Pogamut Toolkit

Jakub Gemrot
Charles University, Faculty of
Mathematics and Physics
Ke Karlovu 3
Prague 2, 121 16, Czech Republic

jakub.gemrot@gmail.com

ABSTRACT

All experiments using intelligent virtual agentsoser or later,
ask for a specific virtual environment that wouitltheir setup.

Seeking such environment is a daunting task accoiegavith

the need for an appropriate agent adapter that iqesv
infrastructure for mediation of virtual body sensesd actions
thereby enabling remote high-level agent contrdhisTdemo

presents Pogamut toolkit, which provides out-of-poagrammer
tools for creating virtual agents for Unreal Touremt 2004,

Unreal Development Kit and Defcon virtual environme
Pogamut's virtual world abstraction is compatibléthwmany

agent oriented languages and architectures ingudiadex,

GOAL, POSH, Soar or ACT-R, which makes it highlytahle for

research on intelligent virtual agents.

Categoriesand Subject Descriptors
D.2.13 Reusable Software]: Reusable libraries

General Terms
Design, Experimentation.

Keywords

IVA toolkit, Virtual environments, Action-selection

1. INTRODUCTION

The development of intelligent virtual agents (IVA) still far

from being easy as every IVA application calls domplex chain
of tools and libraries that must work together nalgle quick and
efficient IVA production. IVA production typicalljcomprises
several cycles, during which researchers:

(a) design,
(b) implement, run, observe & debug,
(c) test & validate their IVAs.

Technically, IVA applications can be conceived assisting of
three parts (see Picture 1):

(1) a virtual environment (VE),
(2) an environment-agent middleware (EAM),
(3) an agent platform (AP).

Furthermore, as every research have to implemedelfig (Point
(b)) and test & validate the application (Point)(@ researcher

Appears in: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), Conitzer,
Winikoff, Padgham, and van der Hoek (eds.), Jur8, 2012, Valencia,
Spain.

Copyright © 2012, International Foundation for Amtmous Agents and
Multiagent Systems (www.ifaamas.org). All rightseeved.

Michal Bida
Charles University, Faculty of
Mathematics and Physics
Ke Karlovu 3
Prague 2, 121 16, Czech Republic

michal.bida@gmail.com

Cyril Brom
Charles University, Faculty of
Mathematics and Physics
Ke Karlovu 3
Prague 2, 121 16, Czech Republic

brom@ksvi.mff.cuni.cz

needs:

(4) implementation tools,
(5) debugging tools,
(6) testing & validation tools.

As there is no mature standard yet that would célerwhole
IVA development process or provide research metlogyo
guidelines and technology interface standards (aontto
“classical” agents, cf. e.g. FIPA), every IVA amgliion setup
requires a proprietary solution that combines Rdits- (6). Here,
we present Pogamut toolkit, a result of 5 yearsvofk, which
aims at providing complete solutions for buildingAs for
various virtual environments. Pogamut toolkit cathe supports
development of IVAs for (i) Unreal Tournament 20Q4T2004),
(i) Unreal Development Kit (UDK) and (iii) DefconUnreal
Tournament 3 (UT3) is a work-in-progress. The tdolk
complements similar attempts, such as [1] capitajibn BML.

Picture 1. A typical VA application
IVA body IVA logic
| | | |
VE <—> EAM <—> AP

uT2004 Pogamut EAM POSH
UDK CIGA GOAL
Defcon ALIVE Jason

2. FEATURESOF IVATOOLKITS

Instead of listing Pogamut features, it is beterréview IVA
production cycle (Points (a) — (c)) with respect\fé application
Parts (1) — (3). That will provide the list of faegs that every
IVA toolkit should possess.

2.1 Designing IVAs (Point (a))

Process of designing an IVA is typically sensitigethe selection
of Parts (1) — (3). A researcher has to understaphbilities,
limitations and options of every part involved. Skmust
understand a VE (1) to be able to create its pdaticinstance
suitable for the application; she has to work waih EAM (2)
encoding agents’ reflexes and complex sensory armdorm
primitives; finally, she will work with an AP itsie(3), which will
accommodate agents’ plans and strategic decisidmma

The support from the IVA toolkit here is to havetigg-started
tutorials, be well documented and provide a lotegécutable
example agents that exemplify various features igeav by
Parts (1) — (3).

2.2 Implementing & Debugging (Point (b))
Once an IVA application is designed and the tookirchis
understood, the implementation can take place. phase itself
will contain a lot of iterations of Point (b) (s&able 1).

Unfortunately, all steps of Point (b) will happeneach of VE,
EAM and AP so the toolkit must provide (ideallyegtated) (4)
& (5) to help the researcher along the way. Thedisdesired
features is presented in Table 1.

2.3 Testing & Validating IVAs (Point (c))

Once an IVA is implemented, it needs to be runugtoseries of
tests that provide data for answering experimepbtheses, e.g.,
for comparison to other existing IVAs fulfilling ¢hsame goal.
Usually, it means to run the IVA multiple times dg.20x or
100x) to gain statistical validity of the obtaingata.

The IVA toolkit has two roles in this process (P@)). First, it
should provide means for gathering such data, ghs for agent
observers that can collect data of agent actiorasaning,
decision making and a VE itself. Second, it shquiovide tools
(GUIs, libraries, scripts) for automatic testingp shat the
researcher does not need to run every test mamadiseate such
tools.

Table 1. Thelist of IVA platform featuresthat ease
implementing & debugging of IVAs

(1) VE (2) EAM (3) AP

IDE for coding

reflexes and IDE for creating
complex sensory and agent plans

motor primitives

Implement VE editor

Means for quick (re)starting of the whole tool ¢hai

Run (startup scripts or GUI).

Interactive coding, Interactive coding
sync. breakpoints| sync. breakpoints
with VE, logs. with EAM, logs.

Observe and

debug VE visualizer

2.4 Technical dependencies

Unfortunately, there are technical dependenciesdmt a VE, an
EAM and an AP. Thus every complete tool chain wilhtain a
lot of “glue” code that adapts VE-EAM and EAM-AP s Ahere
are no mature standards how VEs, EAMs and APs dhiook
like, no one can expect (for instance) that existiools for AP

will provide much insight into interoperability veten EAM and
AP or even VE and AP. For example, an automated t&8ting
tool that operates over UT2004-Pogamut-SPOSH (esop46))
will not work for Defcon-Pogamut-Jason setup awiit contain
much of UT2004-Pogamut-SPOSH specific code.

This is not surprising but leads to another obd@mahat every
IVA toolkit should state which tools it provides tvirespect to
concrete VE-EAM-AP chosen.

3. FEATURES OF POGAMUT

Tables 2 and 3 provide an overview of existing anglemented
tool chains for creating IVAs for UT2004, UDK andefoon
environment by the Pogamut toolkit.

Table 2. Bindingsthat Pogamut as EAM provides.

VE/EA Java POSH Jason ACT-R

uT2004 Yes Yes No Yes

UDK Yes Yes No No

Defcon Yes No Yes No
4. USAGE

In this paper we have presented a list of gerfeedlres that are
(has to be) common to every IVA toolkit aiming tapgort

development of IVA applications. The crucial poirg that

Pogamut supports these features with respect & tHifferent
virtual environments. Furthermore, Pogamut alrepdyved its

applicability by being used for international 1VAomopetition,

research and education.

5. ACKNOWLEDGMENTS

This research was partially supported by projecd310/1287
(GACR), by student grants GA UK No. 0449/2010/A-INF-F
655012/2012/A-INF/MFF, and by SVV project numbeBZ3L4.

6. REFERENCES

[1] Thiebaux, M., Marshall, A., Marsella, S., Kallmanii.
SmartBody: Behavior Realization for Embodied
Conversational Agents. In: Proc. of Autonomous Agemd
Multi-Agent Systems (2008).

Table 3. Existing tutorials and features of Pogamut toolkit for respective VE/AP combinations.

Designing Implementing & Debugging Testing & Validating
VE /AP Installer Getting Tutorials Commented IDEs / Tools IDEs / Tools
started doc. examples
UT2004+Java Yes Yes Yes Yes NetBeans IDE, Debug GUI Experimemnter lib.
UT2004+POSH Yes Yes Yes Yes NetBeans IDE with POSH Editor Experiment runner lib.
and POSH Debugger
UT2004+ACT-R Yes No Yes Yes NetBeans IDE X
UDK+Java Yes Yes Partially Yes NetBeans IDE X
UDK+POSH No No Partially No NetBeans IDE with POSH Editor X
and POSH Debugger
Defcon+Java No No Yes Yes NetBeans IDE for coding, Auto X
deploy & run Ant scripts
Defcon+Jason No No Yes Yes Auto deploy & run X

