* GameBots 2004 Network protocol

v Chapter 1. Introduction

GameBots 2004 (GB or GameBots) are a modification (mod) for the game Unreal Tournament 2004 (UT04).
GameBots are written in UnrealScript (UT04 scripting language). GB provide network text protocol (TCP/IP) for
connecting to UT04 and controlling in-game avatars (bots). With GB user can control bots with text commands and
at the same time, he receives information about the game environment in the text format.

GB main purpose is to make available rich environment of UT04 for virtual agent development by allowing easy
connection to UT04 through its text protocol. For more information about GB implementation see GB
documentation.

This document provides information about GB features and GB text protocol. If you want just a list of all GB
messages and commands skip to chapter 7.

v Chapter 2: Text protocol

GB commands and messages share common text format. Example of the format is " MSGTYPE {attri but elname
attributelval ue} {attribute2nane attribute2val ue}" (without the quotes). Messages and commands

in GB are always parsed like this:

@& First characters up to, but not including the first space are the message type (The length of message type can
vary, but usually it is three or four characters)

Then enclosed by "{}" follow attribute pairs. One attribute pair consists of attribute name - which is defined by
all characters after "{" until the first space (not including) - and of attribute value - which is defined by the rest
of the characters after the first space (excluding it) until "}". The attribute value can include spaces.

Each attribute pair should be separated by a space after character "}"

So the correct parsing of example message " M5G { Locati on 100, 150, 0} {Rotati on 32000, 0,0} {String
Hel p ne!}" would be:

Message type = "MSG"
Attribute1Type = "Location"
Attribute1lValue = "100,150,0"
Attribute2Type = "Rotation"
Attribute2Value = "32000,0,0"
Attribute3Type = "String"
Attribute3Value = "Help me!"

v Chapter 3: Data Types Note

Unreal Tournament features its own "UT units" for measuring the location and rotation. UT units have no real
correspondence to the real world, but as an idea, a character in the game has a collision cylinder (a cylinder tightly
bounding the graphical model that defines how close something has to be before it collides with the character) 17
units in radius and 39 units tall.

Location of the bot consists of three values X,Y and Z. X and Y are "flat" and Z sets the height of the object in a
game. These values are sent to GB separated by commas (example MSG {Location 100,100,100}).

D:\...\svnbook\GB04_user_documentation_0_6.xml page 1 of 29

Rotation of the bot consists of pitch, yaw and roll. Yaw is side to side, pitch up and down, and Roll the equivalent of
doing a cartwheel. Again it is passed to GB separated by commas (example MSG {Rotation 32000,0,0}). A full
rotation using UT's measurements is 65535. To convert the values you are sent to radians, divide by 65535 and
multiply by 2 * pi.

v Chapter 4. GameBots connections

First of all you need to create GameBots server. That in fact means, you need to create UT 2004 server, that will
use the GameBots extension. There are two ways how to do this. First way is to start a dedicated server through
console command. Example (this will set GameBots BotDeathMatch on the map DM-TrainingDay):

YOUR_UT04_FOLDER\ Syst emi ucc server DM Trai ni ngDay?gane=Bot API . Bot Deat hMat ch

Second way is to start the server thtough in-game graphical interface. You need to select Host Game in the game
menu, there pick some GameBots gametype (BotDeathMatch for example). Then select a map, add some mutators
if you want and after you are finished click listen. The server will be started and you will be automaticly connected
to the game as a player.

So now, when the server is on, how can you connect to it? GameBots use text protocol and TCP/IP. So any client
capable of connecting to some port through TCP is capable to communicate with GameBots. Bad thing is that you
will soon get overhelmed by GB synchronous messages, so it is a good idea to write some interface for
communication with GB (for example Pogamut2).

Now what ports the GameBots use. The GameBots supports two different types of connections - BotConnection
(usually port 3000) and ControlServer connection (usually port 3001). The ports can be changed in .ini file for
example, or by attributes in console command (see chapter 8). The purpose of BotConnection is spawning and
controlling the bot in the game, also you will get the information about the bot surrounding by this connection
(through synchronous and asynchronous messages). The purpose of ControlConnection is controlling the game
server, changing map, kicking players etc.

v Chapter 5: Initiating the communication

After the connecting to GB server you will receive the HELLO message (HELLO BOT for BotConnection or HELLO
CONTROL SERVER for ControlConnection). The server is now in waiting state. You can send READY command
and server responds with game NFO message and list of all navigation points in the map. After the READY
command if you are connected as a BotConnection you usually send INIT command, which spawns the bot and
you can use the rest of commands for controlling the bot. After INIT command you will receive CONFCH message
with actual bot configuration.

You can skip sending of READY command for both the bot and control connection, but you wont receive NFO
message. List of navigation points can be requested later by GETNAVS command for both Bot and
ControlConnection, but it will lag the connection for a while (maps usually include a lot of navigation points).

Old GameBots Note: If you are familiar with old GB and want to switch back to old initiation you can change in ini
file variable bNewProtocol from True to False for both bot and control connection. You will receive then NFO
message after the connection to GB instead of HELLO message.

Password Note: GameBots now support password by SETPASS command of ControlServer. If there is a
password set, the initiation then looks as follows:

1) A ---> GB sends HELLO message

2) B <--- user sends READY

D:\...\svnbook\GB04_user_documentation_0_6.xml page 2 of 29

3) C ... if the server is protected by pass:

3.a) C1 ---> GB sends PASSWORD {BlockedBylIP="ip adress with port of the blocker (195.113.12.3:3001)"}
3.b) C2 <--- user sends password (PASSWORD {Password pass})

... if correct

3.c) C3 ---> GB sends PASSWDOK and info batch messages, user can continue normally

.... if the password is wrong

3.d) C4 ---> PASSWDWRONG and connection ends

v Chapter 6: Types of Messages

GB features commands and messages. Messages are divided into three categories Synchronous messages,
asynchronous messages and batch info messages.

< 1 Synchronous messages

Synchronous messages will come to your client in a batch at a configurable interval. They include things like a
visual update of what the bot sees and a status report of the bot itself. At the start of a batch, the server transmits a
"BEG" message marked with a time stamp. All messages received until an "END" message with the same time
stamp are part of the synchronous batch. They are all sent at the same instant of game time and thus refer to a
single discrete state of the game.

¥ 2 Asynchronous messages

Asynchronous messages come as events happen in the game. (Although they will never appear between a "BEG"
and its associated "END"). They represent things that may happen at any point in the game at random, less
frequent intervals such as taking damage, a message broadcast by another player, or running into a wall. You can
always be sure that event triggering an asynchronous message occurred in game time between the synchronous
batches before and after it, but there is no guarantee that an asynchronous message refers to the same discrete
state of the game that any other message does.

¥ 3 Batch info messages

Batch info messages are usually asynchronous and are sent as an response of a request (done by some
command). Number of info messages can vary, so they are enclosed by beginning and ending message
(beginning message starts always with S, all info messages with | and ending message with E). They provide
additional information about a map or a game (list of all navigation points, all players, all available maps, etc.).

= 4 Commands

There are two types of commands - the Control server commands and the Bot commands. Control server
commands are used to control the game mechanics, getting additional info about current game and setting bots
and players in the game (kicking them, etc.). Bot commands are used to control the bot - his movement, his rotation,
... and to set his internal variables. Both of these types of commands are formated like the server messages - a
command name, followed by zero or more arguments with values, each surrounded by "{}" and separated by
spaces. For example the message to initialize your bot with a name of MYBOT on team 1 would look like this (sans
quotes): "INl T {Team 1} {Name MYBOT}".

Parsing at the server is case insensitive. It should not matter what case you send commands, argument names,

D:\...\svnbook\GB04_user_documentation_0_6.xml page 3 of 29

and their values in. Arguments may also be supplied in any order. The above example could have passed the
name before the team and the command would have been the same. There are however some commands that
have multiple options for how to specify a desired value. A good example is the RUNTO command, which can take
the Id of an object or player, or a Location in the world. You can send either or both, but the server will only use the
first one it parses (order for each command type is listed below).

Note that most commands have persistent effects. Movement and rotation, once started, will continue until you
reach your destination. Start shooting and you will keep shooting. There is NO advantage to sending commands
repeatedly. It is quite likely that some kind of filter will be put in to discourage spamming the server.

v Chapter 7: List of all GameBots messages and
commands

In this chapter all available GB messages and commands will be listed. We will divide them into categories - first
two main categories - Bot messages and commands and Control server messages and commands, then to
subcategories - bot synchronous messages, bot asynchronous messages, bot batch info messages, bot action
commands, bot configure commands and control server messages and control server commands.

¥ 1 Bot messages and commands

< 1.1 Synchronous messages

ATR
results of automatically casted rays. New rays to be continuously launched can be added by ADDRAY
command and removed by REMOVERAY command.

Id
a unique id for this ray, assigned when adding ray. See ADDRAY
From
source point of the ray
To
target point of the ray
FastTrace
boolean if function fasttrace (faster, but less information) was used
Result
boolean result if ray hit something or not, if true we have hit something
HitNormal
vector with normal of the plane we have hit (only if NOT using FastTrace)
HitLocation
vector with location, where we have hit something (only if NOT using FastTrace)
TraceActors
boolean if we traced also actors with this ray (actors - moving things in a game - bots, players,
monsters ...) (only if NOT using FastTrace)
Hitld
string with an Id of the thing we have hit (only if NOT using FastTrace)

BEG
Begin of a synchronous batch

Time

D:\...\svnbook\GB04_user_documentation_0_6.xml page 4 of 29

time stamp from the game

END
end of a synchronous batch
Time
time stamp from the game

FLG
a flag (Only for CTF games).

Id
a unique id for this flag, assigned by the game
Location
an absolute location of the flag
Holder
the identity of player/bot holding the flag (only sent if flag is being carried).
Team
the team whose flag this is
Reachable

true if the bot can run here directly, false otherwise
State
whether the flag is "Held" "Dropped" or "Home"

GAM
information about the game

PlayerScores
player score will have a list of values - one for each player in the game. Each value will be a list with
two values. The first is the id of the player and the second that player's score. (e.g. " GAM
{PlayerScore {playerl 2} {player2 5}...}...")

TeamScores
like PlayerScore, but for teams. Team is identified by the team index (same number used to
describe team for PLR and SLF messages. Not sent in normal deathmatch

DomPoints
like the previous two, this is a multivalued message. This will have one item for each domination
point in a Domination game. First value will be Id of the DOM point, the second will be the index of
the team that owns the domination point

HaveFlag
sent in CTF games if the bot is carrying an enemy's flag. Value is the team number of whose flag
you have.

EnemyHasFlag
sent in CTF games if the bots' team's flag has been stolen. Value is meaningless

INV
an object on the ground that can be picked up

Id

a unique id for this inventory item, assigned by the game.
Location

an absolute location
Reachable

true if the bot can run here directly, false otherwise

D:\...\svnbook\GB04_user_documentation_0_6.xml page 5 of 29

Class
a string representing type of object

MOV
a "mover". These can be doors, elevators, or any other chunk of architecture that can move. They generally
need to be either run into, or activated by shooting or pressing a button. We are working on ways to provide
bots with more of the information they need to deal with movers appropriately.

Id

a unique id for this mover, assigned by the game
Location

an absolute location
Reachable

true if the bot can run here mover, false otherwise
DamageTrig

true if the mover needs to be shot to activated.
Class

class of the mover
IsMoving

boolean, true if the mover is actually moving
Velocity

vector with the velocity of the mover

NAV
a path node in the game. Pathnodes are invisible (at least to humans) objects placed around a level to
define paths for the built in bots to follow. They provide a totally connected graph that spans almost all of
the level. Note the Mutator called "Path Markers" that, when added to a game makes the path nodes visible
to human players as a debugging aid.

Id
a unique id for this pathnode, assigned by the game
Location
an absolute location
Visible
true if the navpoint is in the bots’ vision radius, false otherwise
Reachable
true if the bot can run here directly, false otherwise
Item
Holds respawned item at this NavigationPoint if is any (otherwise "None").
Flag
What type is this NavigationPoint. The types are: PathNode, PlayerStart, InventorySpot and
AlMarker. If the type is AlMarker, more attributes appear in NAV message - see below.
Rotation
If the type is AlMarker. The rotation the bot should be facing, when doing the action specified by
AlMarker.
RoamingSpot
boolean. Some ambush point, where is good chance to intercept approaching opponents.
SnipingSpot
boolean. Point good for sniping.
PreferedWeapon
Class of the weapon that should be prefered when using this point for AIMarker specified action.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 6 of 29

DOM
identical attributes to NAV above except for Controller (see above). Represents a domination point in
BotDoubleDomination game.

Controller
which team controls this point

PLR
Another character (bot or human) in the game. Only reports those players that are visible. (within field of
view and not occluded).

Id
a unique id for this player, assigned by the game
Rotation
which direction the player is facing in absolute terms
Location
an absolute location for the player
Velocity
absolute velocity in UT units
Name
name of the player visible in a game
Team
what team the player is on.
Reachable
true if the bot can run to this other player directly, false otherwise. Possible reasons for false: pit or
obstacle between the two characters
Weapon
what class of weapon the character is holding
Firing
0 means is not firing, 1 - firing, 2 - alt firing
SLF
information about your bots' state.

Id
a unique id, assigned by the game
Rotation
which direction the player is facing in absolute terms
Location
an absolute location
Velocity
absolute velocity in UT units
Name
players human readable name
Team
what team the player is on. 255 is no team. 0-3 are red, blue, green, gold in that order
Health
how much health the bot has left. Starts at 100, ranges from 0 to 199
Weapon

weapon the player is holding. Look on the list of all Unreal Tournament 2004 weapons to know what
strings to look for

D:\...\svnbook\GB04_user_documentation_0_6.xml page 7 of 29

Shooting
if the bot is shooting, it is True, False otherwise
CurrentAmmo
how much ammo the bot has left for current weapon
Armor
how much armor the bot is wearing. Starts at 0, can range up to 199.
AltFiring
1 if the bot shoots and use alternate fire, 0 otherwise

< 1.2 Asynchronous messages

AIN
added inventory. Bot got new inventory item.

Id
a unique id for this inventory item, assigned by the game. Unique, but based on a string describing
the item type

Class

a string representing type of the object

BMP
bumped another actor.

Id
unique id of actor (actors include other players and other physical objects that can block your path
Location
location of thing you rammed
CONFCH
this message is sent when variables of the bot are changed - by CONF command of control server, or of
this bot.
Id

id of the bot
ManualSpawn
boolean, if set to true, bot wont respawn automatically after death, but RESPAWN command will
have to be called
AutoTrace
boolean, enables or disables bot auto ray trace (If ATR message will be sent or not)
Name
string, current name of the bot
Invulnerable
boolean, if true the bot cant be killed. This can be changed just when cheating is enabled on the
server (bAllowCheats = True)
VisionTime
float, ranges from 0.1 to 2 seconds. This will change the period between two synchronous batches
ShowDebug
boolean, if true some additional debug information will be logged to server window
ShowFocalPoint
boolean, if set to true an actor will appear in the game on the location the bot is actually looking at
DrawTraceLines
boolean, if set to true, the rays of automatic ray tracing (ATR messages) will be drawn in the game.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 8 of 29

Has some issues, on some UT2004 copies this does not work. We are trying to fix this
SynchronousOff
boolean. It informs if sending of all GB synchronous messages is enables/disables.

CWP
bot changed weapons. Possibly as a result of a command sent by you, maybe just because it ran out of
ammo in its old gun. (bots auto switch when empty, just like human players).

Id

unique id of new weapon, based on the weapon's name
Class

a string representing type of weapon

DAM
took damage

Damage

amount of damage taken
DamageType

a string describing what kind of damage
Instigator

if we see attacker, we will send his Id here

DIE
this bot died
Killer
unique ID of player that killed the bot if any (may have walked off a ledge)
DamageType
a string describing what kind of damage killed the bot
FAL
bot just hit a ledge. If walking, will not fall. If running, you are already falling by the time you get this.
Fell
true if you fell. False if you stopped at edge
Location
absolute location of bot
FIN

no attributes. Sent when game is over or the bot is kicked or the map is changed (sent right after
MAPCHANGE message).

FTR
response of the FASTTRACE command. Note that trace commands are computationally expensive.

Id
an id matching the one sent by client. Allows bot to match answer with right query
From
source point of the ray
To
target point of the ray
Result
boolean result of FastTrace, true if the ray has hit something

D:\...\svnbook\GB04_user_documentation_0_6.xml page 9 of 29

HIT
hurt another player. Hit them with a shot.

Id
unique ID of player hit
Damage
amount of damage done
DamageType
a string describing what kind of damage

HELLO BOT
sent right after you make connection to GameBots. Nothing happen after that, the server will be waiting for
READY or INIT command.

HRN
hear noise. Maybe another player walking or shooting, maybe a bullet hitting the floor, or just a nearby lift
going up or down.

Source

unique ID of actor making the noise
Rotation

the rotation from where the sound comes

HRP
hear pickup. You hear someone pick up an object from the ground.

Name
name of the item
SourceClass
class of the item
Rotation
the rotation from where the sound comes

JOIN
sent when player joins the server.

Id

an id of the joining player
Name

the name of the joining player

KIL
some other player died

Id

unique ID of player
Killer

unique ID of player that killed them if any (may have walked off a ledge)
DamageType

a string describing what kind of damage killed them

LEFT
sent when player leaves the server.

Id

D:\...\svnbook\GB04_user_documentation_0_6.xml page 10 of 29

an id of the leaving player
Name
the name of the joining player

LIN
Lost inventory message.

Id
an id of an object we have lost from our inventory chain

MAPCHANGE
sent when the map is changed (bot will lost the connection).

MapName
text name of the map

NFO
helpful info about the game provided right after you respond to HELLO message by READY command.
Your should have this information BEFORE sending "INIT" back to the server.

Gametype
what you are playing (BotDeathMatch, BotTeamGame, ...)
Level
name of map in play
TimeLimit
maximum time game will last
FragLimit
number of kills needed to win game (BotDeathMatch only)
GoalTeamScore
number of points a team needs to win game (BotTeamGame, BotCTFGame, BotDoubleDomination)
MaxTeams
max number of teams. Valid team range will be 0 to (MaxTeams - 1) (BotTeamGame, BotCTFGame,
BotDoubleDomination)
MaxTeamSize
max number of players per side (BotTeamGame, BotCTFGame, BotDoubleDomination)
GamePaused
boolean, true if the game is currently paused
BotsPaused
boolean, true if just the bots are paused (if GamePaused true, everyone will be paused even if this
is set to true or false)

PAUSED
sent when the or the bots are paused.
PRJ
incoming projectile likely to hit you. May give you a chance to dodge.

Time
estimated time till impact
Direction
rotation value that the projectile is coming from. Best chance to dodge is to probably head off at a
rotation normal to this one (add ~ 16000 to the yaw value)
Origin
the location the projectile is flying from

D:\...\svnbook\GB04_user_documentation_0_6.xml page 11 of 29

DamageRadius

if the projectile has splash damage, how big it is - in ut units
Class

the class of the projectile (so you know what is flying against you)

PTH
a series of pathnodes in response to a getpath call from client

Id
an ID matching the one sent by client. Allows bot to match answer with right query.

Multiple pathnodes: A variable number of attr items will be returned, one for each path node that
needs to be taken. They will be listed in the order in which they should be traveled to. Each one is of
form "{number NavPointld NavPointLocation}", with the number of the node (starting with 0)
followed by a space, then a id of the node, then a location of the node. Example: " PTH {1 d Pat h1}
{0 Pat hNode31 124, 2134, 0} {1 PathNode22 124, 1000, 0} {2 PathNode4 124,78, 0}"
Maximum length is 16.

RCH
a boolean result of a checkreach call.

Id

an ID matching the one sent by client. Allows bot to match answer with right query
Reachable

true if the bot can run here directly, false otherwise
From

exact location of bot at time of check

RECEND
sent as a response to STOPREC command.

RECSTART
sent as a response to REC command.

RESUMED
when the game and the bots are unpaused.

SEE
see player. A message generated by the engine periodically (on the order of 1 or 2 times a second) when
another player is visible by you. Possibly useful if you have the delay between synchronous updates very
long. In that case, this can prevent someone from walking by unseen. May be deprecated.

Id
a unique id for this player, assigned by the game
Rotation
which direction the player is facing in absolute terms
Location
an absolute location for the player
Velocity
absolute velocity in UT units
Name
name of the player in the game
Team
what team the player is on.
Reachable

D:\...\svnbook\GB04_user_documentation_0_6.xml page 12 of 29

true if the bot can run to this other player directly, false otherwise. Possible reasons for false: pit or
obstacle between the two characters
Weapon
what weapon the character is holding
Firing
0 means is not firing, 1 - firing, 2 - alt firing
SPW
you get this every time the bot gets respawned. When the match is not started yet and you connect to the
server, there is delay in sending this message, it will be sent when the match will start, although the bot will
be spawned in the game for a few seconds at that time.
THROWN
send if THROW command ends successfully (bot will drop a weapon).
TRC
response of the TRACE command. Note that trace commands are computationally expensive.

Id

an ID matching the one sent by client. Allows bot to match answer with right query
From

source point of the ray
To

target point of the ray
Result

boolean result of Trace, true if the ray has hit something
HitNormal

vector of normal of a plane we have hit
HitLocation

vector of an exact point, where the ray has hit something
Hitld
string Id of an object we have hit - can be level geometry etc

VCH
some part of the bot body changed the zone (volume changed).

Id
unique id of zone entered
PainCausing
true or false if we get some damage when we stay at this zone

VMS
received message from global chat channel.

Name
name of the sender.
String
a human readable message sent by another player in the game on the global channel

VMT
received message from team chat channel.

Name
name of the sender.
String

D:\...\svnbook\GB04_user_documentation_0_6.xml page 13 of 29

a human readable message sent by a team mate in the game on the private team channel

WAL
collided with a wall. Note it is common to get a bunch of these when you try to run through a wall (or are
pushed into one by gunfire or something).

Id

unique id of wall hit
Normal

normal of the angle bot collided at
Location

absolute location of bot at time of impact

ZCB
bot changed zones. Entire bot now in new zone.

Id
unique id of zone entered

= 1.3 Batch info messages
= 1.3.1 Navpoint info

info about all existing navpoints in current map. You will get a bunch of INAV messages, one for each NavPoint.
This batch will start with SNAV message and end with ENAV message. It will be send after READY command, or
by GETNAVS command.

SNAV

start of navpoint message block.
INAV

info about one navpoint.

Id
a unique id for this pathnode, assigned by the game
Location
absolute location of the NavPoint
Item
if this is an inventory spot, where some inventory gets respawned, here will be the Id of respawned
inventory, will be "None” otherwise.
Flag
What type is this NavigationPoint. The types are: PathNode, PlayerStart, InventorySpot and
AlMarker. If the type is AlMarker, more attributes appear in NAV message - see below.
Rotation
If the type is AlMarker. The rotation the bot should be facing, when doing the action specified by
AlMarker.
RoamingSpot
boolean. Some ambush point, where is good chance to intercept approaching opponents.
SnipingSpot
boolean. Point good for sniping.
PreferedWeapon
Class of the weapon that should be prefered when using this point for AIMarker specified action.
Neigh<number>
(NeighO, Neight1, etc...) here are information about one NavPoint reachable from current NavPoint.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 14 of 29

One NavPoint can have more neighbours. Syntax of Neigh attribute is a bit changed. Example:
{Nei ghO {1d DVFl ux. PathNode23} {Flags 3} {CollisionR 100} {CollisionH 100}}

Id
Id of the neighbouring NavPoint
Flags
flags about the path, what is required to be able to go from Nav to neighbour is stored as an
integer, see UnrealWiki for more
CollisionR
how wide can we be to pass this path
CollisionH
how big can we be to pass this path

ENAV
end of navpoint message block.

= 1.3.2 Inventory info

info about all respawned pickup items in current map (will not include dropped weapons.). You will get a bunch of
IINV messages, one message for each pickup. This batch will start with SINV message and end with EINV
message. It will be sent as an response to READY command or GETINVS command.

SINV

start of inventory message block.
1INV

info about one inventory item.

Id

a unique id for this item, assigned by the game
Location

absolute location
Class

a string representing type of object

EINV
end of inventory message block.

+ 1.4 Bot configure commands

ADDINV
adds inventory of supported class to the bot. Bot has to be alive. The change is not permanent. This can be
used just when cheating is enabled on the server. (bAllowCheats = True). Any Pickup class can be
supported in the class variable. See the available classes in UnrealEd.

Class
string of the name of the class. Exanpl e: ADDI NV {d ass xWapons. Fl akCannonPi ckup}

ADDRAY
will add custom ray for auto tracing.

Id
Unique Id of the ray. If you send Id = Default, all rays will be erased and default set of rays will be
loaded (straight ahead (1,0,0) with 250 length, 45 degrees left (1,-1,0) with 200 length, 45 degrees
right (1,1,0) with 200 length). This set of rays is also loaded by default. If you want to change
existing ray, just support his Id in ADDRAY command along with new parameters.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 15 of 29

Direction
Direction of the ray. Bot is looking to x axis, that means if | want ray straight ahead | specify some
vector on positive x axis (vectors in unreal are specified by (x,y,z) so it would look like this (1,0,0) or
this (123,0,0) - numbers doesn't matter, its about direction). If | want ray behind it would be (-1,0,0).
90 degrees right (0,1,0) etc.

Length
float in ut units. Specifies the length of the ray

FastTrace
boolean, true if we want to use FastTrace function (faster) instead of Trace function

TraceActors
boolean, true if we want to trace also actors - bots, monsters, players. False if we want to trace just
level geometry

CONF
this command configures features of the bot

AutoTrace

enables AutoTrace feature
ManualSpawn

sets if the bot will be respawned after death manually by RESPAWN command or automatically
Name

you can change name of the bot in the game
Invulnerable

will set godmode for bot on (bot can't be killed) This can be changed just when cheating is enabled

on the server. (bAllowCheats = True)
VisionTime

between 0.1 to 2 seconds, it sets how long should be GB idle before running next checkvision test
ShowDebug

boolean, if true some additional debug information will be logged to server window
ShowFocalPoint

boolean, if set to true an actor will appear in the game on the location the bot is actually looking at
DrawTraceLines

boolean, if set to true, the rays of automatic ray tracing (ATR messages) will be drawn in the game.

Has some issues, on some UT2004 copies this does not work. We are trying to fix this
SynchronousOff

boolean. It enables/disables sending of all GB synchronous messages.

CHATTR
will change specified attribute of the bot. Now just attribute Health can be changed.

Health
sets the bot health, can range from 1 to 199. The bot has to be alive. This change is not permanent
(after respawn, bot will start with 100 health again)

CHECKREACH
check to see if you can move directly to a destination without hitting an obstruction, falling in a pit, etc...

Target

the unique id of a player/object/nav point/whatever. Must be visible
Location

location you want to go to. Normal location rules. Only used if no Target is sent
Id

D:\...\svnbook\GB04_user_documentation_0_6.xml page 16 of 29

message id made up by you and echoed in response so you can match up response with query

FTRACE
will send a ray from specified location to specified destination, responds with FTR message. FTRACE uses
FastTrace function, which is faster then Trace function, but still rather slow.

Id
message id made up by you and echoed in response so you can match up response with query
From
origin point of the trace ray. If you wont support From attribute, current bot location will be taken as
From
To
target point of trace ray
GETINVS
in response to this command, server will send you the 1INV info batch message.
GETNAVS
in response to this command, server will send again the INAV info batch message.
GETPATH

get a path to a specified location. An ordered list of path nodes will be returned to you.

Location
location you want to go to. Normal location rules
Id
message ID made up by you and echoed in response so you can match up response with query

GIVEINV
gives inventory from one bot to another. Bot can give just owned items. (in his inventory chain). He cant give
weapon he is wielding. This command is not fully tested yet and may have issues.

Target
the bot who is receiving the item
ItemId
id of the item the bot is giving to another bot

INIT
message you send to spawn a bot in the game world. You must send this message before you have a
character to play in the game.

Name
desired name. If in use already or argument not provided, one will be provided for you
Team
preferred team. If illegal or no team provided, one will be provided for you. Normally a team game
has team 0 and team 1. In BotDeathMatch, team is meaningless
ManualSpawn
sets if the bot will be respawned after death manually by RESPAWN command or automatically
AutoTrace
enables auto tracing (it can be enabled later by CONF command)
Location
specify start location, if unspecified, then random
Rotation
specify start rotation, if unspecified, then random
Skin

D:\...\svnbook\GB04_user_documentation_0_6.xml page 17 of 29

sets the bot current skin, for more information look at SETSKIN command
DesiredSkill
Can range from 0 to 7 - it is float, but you should use just integers (1,2,...). This sets the bot accuracy.
1 lowest, 7 highest. Shouldn't have any other effect.
DesiredAccuracy
float from 0 to 1. This should tweak bot accuracy a little. So far it had very little effect on bot
accuracy. When you want to change accuracy significantly use DesiredSkill attribute.
ShouldLeadTarget
boolean. When firing slow projectiles (missiles...), if the engine will try to count the impact point for
the bot or not.

PASSWORD
Send password to the server. For more information see ControlServer command SETPASS.

Password
string. Holds the password.

PAUSE
command, will pause/unpause the game.

PauseBots
if true only bots will be paused - players and spectators will move freely

PauseAll
everyone in the game will be paused if set to true. To unpause send PAUSE command with
PauseAll set to false

QuUIT
will shutdown the connection and kill and remove the bot from a game, the same can be achieved just by
closing the connection.

READY
command you should send after server HELLO message. The server will send you game NFO message
and INAV info batch message.

REC
server will start recording demo of current game. Command is confirmed by RECSTART message.

FileName
name of the saved demo file

REMOVERAY
will remove a ray from auto ray trace specified by Id

Id
of the ray to be removed. If Id = "All" all rays will be removed

RESPAWN
use this to kill bot and force him to respawn, you can specify start location and rotation.

StartLocation

where bot respawns. If you want to respawn bot at random, don't specify StartLocation
StartRotation

initial rotation of the bot

STOPREC
will stop recording a demo. Is confirmed by RECEND message.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 18 of 29

TRACE
will send a ray from specified location to specified destination, responds with TRC message. TRACE uses
Trace function, which can be rather slow.

Id
message id made up by you and echoed in response so you can match up response with query
From
origin point of the trace ray. If you wont support From attribute, current bot location will be taken as
From
To
target point of trace ray
TraceActors
boolean, when true it means that all actors will be traced - for example players, bots, monsters etc.
in a game. With TraceActors false we trace just level geometry

= 1.5 Bot action commands

CHANGEWEAPON
switch your weapon

Id
unique Id of weapon to switch to. If you just send "Best" as Id, the server will pick your best weapon
that still has ammo for you. Obtain Unique Id's from AIN events

CMOVE
the bot will continuously move straight ahead according to his actual rotation.

Speed
sets the speed of the movement. Ranges from 0.1 to 2. This number multiplies default speed of the
bot

JUMP
causes bot to jump.
MESSAGE
send a message to the world or just your team. This will likely have some restrictions placed on it soon.

Text
string to send
Global
if True it is sent to everyone. Otherwise (or if not specified), just your team

MOVE
the bot will continuously move first to Location1 and then to Location2, movement between locations will be
continuous without any delay.

Speed
sets the speed of the movement. Ranges from 0.1 to 2. This number multiplies default speed of the
bot
Locationl
vector of the first location
Location2
vector of the second location

ROTATE

D:\...\svnbook\GB04_user_documentation_0_6.xml page 19 of 29

turn a specified amount.

Amount

amount in UT units to rotate. May be negative to rotate counter clockwise
AXis
if provided as Vertical, rotation will be done to Pitch. Any other value, or not provided, and rotation
will be to Yaw
RUNTO

turn towards and move directly to your destination. May specify destination via either Target or Location
argument, will be parsed in that order. (i.e. if Target provided, Location will be ignored). If you select an
impossible place to head to, you will start off directly towards it until you hit a wall, fall off a cliff, or
otherwise discover the offending obstacle.

Speed

sets the speed of the movement. Ranges from 0.1 to 2. This number multiplies default speed of the
bot

Target

the unique id of a player/object/nav point/whatever. The object must be visible to you when the
command is received or your bot will do nothing. Note that something that was just visible may not

be when the command is received, therefore it is recommended you supply a Location instead of a
Target.

Location
location you want to go to. Must be provided as comma delimited ("40,50,45")
SETCROUCH
will crouch/uncrouch the bot.
Crouch

if true the bot will crouch, if false the bot will uncrouch, after respawn this will be reset - bot will
uncrouch

SETSKIN

set the current bot skin - the appearance of the bot can be changed by this. The bot will be respawned after
this command with the new skin.

Skin
string, which specifies the bot appearance. You need to supply package and skin (mesh) name.
Example: SETSKIN {Skin HumanMaleA.MercMaleA}. Find all packages and skins through unrealEd

(Actor browser, search in UT2004/Animations folder). Some native packages to look in:
HumanMaleA, HumanFemaleA, Bot, Aliens.

SETWALK
set whether you are walking or running (default is run).
Walk

Send "True" to go into walk mode - you move at about 1/3 normal speed, make less noise, and wont
fall off ledges. Send "False" to disable walking

SHOOT
start firing your weapon.

Location

location you want to shoot at. Normal rules for a location specification

D:\...\svnbook\GB04_user_documentation_0_6.xml page 20 of 29

Target
the unique id of your target. If you specify a target, and it is visible to you, the server will provide aim

correction and target leading for you. If not you just shoot at the location specified

Alt
if you send True to this you will alt fire instead of normal fire. For normal fire you don't need to send

this argument at all

STOP

stop all movement/rotation.
STOPSHOOT

stop firing your weapon

STRAFE
like RUNTO, but you move towards a destination while facing another object. You must specify some object

in a game by id (can be navpoint, some inventory or another player, etc.). This changed from UT 2000,
where you could specify just location.
Speed
sets the speed of the movement. Ranges from 0.1 to 2. This number multiplies default speed of the

bot

Location
location you want to go to. Must be provided as comma delimited ("40,50,45")

Target
the unique id of a player/object/nav point/whatever that you want to face while moving

Focus
location of the spot you want to look at while moving to location. This will be used, if you wont

support target attribute

THROW
without any parameters. Will drop your current weapon (if it is possible) and will change to best weapon

available. If done successfully, message THROWN will come right away.

TURNTO
specify a point, rotation value or object to turn towards.

Target
the unique id of a player/object/nav point/whatever that you want to face. Must be visible

Rotation
rotation you want to spin to. Must be provided as comma delimited ("0,50000,0") and should be in

absolute terms and in UT units (2pi = 65535 units). Used only if no target provided.

Location
location you want to face. Normal rules for location. Only used if no Target or Rotation

« 2 ControlServer commands and messages

ControlServer runs at port 3001 (if enabled - bAllowControlServer = True). It provides commands and messages
for controlling the game server, managing bots and maps and setting up the game.

= 2.1 ControlServer commands

ADDBOT
Will add original epic bot to a game. May have issues with team balancing.

Name
optional name of the bot

D:\...\svnbook\GB04_user_documentation_0_6.xml page 21 of 29

StartLocation
optional start location of the bot
StartRotation
optional start rotation of the bot
Skill
float, optional skill of the bot - from 1 to 7 (best)
Team
integer number of desired team (usually O or 1)

ADDINV
adds inventory of supported class to the bot specified by Id. Bot has to be alive and on the server. The
change is not permanent. Every non abstract Pickup class can be supported in Class attribute, see
UnrealEd for complete list.

Id
Id of the bot, we want to add inventory to
Class
string of the name of the class. Example: {Class xWeapons.FlakCannonPickup}

CHANGEMAP
will change map to MapName - map must exist on server (wont be tested), will send MAPCHANGE
message.

MapName
name of the new map

CHATTR
will change specified attribute of the bot. Now just attribute Health can be changed.

Id
Id of the target bot
Health
sets the bot health, can range from 1 to 199. The bot has to be alive. This change is not permanent

CONF
this command configures features of the bot, who is specified by Id.

Id
Id of the bot to be configured
AutoTrace
boolean, enables or disables bot auto ray trace. (If ATR message will be sent or not)
ManualSpawn
boolean, if set to true, bot wont respawn automatically after death, but RESPAWN command will
have to be called
Name
string, will change the name of the bot in the game
Invulnerable
boolean, if true the bot cant be killed. This can be changed just when cheating is enabled on the
server (bAllowCheats = True)
VisionTime
between 0.1 to 2 seconds, it sets how long should be GB idle before running next checkvision test
ShowDebug
boolean, if true some additional debug information will be logged to server window

D:\...\svnbook\GB04_user_documentation_0_6.xml page 22 of 29

ShowFocalPoint

boolean, if set to true an actor will appear in the game on the location the bot is actually looking at
DrawTraceLines

boolean, if set to true, the rays of automatic ray tracing (ATR messages) will be drawn in the game.

Has some issues, on some UT2004 copies this does not work. We are trying to fix this
SynchronousOff

boolean. It enables/disables sending of all GB synchronous messages

CONSOLE
You can run all console command by this.

Command
string. The exact console command (as you would type to console).

ENDPLRS
Will stop exporting of IPLR messages synchronously.
GETMAPS
Will request map list from the server. Server will respond with IMAP batch map info message.
GETNAVS
Will send list of all navpoints in the map with reachability graph. Standard 1INV batch info message will be
used.
GETPLRS
Will send list of all players currently playing on the server. Server will respond with IPLR batch players info
message.
KICK
will kick RemoteBot from the server.

Id
of the bot to be kicked

PASSWORD
Send password to the server. For more information see ControlServer command SETPASS.

Password
string. Holds the password.

PAUSE
will pause/unpause the game.

PauseBots

if true only bots will be paused - players and spectators will move freely
PauseAll

everyone in the game will be paused if set to true

PING
command for connection detection. Server will return "PONG".
QuUIT
will close the connection.
READY
command. Response to HELLO message. The server will send standard game NFO message.
REC
server will start recording demo from current game, this command is not fully tested yet. Command is
confirmed by RECSTART message.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 23 of 29

FileName
name of the saved demo file

RESPAWN
will force bot to respawn, that means - it will kill the bot and spawn him on new location - random or
specified.

Id

of the bot to respawn
Location

optional vector, specifies respawn location
Rotation

optional vector, specifies respawn rotation

SETGAMESPEED
will set speed of the game.

Speed
can range from 0.1 to 50. 1 is normal game speed. The reasonable speeding up is around 10. The
game engine stops catching up at higher values.

SETLOCK
Will disable new connections to botserver and or control server - depends on parameters. If last
ControlServer instance is leaving. ControlServer lock will be canceled.

BotServer

boolean. If BotConnections should be locked.
ControlServer

boolean. If ControlConnections should be locked.

SETPASS
Sets the password for Bot and control connections. If the password is set the initiation of GB communication
is changed to this:

1) A ---> GB sends HELLO message

2) B <--- user sends READY

3) C ... if the server is protected by pass:

3.a) C1 ---> GB sends PASSWORD {BlockedBylIP="ip adress with port of the blocker (195.113.12.3:3001)"}
3.b) C2 <--- user sends password (PASSWORD {Password pass}) ... if correct

3.c) C3 ---> GB sends PASSWDOK and info batch messages, user can continue normally if the
password is wrong

3.d) C4 ---> PASSWDWRONG and connection ends

Note: If the user knows that server is passworded he can use PASSWORD {Password pass} command
instead of READY, and will be checked and sent info batch messages immediately

Password
string. Sets the password.

STARTPLRS
Will start to export IPLR messages regularly (like synchronous batch). Can be used for continuous
visualization of players moving around the map. There are three categories (see below). The default

D:\...\svnbook\GB04_user_documentation_0_6.xml page 24 of 29

values for all category is true, that means that without attributes all the categories will be exported.

Humans
boolean. All human players will be exported.

GBBots
boolean. All GameBots bots will be exported.

UnrealBots
boolean. All UnrealBots will be exported.

STOPREC
will stop recording a demo. Is confirmed by RECEND message.

= 2.2 ControlServer messages

ALIVE
Normally sent once per second, if periodic exporting of players is enabled in ControlServer, it will be sent
as often as is the update time of player export.

Time
Reflecting current game time.

CONFCH
this message is sent when variables of the bot are changed - by CONF command of control server, or of
this bot. And also when bot joins the game. Then every Control server connected will receive this message
after JOIN message.

Id
id of the bot
ManualSpawn
boolean, if set to true, bot wont respawn automatically after death, but RESPAWN command will
have to be called
AutoTrace
boolean, enables or disables bot auto ray trace (If ATR message will be sent or not).
Name
string, current name of the bot
Invulnerable
boolean, if true the bot cant be killed. This can be changed just when cheating is enabled on the
server (bAllowCheats = True)
VisionTime
float, ranges from 0.1 to 2 seconds. This will change the period between two synchronous batches
ShowDebug
boolean, if true some additional debug information will be logged to server window
ShowFocalPoint
boolean, if set to true an actor will appear in the game on the location the bot is actually looking at
DrawTraceLines
boolean, if set to true, the rays of automatic ray tracing (ATR messages) will be drawn in the game.
Has some issues, on some UT2004 copies this does not work. We are trying to fix this
SynchronousOff
boolean. It informs if sending of all GB synchronous messages is enables/disables.

FIN
Sent when the map is changed (sent right after MAPCHANGE message).

D:\...\svnbook\GB04_user_documentation_0_6.xml page 25 of 29

HELLO CONTROL SERVER
message, sent immediately after socket establish.

IMAP
batch map info message - Will begin with SMAP message and end with EMAP message. Provides
information about maplist on the server. IMAP message has got one attribute - Name of the map.

Name
name of one map in map list on the server.

IPLR
batch players info message - Will begin with SPLR message and end with EPLR message. Provides
information about players currently playing on the server. IPLR message has got these attributes:

Id

Unreal Id of the player
Name

name of the player
Location

vector if the player/bot is currently living
Rotation

vector if the player/bot is currently living
AutoTrace

true or false - if the bot is auto tracing
ManualSpawn
true or false - if the bot is not respawning automatically
Invulnerable
true or false - if true, bot cannot die
VisionTime
float, delay between two synchronous batches
ShowDebug
boolean, if true additional debug is displayed from this bot in server window (the console that was
used to start the server)
ShowFocalPoint
boolean, if true the bots focal point is displayed in the game
DrawTraceLines
boolean, if true the automatic ray tracing lines (ATR messages) are displayed in the game. Has
issues, does not work on some UT2004 copies

JOIN
sent when player joins the server.

Id

an id of the joining player
Name

the name of the joining player

LEFT
sent when player leaves the server.

Id
an id of the leaving player.
Name

D:\...\svnbook\GB04_user_documentation_0_6.xml page 26 of 29

the name of the leaving player

MAPCHANGE
sent when the map is changed (server will lost the connection).

MapName
text name of the map

PAUSED
sent when the or the bots are paused.
RECEND
response to STOPREC command.
RECSTART
response to REC command.
RESUMED
sent when the game and the bots are unpaused.

v~ Chapter 8: GameBots command line parameters

Usually user will run GameBots server through command line (it is advised to do so). The syntax of command line
commads looks like this:

YOUR_UT04_FOLDER\ ucc server
Nane_of _desi red_nap?game=GaneBot s_ganet ype?vari abl el=val uel?vari abl e2=val ue2?vari abl e3=\

GameBots mod adds several special attributes, that can be used to configure GameBots without setting the things
in ini file. Here is the list of GameBots parameters as well as of some usefull original UT parameters:

& Mutator variable - we select here which mutators we want to run in our game. If we want to use multiple
mutators at once, we will use "," as delimiter (eg. mutator=BotAPl.GBHudMutator,BotAPI.PathMarkerMutator).

TimeLimit variable - with this we set how long will the game lasts until mapchange in minutes. (when
mapchange occurs, GameBots get disconnected).

GoalScore variable - sets the ammount of frags, which has to be acquired for a player or bot to win the game
(when somebody wins the game, the game ends, mapchange will occur and GameBots will be disconnected
again).

& BotServerPort variable - the server will listen on selected port for connections. Be carefull, if the port is taken
by another process or another dedicated server instance, you will not be able to connect to your server
instance. This port range allowed in GameBots: 2000 - 32000.

ControlServerPort variable - The same as above, except it is used for control server connections. Always set
bot server and control server port to different variables.

bRandomPorts variable - can be set to True or False (eg. bRandomPorts=True). If set to true random free
ports for bot connection and control connection will be picked up (nevertheless the other settings). These
ports will be displayed in the server console window after the beginning of the game.

So, the command that would run GameBots BotDeathMatch game type on map DM-Flux2 with both GameBots
mutators on looks as follows. It will also set time limit to 20 minutes, goal score to 20 frags. The server will listen on
port 3024 for bot connections and on port 3025 for control connections. Example:

YOUR_UT04_FOLDER\ ucc server
DM Fl ux2?ganme=Bot API . Bot Deat hMat ch?nut at or =Bot API . Pat hivar ker Mut at or, Bot APl . GBHudMut at or *

Other command that would pick random ports looks like this:

YOUR_UT04_FOLDER\ ucc server

D:\...\svnbook\GB04_user_documentation_0_6.xml page 27 of 29

DM Fl ux2?ganme=Bot API . Bot Deat hMat ch?nut at or =Bot API . Pat hivar ker Mut at or, Bot APl . GBHudMut at or *

v~ Chapter 9: GameBots INI file

GB have an ini file, located in the SYSTEM folder of the game UT04 ("BotAPL.ini"). Syntax is as follows. Enclosed
by a pair of "[]" is the name of the class you want to configure. Below is a list of all configurable classes with brief

description of what can be configured. More information can be found directly in the ini file in comments.

& [BotAPl.RemoteBot] - here we configure remote bot variables (maximum speed, if he will be spawned
manually, etc.). Some interesting variables to set here:

bDrawTraceLines=true - boolean. If we should draw the rays defined by auto tracing behavior in the game.
bShowFocalPoint=false - boolean. If we should draw bot focal point in the game.

bPerfectLocationAim=false boolean. If the bot should have perfect aim also for location targets and
stationary targets. If set to true bot accuracy setting will be used just when aiming to another bot or pawn (by
target variable).

bAutoTrace=false - boolean. If the auto tracing behavior is enabled.
bAutoSpawn=true - boolean. If the bot will be automatically respawned after death.

[BotAPI.BotConnection] - here we set if the game will be pausable for bots, if they will be allowed to cheat
and also delay between synchronous messages (by VisionTime).

bSynchronousMessagesOff=false - boolean. Enables disables synchronous messages for the bots.
visionTime=0.250 - float. Delay between two synchronous batches in seconds.

bAllowCheats=True - boolean. If the bots are allowed to cheat - that means if they can spawn items for
themselves by ADDINV command and if they can be set to be invulnerable.

bNewProtocol=True - boolean. If the GameBots should use new or old initiation protocol. (Pogamut2 requires
new)

bAllowPause=true - boolean. If the bots are allowed to pause the game.

[BotAPI.ControlConnection] - this configures features of control connection.
UpdateTime=0.3000 - float. In seconds - delay between two IPLR batches.
bNewProtocol=True - boolean. Old or new initiation protocol. (Pogamut2 requires new)
bAllowPause=True - boolean. Can we pause the game or not.

[BotAPl.BotDeathMatch] - (generally [BotAPIl.DesiredGameTypeToConfigure]). Here we configure desired
game type. We can set time limit here, maximum number of players, goal score, etc. bAllowControlServer
enables or disables possibility of control connections. Here we also set the ports on which will be run bot
server and control server.

bAllowControlServer=True - boolean. If the control server will be allowed or not .
BotServerPort=3000 - integer. Default port for BotServer (from 2000 to 32000).
ControlServerPort=3001 - integer. Default port for ControlServer (from 2000 to 32000).

bRandomPorts=false - boolean. If we want to use random ports (used ports will be displayed in the server
console window screen). This will override set ports.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 28 of 29

TimeLimit=120 - integer. Time limit how long before the game ends in minutes.
GoalScore=25 - integer. How many points player needs to score to win (game will end).

[BotAPI.BotServer] and [BotAPI.ControlServer] - here we set maximum number of connections that we will
accept for control connections and for remote bots.

MaxConnections=10 - integer. Maximum connections to the server.

The names of the attributes, that can be set are self explanatory and commented if necessary.

v Chapter 10: GameBots Mutators

GB feature three mutators, which add to the game additional debugging information. It is PathMarkerMutator,
GBHudMutator and GBNoWeaponMutator. They can be run by starting the server by console command - example
of command that will launch GB server with both mutators from console:

YOUR_UT04_FOLDER\ ucc server
DM Tr ai ni ngDay?ganme=Bot API . Bot Deat hVat ch?nut at or =Bot API . Pat hMar ker Mut at or, Bot APl . GBHudM

Or they can be manually selected in GUI of UTO4.

PathMarkerMutator visualize all navigation points in the game that are not inventory spots (inventory spots are
visualized already by the respawning item).

GBNoWeaponMutator disables all weapons for both player and bots. Also it deletes all weapons from the map. It is
GameBots extension dependent (might not work without it).

GBHudMutator changes players HUD, so additional information are displayed - namely current location of the
player, names of surrounding navigation points and graph of navigation points reachability grid (drawn by red
lines in the game). Following keys may be used to configure these features, when the game is running:

Insert - enables, disables graph of navigation points reachability grid

Home - enables, disables displaying names of surrounding navigation points

PageUp/PageDown - increases, decreases radius of navigation points, which will have their names
displayed.

v Chapter 11: Acknowledgments

We would like to thank to the authors of the old GameBots (version for Unreal Tournament 2000) as our GameBots
used their version as its base. And also this user documentation is extended version of their previous GameBots
network API.

D:\...\svnbook\GB04_user_documentation_0_6.xml page 29 of 29

