higher-level areas. That's

not very fast' but almost all the work can be done in the preprocessing

1 Intersection of two general polygons with m and n vertices can take up to O(m*n) time.

20

phase, causing no additional performance looses in run-time.

When we get an information from UT2004 that an agent is located on some
position, we would like to determine rapidly, which areas contain specified
position. This also requires some preprocessing — a quad tree' is constructed
after loading of data where every node holds all areas that could be in this

node's range. The calculation is based on the bounding rectangle of the area.

The node splits in case that it contains more areas than the depth of this
node in the quad tree. This guarantees optimal behavior of the data structure

regardless of used map scale.

Because Pogamut could operate with multiple games with different sizes of
maps, the quad tree has no maximal size — it starts as minimal square for
first inserted area, splits if it is appropriate and grows if it cannot contain
actually inserted area. It also enables the queries for all areas within

specified rectangle.

5.4 Drools support classes

As mentioned in previous section it was necessary to find a way to inject
some run-time-generated rules into the rulebase. The Drools API does not
support that directly in any simple way, but it can be done. Drools can load
the rules from a file or stream anytime, so we only need to generate the
stream. The RulesPackage class provides methods for comfortable

generation of it and subsequent loading into the rulebase.

Comfortable assertion of facts into the working memory and retraction of
them also needs attention. Any object that could be in working memory
should implement [Fact interface. The object can either subclass
SimpleFact class, declare delegate methods with SimpleFactDelegate class
or just be enveloped with SimpleFactHolder object if it is not possible to
modify it. All these helper classes implement [Fact interface for objects that
can be in only one working memory at one moment. Their implementation

is synchronized for usage in multi-threaded environment, too.

1 Quad tree is common technique for storage of information about space with different
density. If the square contains too much information, we divide it into four half-size
squares and split the information into smaller packs.

21

5.5 Variables

There is a different syntax in the rules when they appear in conditions and in
commands. We cannot directly ask the working memory for object
satisfying some criteria in the RHS as we could do in the LHS. In plain
Drools rules this wouldn't be a problem — we would add one condition
putting the object into local variable but in DSL we cannot burden the user
to do that — as it does not know the implementation of the rules, this would

confuse him.

That is why the Scenario uses a map called variables with all the objects in
the working memory. The key is either their name (in case it is an instance
of the INamed interface) or another dedicated name when we want to store
the object as a variable. We cannot change the object's name, of course but
there still needs to be a bijection between the object's name and the key
under which the object is stored. Therefore it must be proxied by another
object with the specific name. However these proxies are not implemented
as general because the proxy could require a specific features (for example

areas do).

5.6 Changes to GameBots

Several messages between Pogamut's Java side and GameBots with their
implementation on both sides have been added. All of them are messages for
control connection, because ES controls the scenario from all-knowing

position; bots are not supposed to act autonomously.

First set of messages is used to take control over the agents, e.g. when the
player gets lost and we want to return him to location, where he's supposed

to be:

 SETPLRCTRL sets whether the player can control his movements
with keyboard and mouse (making him only passive observer of his

character's actions if set to false).

* COMPLR commands the player's character to do some action
depending on the message's attributes, e.g. move to some location,
turn to specified direction, displace him etc.

22

COMBOT is similar to COMPLR but it should command a bot
instead of player. It is also more limited, because we can command

bots in different ways (as the original Pogamut does).

Another group of messages enhances communication with the player:

SHOWTEXT displays a short text for specified amount of time.
PLSND plays some sound.

SETSENDKEYS sets whether GameBots should send information

about every key press to Pogamut.
KEYPRESS sends the key player actually pressed.

DLGBEGIN, DLGITEM, DLGEND are used for construction of a

dialogue.
DLGCMD shows, hides or cancels a dialogue.

DLGREPLY returns information inserted into the dialogue.

These commands are utilizable generally, not only in ES. That's why they

have been integrated into GBScenario package and aren't provided

separately. Especially the dialogues system provides functionality useful in

more projects independent on ES.

On the Java part would be uncomfortable to use these messages directly.

Therefore a two modules were designed:

ScenarioAddons project contains platform-independent interfaces for

modules using the added messages. These are three modules (as seen in

figure 5.1):

IPlayerControl covers the SETPLRCTRL and COMPLR commands
1BotControl covers the COMBOT command

IPlayerCommunication uses SHOWTEXT, PLSND and the key and
dialog messages. Key listeners can be registered here automatically
switching the SETSENDKEYS to true and false. The dialog system

is far more complicated and it is elaborated in following section.

23

UT2004ScenarioAddons contains the implementation of ScenarioAddons

for UT2004.

5.7 Dialogues system

UT2004 has its own GUI system but it is not suitable for our needs.
UT2004's GUI assumes, that all the dialogues and menus are known at the
time of compilation. It can be expressed in special syntax tempered to its

purpose, but it lacks the ability to create the dialogues on the fly.

For Pogamut is such ability essential. The new system was inspired with
Java's Swing or SWT where we create objects, define relationships between

them, define their properties and register listeners on events.

Here the class names taken from the Java part are used. Each one has its
counterpart in the GBScenario (written in UnrealScript). Their functionality
is bound so closely, that there is no need to think about them as about two
different object. The object is set in Java and after synchronization update
call the change reflects in UT2004. User interaction is performed in US and
after pressing some active component (see DialogButton below) the listener

in the Java part is notified. See the figure 5.3 for draft of the principle.

The dialogues system consists of a couple of widgets called components.
Objects from the Dialog class keep the state information about dialog. The
dialog can be shown, hidden and updated (changing components properties,
adding new components or removing another ones) several times. It also

distributes backward DLGCMD messages.

Every Dialog has one DialogPanel. User can define it's size, position on
screen and background color. Because we cannot assume specific resolution
of screen, all coordinates and sizes are defined as relative with respect to
superior component (or whole screen in case it has not any superior
component). DialogPanel can have multiple children. It does not arrange
them, user is responsible for that, but they compute their absolute

coordinates with respect to the parent.

24

Dhalog
DialogPanel

DialogListeners

DialogC omponents

e
notify
b

PlayerCommunication

updates informs

{zBScenario
Dialog
DialogPanel

DialogC omponents

Figure 5.3: The dialogues system

Very important component is DialogButton. The button can contain some
image or text. It reacts on mouse click — collects information selected in the
dialogue and sends it through the DLGREPLY message to the Java side.
Here is the message automatically directed to the proper Dialog, where can
be registered a dialog-wide listener or listener specific to some active
component (DialogButton is not the only one which generates the

DLGREPLY message).

In the dialogue we often want to offer a choice among multiple options.
DialogOptionList is a simple component arranging several DialogOptions
and determining their behavior — it can allow only single choice

(radiobuttons) or multiple ones (checkboxes).

The most complicated component is DialogLayeredContainer (DLC). This
arranges several images (DialoglmageLayer), texts (DialogTextLayer) or

broken lines (DialogPathLayer) upon themselves, hiding some of them and

25

shifting them. These layers can be also displayed only partially — the DLC
has a viewport that sets the visible portion of it. This can be used e.g to
scroll over a larger image. It is to be noted that the shifting of layers and
viewport is specified in pixels, not as relative coordinates. It's necessary

cooperate correctly with images displayed in their native resolution.

The DLC is an active component, it sends exact coordinates of the mouse
click, displayed size, maximum size and other information. The DialogText
and DialogImage are in fact also DLCs, but they are forced to have only one

layer and delegate methods to this layer.

e
i

)

Figure 5.4: Example of a dialog

5.8 UT2004 dependent part of ES

The IControlServer in Scenario is implemented by UT2004ControlServer.
It starts the actual server from PogamutUT2004 and repeately asks for the

list of agents in the world.

After the message with actual agents and their coordinates comes it creates
new players or bots and registers them to the Scenario or removes those who
are not mentioned in the message. If there are no agent additions or
removals it just updates their position and notifies the Map about the
change.

More accurately the UT2004ControlServer does not create players as
26

objects of the Player class but its derivation, UT2004Player. The
UT2004Player 1is equipped with two dialogs: MapDialog and
CardinalDirectionsDialog. Both of these are derived from the Dialog class

from UT2004ScenarioAddons.

The MapDialog is an image with scroll buttons in the margins which shows
enabled marks (paths and points of interest) and agents whose position is
known to the player. The CardinalDirectionsDialog is a compass rose with
eight directions. User can select the direction and each of them can be

highlighted.

The UT2004Scenario has very simple function — it just creates the
UT2004ControlServer. It also defines the distance that should be considered

as “nearby”.

5.9 Map editor

Although XML file format is human readable, it is rather uncomfortable for
common user. Especially figuring out the coordinates for objects on the map
and their translation into UT map coordinates would be almost insane. The

map editor does this in an user friendly way.

Two options were considered. It could either be a standalone application or
an Eclipse' plug-in. The standalone application has the advantage of being
completely independent on user's choice of editing tools but it could be seen
as disadvantage. Integration of the editor into the IDE makes the
development of ES scenario look more compact, user can edit everything in

single program.

The IDE also provides additional support for creating editors in a
standardized and well designed way. Therefore the final decision was made

for the plug-in.

EduMapEditor, how is the project called, intensively uses classes from the
main ES project, EduScenariosCore. However, Eclipse's plug-ins do not use

traditional Java's class loading but they use the OSGi [30] model. Therefore

1 As stated in footnote 1 in section 4.3 the Eclipse IDE was chosen because Drools
already provide a rules development plug-in for this program.

27

all the projects including original Pogamut were converted into Eclipse
plug-ins, too. This meant no change of source code but only adjustments of

their configuration'.

[—y =5
TICLTT . =] &
id
Ak A
2 L=
ek T [l
i start 2
. Discripkion; [Bart por g
o smbok [non 2] G
= | — Wisible: False =
CLX] - Fake ﬁ
cobr s | ®)
iJ Stoena ﬂ
ol
&
t = i
I | ‘-': - = . r EJ
i 3

Figure 5.5: Map editor screenshot
ES map editor has these functions:
» generating of the XML file through wizard
* zooming the map to any level of detail

» creation, resizing and shifting of rectangular, circular and polygonal

arcas

» grouping of simple areas into larger complex areas and their removal

or excluding

e insertion, removal and shifting of POIs? as well as selection of their

1 There was a problem: Drools plug-in org.drools.eclipse for some reason does not
expose its core, compiler and other classes necessary for rules compilation and
execution and therefore it cannot be simply included in project's dependencies.
Although EduMapEditor does not use Drools it is dependent on the EduScenariosCore
project and this depends on Drools. The solution required conversion of the Drools
binaries into OSGi bundles. There had a problem arisen — Drools use some Eclipse's
internal packages. The standard Java class loading does not care about packages privacy
but OSGi does and these internal packages are declared as private (accessible only
from several another packages). Few approaches have been tried as alternation of the
Eclipse's org.eclipse.jdt.core plug-in where the problematic packages were located or
export of the plug-in into a new one with different privacy policy but none of them
worked. The final solution was taken from another program, DA-Launcher [31] which
was able to generate all the necessary bundles automatically. So the bundles used in ES
are taken from its cache.

2 POI — point of interest, common abbreviation for abstract representation of shops,

28

symbols and legends
* insertion, removal and shifting of paths (broken lines)
» complete rescaling of the plan

Its detailed manual is provided in the enclosed documentation of ES.

5.10 PuppetBot

In the example scenario the user comes to an another character which
represents his/her younger brother. The scenario can spawn arbitrary'
number of such characters called puppets. These bots are not controlled
through control connection, their internal logic is adapted to plain execution
of commands available through publicly exposed interface. Therefore the
scenario can assign orders to the PuppetBot through conventional method

calls.

restaurants, cash dispensers, bus station, drug stores and other objects on maps

1 The number is limited only by computational power of the UT2004 server. There can be
approximately 6-8 bots spawned at one moment. This could be a major limitation to
some scenarios. Unfortunately the only solution for those scenarios is switching to some
mass multiplayer virtual environment.

29

Section 6
Additional discussion

This section discusses the decisions made during the development, their

expediences and disadvantages.

6.1 Choice of Drools

There was no previous experience with Drools and the only information
about them was from JBoss website and few other articles on the web. From
the then point of view it has appeared to be a very good candidate for our
purposes. Their DSL and Eclipse-integrated editor tools looked very

promising.

But next to the problems mentioned in section 7.1, the overall data-driven
system is not the best choice. The event-driven model as used for example
in [13] might have been more fitting. Although the event may be simulated
by insertion of some new object in the working memory (as it is done with
key events) and therefore the data-driven model is more general it is not
always better. The conversion of data update to events must be done in DSL
what is not the best place for more code. Also the event must be sometimes

manually discarded (when there are multiple rules that can react to it).

The event-driven model is even more suitable in larger simulations where
the events can be locally specific and they could be automatically discarded

if not in player's proximity, saving the computational performance.

All this does not mean that Drools were poorly chosen. Drools can do the

job but there could still be a better suited system.

6.2 Process of development
The first step was writing the example scenario in use cases document in
plain text exactly describing the scenario. This document is enclosed as

Appendix B. The original proposed scenario was not changed.

In the second step was the scenario rewritten into separate rules. Here the

30

scenario's FSM' nature was found and after the rule-groups® were found
insufficient for this purpose, the Acts were designed. These are described

closely in section 5.2.

According to the scenario, the plot should be highly dependent on player's
position. It was necessary to develop a system representing the virtual
environment in higher abstraction level than the plain coordinates and

therefore the map system analyzed in section 5.3 has been implemented.

Before the map could be debugged and tested, some data had been required.
The need of map editor was revealed and because it would be a waste of

time to create the data manually for this moment the editor was created.

The support of player control the dialogues system has been implemented in
the next step. The dialogues system supersedes UT2004 GUI which was
found unsuitable There is a plenty of code also both on the Java side and in
UnrealScript so this part took a great amount of time. The MapDialog and
CardinalDirectionsDialog were implemented as complicated dialogs

requiring special needs.

The scenario uses some simple non-player character. This is called the

PuppetBot and its description is in section 5.10.

The direction of the process from concrete needs has led to implementation
of only the required parts for the example scenario. Although the code was
designed rather general it is possible that for some scenarios it is not
completely suitable. Some matters are too complicated to be written in the
rules. For example it would be very difficult to create the map dialog as

several rules® but it is still possible®.

—_—

FSM — finite state machine

2 Rule-groups are Drools way how to separate the rules into several parts. At every
moment is only one rule-group active and only the rules from this active group can be
fired. By default are the rules in group MAIN and this is the one active after startup.
The absence of hierarichy in groups made it unusable for our purposes.

3 There are multiple actions that could be performed on the map dialog and each one
would require at least one rule to react on this action. The dialog is also automatically
updated with agents' positions, that would require another set of rules.

4 This is not a verified fact but a just opinion.

31

Section 7
Future work

This section is describing additional work that should be done to unfold the
full concept of Educational Scenarios. The need of new DSL statements for
further scenarios is obvious and so it is not mentioned in the following

paragraphs.

7.1 DSL enhancements

Although Drools come with some implementation of DSL it still has some
disadvantages. ES use the version 4.0.7 of Drools but even in the new
released version 5 the DSL parser does not offer anything stronger than
regular language. Such limitation has the advantage of really simple method
of writing the conditions and commands where you can only place some
kind of slots into the sentences and then use them in the translated code but
this is all that you can. The experience had shown that the ability to use
nested expressions and recursion would be sometimes very helpful and

would reduce the number of very similar rules.

The timer can be used as a simple example: we can set it in seconds or
minutes. The version with minutes differs only by multiplication by 60, if
we could nest it, there could be only one “timer {name} is over {time}”
where the timer could expand. Other example could be the arithmetic —

using it in DSL is very uncomfortable, we have to write Java code.

Another difficulty was found when trying to use two identical conditions
(with different parameters) in one rule. If the condition defines some Drools
variables, they would be defined twice with the same identifier. The
compiler will not allow this, of course. The solution is either to use as the
variable identifier some parameter or force the user to provide additional
unique identification mark for the variables. The first solution is not general
and leads to problems when there is an illegal character in the parameter and
the second one is not user friendly. This solution had to be used for example
in the condition “distance n{x} between {varl} and {var2} is less than

{number}” where the Drools variables are $a{x} and $b{x} — the x is
32

substituted also in the variable name producing variables $al, $a2 and so

on.

Both the problems could be solved by developing a special parser or better,
by modification of some existing parser. This could produce the Drools code
without the above mentioned obstructions. Nevertheless beyond the new
parser the introduction of a new DSL language would raise the need of a

new editor supporting this language.

Despite the fact that it is a non-trivial task to write such piece of software, it

would be a very useful tool worth of the effort.

7.2 Porting to other virtual environments

Although there are some civil models for UT2004, there are not a much of
them and sometimes they have to be developed from users' resources.
Therefore a virtual environment with greater supplies of civil models and
maps would be appreciated and would help the spreading of ES. Using 3D
editor is not a simple task and we cannot expect our target audience to learn
how to work with such software. The usage of ES with current amount of

civil models is therefore really limited.

Although the 3D modeling is easy nowhere some environments aimed on
user-generated content have tools more suitable for beginners. For example
SecondLife [32] offers the possibilities of direct in-world editing and

moreover loads of already created and scripted objects.

The port of the current version of Educational Scenarios would involve
mostly changes in DSL and in the system of dialogues which is platform-
dependent. Generally all the packages starting with
cz.cuni.amis.pogamut.edu.ut2004 would require reimplementation. These
are approximately 15-20% of the Java part of this project. The system of
user player control and dialogs implemented in GBScenario (which
consumed about 30% time spent on this project) is platform-dependent and
it would also need to be reimplemented on the target platform but the design

is already made up.

33

Section 8
Conclusion

Although no non-programmers have tried to realize their ideas about
computer-assisted learning in Educational Scenarios, it has been proved that
it is possible to use Pogamut with UT2004 as a tool for education in 3D
virtual reality environments. The general architecture of the scripting tool
was designed and implemented and the example scenario is the evidence of
that. There is not command or condition for everything, so the holy grail of
content author absolutely independent on programmer is not reached. The
usefulness as the number of possible combinations would grow rapidly with
increasing number of DSL statements. This allows to claim that the goals of

this project as proposed in the submission were successfully accomplished.

34

References
[1] English tests. 31 October 2006. Lingo4you GbR. 2 August 2009.

<http://www.egodu.com/en/cram-up/tests>

[2] Virtual Labs. 22 May 2003. Howard Huges Medical Institute. 27

June 2009. <http://www.hhmi.org/biointeractive/vlabs/index.html>
[3] Serious Games Initiative. 19 October 2008. Woodrow Wilson

International Center for Scholars. 26 March 2009

<http://www.seriousgames.org>

[4] Pogamut project documentation. 20 June 2009. Charles University in
Prague. 11 July 2009. <http://artemis.ms.mff.cuni.cz/pogamut>
[5] Emotional Al in UT project website. 8 October 2008. Charles

University in Prague. 11 June 2009.
<http://artemis.ms.mff.cuni.cz/pogamut/tiki-index.php?
page=Emotional+Al+in+UT>

[6] ACT-R: Theory and Architecture of Cognition. 26 March 2009.
Carnegie Mellon University. 26 March 2009. <http://act-

r.psy.cmu.edu/>

[7] PojACT-R project website. 29 May 2009. Charles University in

Prague. 11 July 2009. <http://artemis.ms.mff.cuni.cz/pogamut/tiki-
index.php?page=PojACT-R>

[8] Unreal Tournament.1 August 2006. Epic Games, Inc. 26 March

2009. <http://www.unrealtournament2003.com/ut2004/index.html>
[9] Drools. 15 January 2008. JBoss Community. 26 March 2009.
<http://downloads.jboss.com/drools/docs/4.0.4.17825.GA/html singl
¢/index.html>
[10] FearNot! software homepage. 26 April 2006. eCIRCUS. 28 June
2009. <http://www.e-circus.org>

[11] Secure Game. 6 July 2009. PEDAGAMES project. 6 July 2009.

<http://www.snap.fi/services/pedagames/www/pelit.php?

peli=secure>
[12] Hiamaldinen R., Mannila B., Oksanen K., Koutaniemi L. (2006):
Secure: Scripted 3D-Game Environment in Vocational Learning,

ECER 2006, Geneva, Switzerland, September
35

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ScriptEase - A Scripting Language for Computer Role-Playing
Games. 1 November 2008. University of Alberta. 6 July 2009.

<http://www.cs.ualberta.ca/~script/>
Carbonaroa M., Cutumisub M., Duff H., Gillis S., Onuczkob C.,
Schaeffer J., Schumacher A., Siegel J., Szafronb D., Waughb K.

(2006): Adapting a Commercial Role-Playing Game for Educational
Computer Game Production, GameOn North America, Monterey,
USA, September 2006

Neverwinter Nights. 6 July 2006. Bioware Corp. 6 July 2006.
<http://nwn.bioware.com/>

Volbracht S., Dimik G., Backe-Neuwald D., Rinkens H-D. (1998):

The 'City Game' An Example of a Virtual Environment for Teaching
Spatial Navigation, Journal of Universal Computer Science, 1998, 4,
461-465

Virtual Reality Modeling Language. 11 July 2009. Wikimedia
Foundation, Inc. 13 July 2009.
<http://en.wikipedia.org/wiki/VRML>

ADMS webpage. 14 February 2008. Environmental Tectonics

Corporation. 28 June 2009. <http://www.admstraining.com>
Production system. 4 April 2009. Wikimedia Foundation, Inc. 2

August 2009. <http://en.wikipedia.org/wiki/Production system>
Wile D. S. (2001): Supporting the DSL Spectrum, Journal of
Computing and Information Technology - CIT 9, 2001, 4, 263-287

Domain specific languages in Drools. 15 January 2008. JBoss
Community. 26 March 2009.

<http://downloads.jboss.com/drools/docs/4.0.4.17825.GA/html singl
e/index.html#d0e4177>

Zhu L., Morgan G. (2008): Runtime Evolution for Online Gaming: A
Case Study using JBoss and Drools, GDTW 2008, Sixth

International Conference in Game Design and Technology,
Liverpool, UK, November 2008

ILOG JRules 6.5 brings rules to SOA. 2 August 2007. Nudez S. 26
March 2009.

<http://www.infoworld.com/article/07/08/02/31TCjrules 1.htmI>
36

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Microsoft’s Rule Engine Scalability Results - A comparison with

Jess and Drools. 16 September 2005. Young, Ch. 26 March 2009.

<http://geekswithblogs.net/cyoung/articles/54022.aspx>

A* search algorithm. 25 March 2009. Wikimedia Foundation, Inc. 27
March 2009. <http://en.wikipedia.org/wiki/A* search algorithm>
Floyd-Warshall algorithm. 25 March 2009. Wikimedia Foundation,

Inc. 27 March 2009. <http://en.wikipedia.org/wiki/Floyd-

Warshall algorithm>

UnrealScript Language Reference. 21 December 1998. Tim
Sweeney, Epic MegaGames, Inc. 28 March 2009.

<http://unreal.epicgames.com/UnrealScript.htm>
Unreal wiki. 26 March 2009. community project 28 March 2009.

<http://www.unrealwiki.com>

General Polygon Clipping library Java port. 16 January 2004.

Solution Engineering, Inc. 29 March 2009.
<http://www.seisw.com/GPCJ/GPCJ.htm|>

OSGi Alliance webpage. 28 June 2009. OSGi Alliance. 28 June
20009.

DA-Launcher website. 6 July 2009. DynamicJava.org. 6 July 2009.

<http://www.dynamicjava.org/projects/da-launcher>
SecondLife website. 11 July 2009. Linden Research, Inc. 11 July

2009 <http://www.secondlife.com>

37

Appendices

Appendix A: Simple scenario
Here is an example of very simple scenario as plain text and its transcription
into DSL rules and extract from configuration and map file.
Mission: Go from point A to point B
Event:
Fired by: Scenario start
Message: “Go from point A to point B. These points are shown in
the map. Press M key to hide the map.”

Effect: The map with current position and point A and B shows.

Event:
Fired by: Player's arrival to the proximity of point B
Message: “Great, you are here.”

Effect: The scenario ends.

Such simple scenario has in fact two acts: the first is the briefing when the
player is looking into the map and in the second he is moving towards point

B. This is why the scenes section of configuration file would look like

<scenes>
<act id="part">
<act id="briefing"></act>
<act id="movement"></act>
</act>
</scenes>

The contents of the map file could be very simple in this case, it could look

for example as:

<POI x="100" y="200" z="0" id="A" symbol="CIRCLE"
description="Point A" color="green"
visible="true”></POI>

<POI y="300" y="400" z="0" id="B” symbol="STAR”
description="Point B” color="red”
visible="true”></POI>

38

The most important part are the rules:

rule "Scenario start"
when
scenario is ready
then
start scenario
transport player "Playerl" to "A"
perform act "briefing"
end

rule "Briefing"
when
performing act "briefing"
map is hidden
then
show message "Go from point A to point B.
These points are shown in the map. Press M key to
hide the map." for 15 seconds
show map
end

rule "Map hiding"
when
performing act "briefing"
user pressed "M" key
then
hide map
set keypress "M" processed
perform act "movement"
end

rule "At B"
when
performing act "movement"
player is nearby "B"
then
show message "Great, you are here."
finish scenario
end

The acts are not absolutely necessary here because the map dialog itself
could keep the state information but the approach presented here is more

general.

39

Appendix B: Example scenario description
Mission: Return home from school and pick your younger sibling up from
kindergarten hereat.
Event:
Fired by: Scenario start
Message: "Go from your school to the kindergarten. Mind the
advices for direction, where you should go. Press M key
when ready."

Effect: The map with school and kindergarten shows.

In the first part is the player navigated by basic commands - turn left, go
ahead, turn right...
Possibilities:
* the player goes correctly
* the player disobeys the navigation and avoids localy allowed area
Effect: Warning with message, which way to return. One point
penalty. Timer is started.
Possibilities:
* The player returns to allowed area within 30 seconds
* The player doesn't return within 30 seconds
Effect: Warning "You have got lost". Three points penalty.
System takes over the control and returns the actor to
last correct location.
Event:
Fired by: Second part of route from school to kindergarten.
Message: "Now you are going to orient yourself according to
cardinal directions. Look on the map and try to orient
yourself - which way do you think you look currently? Click
on the arrow pointing thitherward."
Effect: Map with 8 arrows from current position, the player should
select one of them.
Possibilities:
* The player selects the correct arrow

40

Message: "Great, you have selected the right direction!"

The player selects an adjacent arrow

Message: "You have made a little mistake, in fact you are
looking to this direction."

Effect: One point penalty, highlighting of the correct arrow

The player selects incorrect arrow

Message: "You haven't oriented yourself correctly, in fact
you are looking to this direction."

Effect: Two points penalty, highlighting of the correct arrow

Message 2: "From now you can press the M key and look on the

map anytime. Another keypress hides the map again."

In the second part the player is navigated by cardinal directions - north,

south, east, west and their combinations.

Possibilities: The same as in first part

Event:

Possibilities:

Event:

Fired by: The player arrives to the kindergarten.

Message: "Great, your brother already awaits you. Now you can

return home together. Pay attention to him!"

Event: Map with school, kindergarten, home and highlighted path

between kindergarten and home.

Note: The brother will follow the player. He will never run and

when the player goes far than approx. 5 meters, he will stand
and start to cry (warning will be displayed), until the player
returns. If the player doesn't return to the bot within 15
seconds, he gets a one point penalty. Each another 15 seconds

delay will result in one point penalty.

The player goes correctly

The player swings out from the path - warning as in first part.

41

Fired by: In one third of way home.

Message: "Your mum calls that you should bring some bread. Go to
the shop and buy it."

Effect: Map with kindergarten, home, shop and path from current
position to the shop.

Event:
Fired by: somewhere on the way to the shop
Message: "Here is a icecream stall. Your brother would like
chocolate ice cream. What will you do?"
Dialog:
* "You'll buy one for him and one for yourself"
* "You'll buy him the icecream."
* "You'll buy nothing."
Effect: The brother will cry all the way to the shop (ambient

sound)

Event:
Fired by: Arrival to the shop
Possibilities:
* If he bought some icecream
Message: "You have arrived to the shop. Unfortunately you
haven't enought money for the bread. what will you
do?"
Dialog:
* "You'll buy as much rolls as you can."
* "You'll buy candy, when you're already here."

* "You won't buy anything."

e Ifhe didn't buy anything before
Message: "You have arrived to the shop. What would you
like to buy?"
Dialog:
42

* "You'll buy only the bread."
* "You'll buy the bread and some other candies."
* "You'll not buy anything."
Message 2: "You can go home now. I'll not advise you anymore, you

have to find your own way."

Event:
Fired by: After two minutes going home
Message: "Do you know, where you are now? Try to mark the point
on the map."
Effect: Map with possibility of selection of the place. Penalty points
according to mistake.

Message 2: "In fact you're here. Keep on your way home."

Event:
Fired by: Arrival home (with brother)
Message: "Great, you have returned home!"

Effect: The scenario is completed.

Appendix C: Contents of the enclosed CD

The enclosed CD contains these folders and files:

— documentation/: End-user documentation of the Educational

Scenarios.
— source/: Source code of all projects.
— eclipse-rcp-europa-winter-win32.zip: the archive with Eclipse IDE
— es-setup.exe: the installer of Educational Scenarios
— readme.txt: installation instructions
— thesis.pdf: the electronic version of this document.
— examplescenario.avi: a video with example scenario's record

A licensed version of Unreal Tournament 2004 is necessary for running of

the program (not enclosed).
43

	Introduction
	Related works
	2.1 FearNot!
	2.2 Secure
	2.3 ScriptEase
	2.4 City Game
	2.5 ADMS

	Problem analysis
	Background overview
	4.1 PogamutCore
	4.2 PogamutUT2004
	4.3 GameBots
	4.4 Drools

	Design and implementation
	5.1 Architecture overview
	5.2 Acts
	5.3 Map
	5.4 Drools support classes
	5.5 Variables
	5.6 Changes to GameBots
	5.7 Dialogues system
	5.8 UT2004 dependent part of ES
	5.9 Map editor
	5.10 PuppetBot

	Additional discussion
	6.1 Choice of Drools
	6.2 Process of development

	Future work
	7.1 DSL enhancements
	7.2 Porting to other virtual environments

	Conclusion
	References
	Appendices
	Appendix A: Simple scenario
	Appendix B: Example scenario description
	Appendix C: Contents of the enclosed CD

