
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Bc. Lucie Ku£erová

Plánování osobní historie virtuálního agenta

Planning Personal History of a Virtual Agent

Department of Software and Computer Science Education

Supervisor: Mgr. Cyril Brom, Ph.D.

Study Program: Computer Science, Software Systems

2010

I would like to thank to my supervisor Cyril Brom for his unvaluable help during
the preparation of the thesis, for his patient guidance and feedback. I would also
like to thank to Rudolf Kadlec for his helpful suggestions.

I hereby claim that I have written this master thesis on my own, using exclusively
cited sources. I permit the lending of the thesis.

Prague, August 6, 2010 Lucie Ku£erová

2

Contents

Contents 3

1 Introduction 6

2 Method Selection 10

2.1 Simulation . 10
2.2 Constraint Satisfaction . 10
2.3 Planning . 10

3 Related Works 12

3.1 Episodic Memory . 12
3.2 Generating Narratives . 14

4 Designer's Requirements 18

4.1 Requirements on the Virtual World 18
4.2 Requirements on an Agent . 18

5 Planning 20

5.1 Necessary Features of a Planner . 20
5.2 Planner Selection . 21
5.3 Transformation of the Requirements to PDDL 22
5.4 High-level Language and Its Transformation to PDDL 26
5.5 Summary . 37

6 Results 39

6.1 Testing Environment . 39
6.2 Standalone Agents . 42
6.3 Standalone Agents with Time Windows 46
6.4 Interconnected Agents . 48
6.5 Interconnected Agents with Time Windows 50
6.6 Summary . 54

7 Future Works 55

7.1 Special-Purpose Planner . 55
7.2 SAT or CSP . 55
7.3 Authoring Tool . 55
7.4 More Detailed World . 56

8 Conclusion 57

3

Bibliography 58

A Attachments 62

B Conversion Algorithms 63

4

Název práce: Plánování osobní historie virtuálního agenta
Autor: Lucie Ku£erová
Katedra: Katedra software a výuky informatiky
Vedoucí bakalá°ské práce: Mgr. Cyril Brom, Ph.D.
E-mail vedoucího: brom@ksvi.m�.cuni.cz

Abstrakt: Episodická pam¥´ je d·leºitou sou£ástí �mysli� mnoha virtuálních agent·,
protoºe agent s osobní historií bývá efektivn¥j²í a uv¥°iteln¥j²í. Dosud se výzkum
v oblasti modelování episodické pam¥ti t¥chto agent· soust°edil hlavn¥ na vytvá°ení
obsahu pam¥ti on-line, tj. b¥hem simulace agenta. V této práci se zabýváme
p°íbuzným problémem, automatickým generováním obsahu pam¥ti o�-line. Pro
designéra by bylo uºite£né mít nástroj pro generování vzpomínek, které p°edcházejí
startu simulace. Proto jsme vytvo°ili komplexní návrhovou metodu, která mu
umoº¬uje speci�kovat poºadavky na historii agenta a pouºít plánování na gene-
rování historie v souladu s t¥mito poºadavky. Zam¥°ujeme se na vysokoúrov¬ový
jazyk pouºívaný na popis poºadavk· a na £ást navrºené metody, která se zabývá
plánováním. V sad¥ experiment· jsme otestovali výkon n¥kolika plánova£· p°i °e²ení
na²í úlohy a p°edstavujeme zde výsledky, které jsme získali.

Klí£ová slova: virtuální agenti, plánování, epizodická pam¥´, po£íta£ové hry

Title: Planning Personal History of a Virtual Agent
Author: Lucie Ku£erová
Department: Department of Software and Computer Science Education
Supervisor: Mgr. Cyril Brom, Ph.D.
Supervisor's e-mail address: brom@ksvi.m�.cuni.cz

Abstract: Episodic memory is an important component of �minds� of many long-
living virtual agents, because equipping such an agent with his personal history
increases his e�ciency and believability. So far, research on episodic memory mod-
eling in the context of these agents has focused mostly on producing the memory
content on-line, that is, when the agent is being simulated. In this work, we address
a complementary issue, automatic generation of the memory content o�-line. We
see a possible need of a tool for generating memories that anticipate the start of the
simulation. Hence we created a complex design method enabling a designer to spec-
ify high-level requirements on an agent's history and use planning to automatically
generate this history according to these requirements. We detail the structure of the
high-level language used for the description of the requirements and the part of this
method that concerns itself with the planning. In a set of experiments, we tested
the performance of several planners on our task and we present here the results we
gained.

Keywords: virtual agents, planning, episodic memory, computer games

5

Chapter 1

Introduction

One of the many e�ects of the growing computational power of personal comput-
ers in the last decades is that application designers are enabled to create and run
simulations of complex virtual worlds. These worlds are inhabited by intelligent
virtual agents (IVAs), intelligent agents [46] who are graphically embodied in the
environment. Virtual worlds can be used for many purposes, for example therapeu-
tic or educational. One of their important applications are computer games, notably
role-playing games (RPGs). Contemporary RPGs feature vast virtual worlds inhab-
ited by tens or hundreds virtual agents (e.g. [3, 18, 2]). The agents are also called
non-player characters (NPCs), to di�erentiate them from characters controlled by
a player.

As designing all the details of a virtual world can be a time-consuming, repet-
itive work, there are e�orts to automatize it using procedural content generation.
Currently, virtual world designers can use tools for automatic generation of textures
[13], objects like trees or plants [37] and even large parts of a virtual world envi-
ronment [21, 42]. However, there has been done signi�cantly less research in the
�eld of procedural generation of IVAs living in a virtual world. In this work, we are
addressing one part of this task - automatic generation of the contents of episodic
memory of virtual agents.

The term episodic memory was introduced for the �rst time by Endel Tulving
in 1972 [44]. Today, psychologists divide human memory in three parts - episodic,
semantic and procedural memory. Procedural memory stores mainly learned manual
or physical activities. Riding a bike or swimming are typical examples of abilities
included in procedural memory. Semantic memory is memory for knowledge about
the world. Stores the facts that we learned, but that do not form a part of a
particular context of our life. Examples of these facts are for instance the number
of inhabitants of Prague or the year when Czechoslovakia was founded. Episodic
memory stores our personal experiences and memories. Using our episodic memory,
we can answer questions like �What did you have for lunch yesterday?�, �When did
you visit Madrid?� or �With who did you spent your last vacations?�.

Recently, there has been increasing interest in modeling episodic memory for
intelligent virtual agents. Some of that work focuses on on-line storage and later
recall, including explaining by the agent (e.g. [5, 11, 38]). They argue that it may
be vital to equip NPCs with episodic memory abilities [7, 12]. Among other aspects,
equipping virtual agents with episodic memory can increase their believability [4].
An agent is considered believable if he allows the audience to suspend their disbelief

6

and if he provides a convincing portrayal of the personality they expect or come to
expect [31].1

Other work in this �eld focuses on learning from past experience (e.g. [26, 34]),
which can improve the performance of a virtual agent dramatically. For instance,
an agent with the hunger drive can satisfy his eating need more quickly when he
remembers where he saw food recently. We will present some of these works more
in detail in Chapter 3.

To our knowledge, no one has addressed yet other issue concerning episodic
memory modeling � the automatic o�-line generation of the memory content in
cases when it is impossible or inconvenient to create it manually. For instance, if an
RPG designer wants the NPCs to have memories for events that anticipate the start
of the game, she has to write them manually. While this approach is be�tting in the
case of main characters, it can get inconvenient in the moment when the designer
has to model many NPCs of low importance (background characters throughout).
Another possibility for the designer is to have at her disposition a method to generate
these supplementary NPCs automatically according to her wishes, which is precisely
the aim of our research now.

This issue of memory contents generation is scalable in at least two ways, the
length of content of episodic memory and the number of agents whose histories are
being generated. For example, we can generate an agent's memories for the entire
lifetime, but we can also omit childhood or old age. As there are applications where it
is not necessary to include these two periods, a work missing them out still remains
usable. It is also di�erent whether we generate memories of one agent, several
agents that never interacted with each other during the time period in question, or
hundreds of interconnected agents, i.e. agents who have relationships among them.
Generating such agents separately could cause inconsistencies in their memories.

Each of these concepts brings di�erent complexity. As this work is, to our knowl-
edge, the �rst one addressing this problem, we intentionally focus here on the less
complex variants. We create memories of an agent or a few interconnected agents
spanning over several years of their adult life.

A typical agent with the content of episodic memory generated by our method
would be a background character, e.g. a soldier, an ordinary mage, a villager or a
shopkeeper in a fantasy RPG. Such RPG is just one of the possible applications,
however, we will center mainly on this use in the text, for explanatory purposes.
The agent would be able to tell the player a brief summary of his life or respond
him to basic questions about his life. For instance, a soldier would be able to say in
which battles he took part, when and where he got married or when he was ascended
to lieutenant. One simpli�ed history of a soldier which will be used as an example
throughout the text is illustrated in Fig. 1.1.

We started to observe this agent when he was eighteen. About three months after
that, he got money for studies and started to study military academy to become
a soldier. This lasted almost two years. During his studies, he started to date
Susan and they got married, approximately three months after �nishing the military
academy. And about a half year later, he took part in the battle for Suncity.

However, we cannot expect a game designer to describe her requirements on the

1This work contains verbatim or only slightly modi�ed citations from the article [29], of which
the author of this work is the main author. These citations are marked by a bar on the left side of
the text.

7

Figure 1.1: Schema of content of episodic memory. A real schema would be more
complex; this one is simpli�ed for intelligibility.

Designer's
Ideas

High-level
Description

Description
in a Suitable
Formalism

Computation
Output

Content of
Episodic Memory -

Prelim. Version

Content of
Episodic Memory -

Final Version

STEP 3:
Computation

STEP 2:
Input-

processing
Tool

STEP 5:
Designer

Adjustments

STEP 4:
Output-

processing
Tool

STEP 1:
Authoring

Tool

Figure 1.2: Method Work�ow. The parts addressed in this work are marked with
blue color.

history of an agent in a low-level formalism of the approach used to generate it. At
the same time, the designer may want to �ne-tune the generated history manually.
Thus, we foresee a necessity of a complex design method enabling the designer to
work with a sort of user-friendly software tool encapsulating the very process of
generating an agent's memories.

Our proposal of a method ful�lling this is captured schematically in Fig. 1.2. We
have to enable the designer to write down her intentions in a high-level, user-friendly
language, using appropriate authoring tool. For this reason, we introduce Step 1 in
our method work�ow. This high-level de�nitions and requirements then have to be
converted by an input-processing tool to a valid input for the program which will
carry on the proper generation, which occurs in Step 2. This program afterwards
generates the content of episodic memory of the agent described in its formalism
(Step 3). Next, this output has to be converted back to the form suitable for the
designer. This is done by an output-processing tool (Step 4). The designer then
may want to make some manual changes to the created content of episodic memory.
So we have supplied the work�ow with Step 5.

8

The goals of this work are, aside from proposing the above mentioned design
method, to present

1. a suitable high-level language for describing a designer's requirements (Step 2),

2. a proof-of-concept implementation of the generating part (Step 3) and

3. results of several case studies.

The rest of this work proceeds as follows: In the next chapter, we will reason about
the method selected to solve our task. Chapter 3 presents related works. Chapter 4
details the requirements a designer may have on the contents of episodic memory to
be generated. In Chapter 5, we will discuss the choice of a suitable tool to perform
the generation and describe the main part of this work, the structure of the high-
level designer language we developed and its transformation to the formalism of the
selected tool. Chapter 6 presents the results we have obtained so far and a discussion
of them. In Chapter 7 we will mention possible future works and then we will end
by a short conclusion in Chapter 8.

9

Chapter 2

Method Selection

As the �rst step of our work, we had to choose a method which could be suitable for
achieving our goal. We were considering simulation, constraint solving and planning.
As the title of this thesis suggests, we decided to try the last one. However, it would
be useful to summarize our reasons to do that.

2.1 Simulation

Simulation is a standard way to have the content of a virtual agent's episodic memory
generated, because it is natural to create the memories of an agent during his �life�.
On the other hand, in our case this approach has several disadvantages.

One of the problems is the design of the simulation itself. It would be very
di�cult to describe a complex virtual world and the agents enough to produce
realistic and varied memories for all the agents. But the main issue is that we do
not want the agents just to have plausible history; we also want this history to ful�ll
a designer's requirements. We would have to assure for example that an agent would
execute a given action at a certain moment in the simulation etc. As it seemed very
unclear to us how to achieve this, we searched for another possibility.

2.2 Constraint Satisfaction

Other approach to this task is to use constraint satisfaction [43]. In contrast to simu-
lation, constraints seem to be a good way to encode a designer's requirements. This
method thus does not su�er from the disadvantages of the previous one. Unfortu-
nately, designing a method to convert a complex virtual world with all its possibilities
and �owing time to a constraint satisfaction problem is not very straightforward. So
we decided to look for another possibility in the �rst place and to let CSP remain
to be the second choice in the case that we did not �nd a more hopeful approach.

2.3 Planning

The idea to use planning in our work rose from the properties of the episodic memory
itself. According to some, one of the main functions of episodic memory is social
(e.g. [45]). In a nutshell, people tend to exchange their personal stories for various
social reasons. As Hirst and Manier put it in [24]: �We cannot divorce the act

10

of remembering from the act of communicating. ... Recollections arise... from a
desire to communicate with others about the personal past.� The conceptualization
of (some) recollections as personal narratives brings us to the idea of generating
these recollections similarly to how narratives are generated in the �eld of virtual
storytelling.

There are more approaches to generating narratives, but planning is arguably
the most promising. In our domain, using planning would mean generating the
content of episodic memory, i.e. the underlying representation enabling the agent to
tell stories about himself, based on a planning domain and planning problem. This
content would be generated based on the agent's initial state, his possible memories
and a designer's requirements constraining the to-be-generated agent's memory. The
core of a planning domain is formed by predicates and operators. Predicates can
serve to describe possible agent's states; operators have preconditions and e�ects,
which make them a suitable representation of actions in the virtual world, thereby
of the agent's possible memories. A planning problem consists of description of the
initial state and the goal state. These two can serve to represent the designer's
constraints on the to-be-generated memory.

Weighing all the above mentioned aspects, we consider planning the most promis-
ing way to solve our problem, so we decided to use this approach.

11

Chapter 3

Related Works

Generally, the works related to our research are of two types. One of them is formed
by works tackling episodic memory for virtual agents. The second one rises from
the fact mentioned in the previous chapter - from one point of view, recollections
are similar to narratives. So we also include some notable works from the �eld of
automatic generation of narratives in the second part of this chapter.

3.1 Episodic Memory

As mentioned in the �rst chapter, recently there has been interest in providing
virtual agents with episodic memory to enhance their performance in various tasks
or to increase their believability. We are going to present some of these works here
now which argue that this approach indeed works.

Andrew Nuxoll's Implementation of Episodic Memory

In his dissertation, A. Nuxoll states these bene�ts of episodic memory for people
which could be also useful for virtual agents [34]:

Sensing:

• Noticing Signi�cant Input � detecting what is important about a given situa-
tion by its relative familiarity

• Detecting Repetition � realizing when you are repeating the same series of
actions and altering your behavior as a result

• Virtual Sensing � retrieving past sensing of features outside current perception
that is relevant to the current task

Reasoning:

• Action Modeling � predicting the immediate outcome of your actions

• Environment Modeling � using past experience to predict how the environment
will change

12

• Recording Previous Successes/Failures � using past performance to guide fu-
ture behavior

• Managing Long Term Goals � keeping track of a plan and what steps in that
plan have been accomplished so far

• Sense of Identity � understanding one's own behavior in relation to other
agents

Learning:

• Retroactive Learning � reviewing experiences and learning from them when
su�cient time (or another resource) becomes available

• Reanalysis Given New Knowledge � relearning from experience upon receiving
new knowledge

• Explaining Behavior � reviewing your past actions to others for mutual bene�t

• �Boost� Other Learning Mechanisms � provide a database of knowledge that
can be manipulated by other learning mechanisms

In his work, Nuxoll compares the performance of simple virtual agents with the
performance of virtual agents equipped with episodic memory. The tests are under-
taken in two environments, Eaters and TankSoar. In both of them, the agents with
episodic memory outperform the simple agents.

Wan Ching Ho's Implementation of Episodic Memory

Ho, Dautenhahn and Nehaniv also realized tests on the performance of simple virtual
agents and agents equipped with episodic memory [25]. They implemented a simple
virtual world containing a desert, an oasis, a mountain, a river with a waterfall and
a lake. Each of this environments has speci�c features for the agents, e.g. there
grow apple trees in the oasis and so an agent can satisfy his hunger there.

The authors performed a suit of tests featuring simple reactive agents, agents
equipped with short term episodic memory (STM), agents equipped with long term
episodic memory (LTM) and also agents equipped with both of them. They exam-
ined the in�uence of the use of episodic memory to the average lifespan of the agents,
therefore to the ability to survive in the virtual world. The agents with episodic
memory clearly outperformed the purely reactive agents, the agents equipped with
both STM and LTM being the most e�ective.

Episodic Memory in FearNot!

FearNot! [10] is a computer application developed to help to reduce bullying prob-
lems in schools. The user of the application interacts with virtual agents representing
victims of bullying, presumably learning in this way how to cope with this kind of
issues. The virtual agents are equipped with a module for emotions to impersonate
believable bullying victims.

In the version 2.0 of the program, episodic memory module is added to the agents
[11]. It enables the agents to report to the user the experience from the last session,

13

including the reasoning why the agent did or did not follow the advices given by the
user. This arguably increases the e�ciency of the application.

Exercise Counselor in the �Virtual Laboratory� System

Bickmore, Schulman and Yin implemented in their Virtual Laboratory framework an
application meant to promote exercise among its users [1]. The application features
a virtual agent representing an exercise counselor who should motivate the users to
interact with her daily and ful�ll the objectives of the exercise program.

They decided to equip the agent with a set of short pre-written stories � episodes
from life, linked together in function of common concepts. The aim was to create a
more human-like agent who can use pieces of her memories to enrich her communi-
cation with the user. In the experiment lasting about 30 days, one half of the users
communicated with an agent speaking in �rst person (and presenting so the stories
as episodes from her life), the second half communicated with an agent using third
person (and presenting the stories as episodes from life of her friend).

The results showed that users interacting with the agent speaking in �rst person
were more engaged with her and used the application more frequently than users
from the second group. However, ratings of agent dishonesty were not signi�cantly
di�erent between the groups. This displaced the worry of the authors that people
could perceive as a deception when they are told stories from her life by a virtual
agent, who is not a living person.

RPG Actor with a Full Episodic Memory

Brom, Pe²ková and Lukavský developed a full episodic memory system for virtual
agents [5]. By �full�, they mean that this model represents a generic episodic memory
which can store all events relevant to the agent, not only events speci�ed ad hoc
by the programmer. The memory is optimized for e�ective storing and retrieval, is
not domain speci�c and includes a simple algorithm for forgetting. They performed
various experiments with their memory model which show that equipping an agent
with an implementation of this model makes him more e�cient.

The aim of their ongoing research is to implement episodic memory for virtual
agents that would ful�ll the assumptions which a user has about the human episodic
memory. It means that the virtual agent should be believable in this aspect. How-
ever, this task is very complex and so far the only way to tackle it is to pick just
one aspect of human episodic memory at a time. An example of this approach is an
extending work focused on human-like memory for time of past events [6].

3.2 Generating Narratives

As described in the previous chapter, generating narratives is a problem similar to
generating contents of episodic memory of a virtual agent. There has been done
a lot of research in this �eld and we will present here several representative works.
That will then enable us to summarize the di�erences between generating narratives
and generating history.

14

Tale-spin

Tale-spin [33] is a program for generating narratives created by James R. Meehan.
He successfully used this system to generate simple, but coherent Aesop-style fables.
A typical Tale-spin output, after being rewritten to English, is for example this story
called �Joe Bear and Jack Bear� [33]:

Once upon a time, there were two bears named Jack and Joe, and a
bee named Sam. Jack was very friendly with Sam but very competitive
with Joe, who was a dishonest bear. One day, Jack was hungry. He knew
that Sam Bee had some honey and that he might be able to persuade
Sam to give him some. He walked from his cave, down the mountain
trail, across the valley, over the bridge, to the oak tree where Sam Bee
lived. He asked Sam for some honey. Sam gave him some. Then Joe
Bear walked over to the oak tree and saw Jack Bear holding the honey.
He thought that he might get the honey if Jack put it down, so he told
him that he didn't think Jack could run very fast. Jack accepted this
challenge and decided to run. He put down the honey and ran over the
bridge and across the valley. Joe picked up the honey and went home.

Tale-spin uses planning to generate a correct sequence of actions to accomplish a
given goal from a given initial state, i.e. to accomplish the goal providing every
action has it's logical preconditions ful�lled before it starts. The main goal of the
story is always to satisfy a physical need of the main character - e.g. hunger (like
in the example above) or thirst. Meehan's central point of interest in this work was
to develop some mechanisms which would assure that a generated story would be
a �good story� from the point of view of a reader. He focuses on how to specify
motivation, relationships and personalities of the characters and how to assure that
the resulting story will respect all this input.

Mexica

Mexica [35] approaches the problem of generating narratives in a di�erent way. It
attempts to model the process which is supposedly used by a human author. From
a given initial state and action, Mexica generates a story employing the cycle of
engagement and re�ection. In each step, it compares the actual context with the
contexts stored in its internal database of stories. The actions which were made
in similar contexts are candidates to the action which should be undertaken now.
From these candidates, the system selects the most suitable action considering:

• general constraints (availability of the actions)

• novelty of the resulting part of the story in comparison to other stories in the
database, as we do not want to produce (almost) the same story again

• compliance with the dramatic arc (the tension to the reader has to increase at
�rst and then decline in the end)

The authors called the system Mexica because they were generating stories about
the Mexicas, the old inhabitants of Mexico. A sample story [35]:

15

Jaguar_knight was an inhabitant of the Great Tenochtitlan. Princess
was an inhabitant of the Great Tenochtitlan. Jaguar_knight was walking
when Ehecatl (god of the wind) blew and an old tree collapsed injuring
badly Jaguar_knight. Princess went in search of some medical plants
and cured Jaguar_knight. As a result Jaguar_knight was very grateful
to Princess. Jaguar_knight rewarded Princess with some cacauatl (cacao
beans) and quetzalli (quetzal) feathers.

Thespian

Thespian [41] is a multi-agent system which uses simulation for interactive story-
telling [20]. The main di�erence between Thespian and Tale-spin or Mexica is that
Thespian counts with participation of a user-directed agent who interacts with arti-
�cial virtual agents in real time. Thus the story has to be adapted on-line to �t to
his actions.

In this framework, a designer speci�es goals and possible actions of each virtual
agent. Then she creates alternative linear scripts of the desired paths of the story.
When an agent gets the turn, he chooses from his possible action the one which
helps him to achieve one ore more of his goals and is also compatible with one of
the story paths.

Generating Narrative Versus Generating History

After describing several systems for generating narrative and presenting a closer look
on this �eld, we will now summarize the di�erences between generating narrative
and generating history.

Generally, these tasks are closely related. In both of them, we want to generate an
ordered set of actions which contains given characters and ful�lls logical constraints.
For example, a character cannot get divorced before getting married.

In generating narrative, this task is complicated by the fact that the generated
set of actions should be a �story�. It means it should have the features a good human-
written story has, like a dramatic arc or believable motivation of the characters to
perform an action.

From this point of view, our problem is simpler. The agent we want to be
equipped with the generated memories is a background character who will interact
with the player just in several brief conversations. For this purpose, we do not
necessarily need him to be able to explain his motivations for all his actions (although
it would be bene�cial), he is just expected to be able to narrate his memories in a
simple way. The �story� of the agent is partly de�ned by the properties of the virtual
world and by the requirements from the designer and we do not need to make it a
good story.

We also do not need to count with the user interaction, as seen in the task of
interactive storytelling.

On the other hand, we have more demands on the properties of the generated
set of actions. The game designer typically has several requirements the character
should ful�ll to �t in the virtual world and his overall story. For example, the de-
signer may want the character to be rich or to take part in a particular battle. In
virtual storytelling, setting some requirements on the story course is also used some-

16

times (e.g. [41, 39, 36]), because it generally leads to more complex stories. However,
it is not absolutely necessary to include this possibility in generating narrative; by
contrast, in our task it is essential.

A major di�erence between generating narrative and generating memories for
agents living in a virtual world comes up when we start to think about time. In
the former case, we are generating a story, which is basically a sequence of events.
It is not necessary to reason about the duration of actions. But when we want to
generate the contents of episodic memory, it is indispensable to do it, to have the
character �t to the world. For instance, the character can take part in a particular
battle only when it is going on. Introducing durative actions also brings parallelism.
We need it among actions of one single agent as well as among actions of di�erent
agents. This all raises computational complexity of the task a lot.

Other aspect of our work is introducing randomness to gain the possibility to
generate several similar, but a bit di�erent, contents of episodic memory from just
one input. The designer often needs to generate a lot of similar characters who
are just slightly di�erent. For example, if she wants to generate memories for the
members of the palace guard, she may generally want them to be soldiers who have
taken part in several battles. We need to allow her to generate the memories of
all of them from one input, including a mechanism to introduce random (but fully
coherent) actions in memories of each of them. In the task of generating narratives,
generating several di�erent stories from one input is also useful [30]. However, there
is no need to generate tens or hundreds of stories from one setting, as in our task.

To summarize, a quality framework for generating narratives which would include
the possibility to introduce requirements on the story, take into account time and
enable certain level of randomness would be a tool strong enough not only to generate
history of background characters, but also main NPCs. However, the actual state of
the art in the �eld of generating narratives does not bring us hope that so powerful
tool will be developed during the several next years. That is why we want to create
a less complex tool suitable for generating history of background characters to help
the designers until the research in generating narrative provides them with more
e�cient tools.

17

Chapter 4

Designer's Requirements

Generally, in Step 1 of the work�ow presented in Chapter 1, the designer must
create high-level description of the virtual world, i.e. de�ne its topology, objects
and possible actions which can be executed by an agent. At the same time, she has
to specify her requirements on a concrete agent or a group of agents. Then, in Step
2, this high-level input has to be transformed to a planning domain and a planning
problem.

We analyzed the types of conceptual requirements which can be demanded by
a designer to specify the properties of the contents of an agent's episodic memory
and the properties of the virtual world in general. The results of this analysis
are presented in this chapter. We will again employ the example of a soldier in a
fantasy RPG, as a fantasy RPG was the scenario we used to contemplate about the
properties of the virtual world desirable for our task and the requirements a designer
can have.

4.1 Requirements on the Virtual World

The �rst essential part of the description of the virtual world is its topology (cities,
villages, important places. . .) and the objects that the world contains. The designer
will need a way to specify all of this. The other part is the speci�cation of actions that
are possible in the world, together with their preconditions and e�ects. Moreover,
some real-like actions are naturally durative and some of them permit other actions
to occur during their execution. For example, studying military academy takes some
time and a future soldier can perfectly plausibly date a girl or win some money in
roulette during his studies. So we have to permit durative actions in the world
de�nition.

4.2 Requirements on an Agent

Conceptual requirements on the generation of history of an agent can be categorized
into these groups:

1. General requirements on the agent's achievements or states.

2. Requirements on a concrete action.

3. Requirements on an action in a concrete time.

18

4. Randomness for the possibility to generate more agents from just one setting.

We will discuss these requirements in more detail now.

1. General requirements. The designer may wish to specify a general require-
ment on the end state of the agent, without assigning a particular way to
achieve it. For example, she may want the soldier to be rich, letting com-
pletely to randomness whether he has gained the money by �ghting, winning
in a lottery or inheriting it.

2. Requirements on a concrete action. In some cases, the designer may want
to specify a more concrete requirement: not only the end state, but also the
means to achieve it. For instance, she may want the soldier to earn money by
playing roulette, because it is important for the story.

3. Requirements on an action in a concrete time. Sometimes, it is impor-
tant that an action occur in a concrete time. For example, the designer may
want the soldier to take part in a particular battle. Since this can happen only
in the moment when the battle takes place, there has to be a mechanism to
accomplish this.

4. Randomness. The designer may need the agent to achieve a concrete end
state (in a random way) or to perform a particular action. But she also may
want to use randomness to generate some unspeci�ed, random memories of
the agent. In addition, for the purpose of saving her time, she may need to
generate histories of several similar, but not identical, agents from the same
high-level speci�cation. Thus we need to introduce randomness in these two
ways:

(a) Probability of the actions. For example, it is a lot more probable to
earn money for living by working than by �nding them in a secret cave.
So the designer can assign probability to each of these actions.

(b) Insigni�cant actions to �animate� a virtual agent. The designer
can mark some of the actions as �noise actions�, which can be inserted to
the history randomly (providing their preconditions are ful�lled). These
could be actions like �go for a trip to the capital�, �see a falling star� etc.
They are absolutely not important for an agent's history, but can make
him seem more vivid during the communication with a player.

19

Chapter 5

Planning

In this chapter, we will list the features that must be supported by a planner to
enable its use in Step 3 of our method. Then we will discuss the selection of suit-
able planners. This will be followed by the description how can be a designer's
requirements listed in the previous chapter translated to PDDL. Stemming from
the observations made during the manual conversion of the requirements, we will
continue by the key part of this work. We will de�ne the structure of the high-level
language suitable for specifying a designer's requirements and describe its conversion
to PDDL.

5.1 Necessary Features of a Planner

The planning mechanism should cope with all of the requirements from the previous
chapter. We also have to choose which formalism to use for its input. As PDDL
seems to be actually the most used language for specifying planning problems, we
decided to describe our domain and problems in this formalism [32].

Many requisitions on the used planner rise from the requirements described
above. We will list them now in the form of PDDL requirements, divided in two
groups � essential requirements, which are indispensable for our purposes, and tech-
nical requirements, which would be useful, but are not absolutely necessary.

Essential requirements.

• :durative-actions � This requisition stems directly from the requirements on
the virtual world.

• :�uents � It is necessary to include several numeric variables, e.g. amount
of money or a randomly generated number to introduce randomness in the
generated problem/plan (see Req. 4).

• :equality � First, this is needed for randomness (Req. 4). Second, a designer
may want an action to include preconditions comparing numeric variables with
a prede�ned value. For example, she may want to specify that a soldier can be
ascended to lieutenant only after taking part in a concrete number of battles.

20

Technical requirements.

• :typing � It is a lot more transparent to describe some preconditions of an
action by specifying the type of parameters (e.g. action get_married(v1, v2)
does not make sense with locations as its parameters). However, if typing is not
available, this can also be solved by inserting predicates of type is_person(v),
although it makes the domain less human-readable.

• :disjunctive-preconditions � Many real-like actions may require disjunctive
preconditions, nevertheless, these could be also formally written like several
di�erent actions.

• :negative-preconditions � There are many possible actions which need their
preconditions to include negation of a predicate. However, this can be bypassed
by inserting other predicates (for example adding predicate not_married ?per-
son to supplement a predicate married ?person).

• :timed-initial-literals � Timed initial literals are useful for Req. 3 from the
previous section, but any PDDL domain containing timed initial literals can
be transformed to an equal domain without them, as showed in [9].

5.2 Planner Selection

From the listed requirements it is obvious that we need a planner supporting all levels
of PDDL2.2 [14], or at least PDDL2.1 [17], if we eliminate timed initial literals.
In this, we depart from the work in generating narratives (e.g. [36, 40]), which
usually does not demand so much equipped planner (although it tends to have other
requirements, as mentioned in Chapter 3).

Implementing a satisfactory planner would be quite demanding, so we decided
to use an already existing planner to prove feasibility of our concept. Sadly, we
have not found many fully functional planners ful�lling all the essential requisites.
At this moment, we are using SGPlan6 [28], Temporal Fast Downward (TFD) [16]
and POPF [8] for our tests. We will now brie�y present the approaches used by the
planners to solve planning problems.

SGPlan6 employs parallel decomposition to partition a state space into subprob-
lems. This leads to a partitioning of variables into subsets, which can overlap. Then
SGPlan uses constraint resolution to resolve a) inconsistent variables falling into
more than one subset and b) violated constraints which include variables from more
than one subset. The subproblems are then solved by the subproblem solver � a
modi�ed Metric-FF planner [27].

TFD is a heuristic forward chaining planner which uses the context-enhanced
additive heuristic [23] adapted to temporal and numeric planning.

POPF is a forward search planner that achieves to use some bene�ts of partial-
order plan construction. It tries to �nd a compromise between least-commitment
used in the partial-order planning and total commitment used in the forward search
planning.

21

5.3 Transformation of the Requirements to PDDL

In order to get a valid input for the planners, we at �rst have to formalize a designer's
requirements a little. Then we have to translate them to PDDL. We will now present
the mechanism of this conversion and demonstrate it on a simpli�ed example. The
example we use is a soldier living in a virtual world of a fantasy RPG game. We
will start by the description of this virtual world from the point of a designer's
requirements. It will be followed by the requirements on the history of the soldier.

The virtual world. A designer wants the virtual world to contain ten cities and
one village. A character living in this world should be able to, among other things,
become a soldier by studying a military academy. Then he can take part in battles
which happen in the period in question (each of them in a particular moment). The
designer has an approximate idea about the total number of soldiers involved in
each battle. She wants to preserve the relative rate of participation in the battles
among the agents to be generated. So each battle has a probability assigned which
expresses the chance a soldier will take part in it. A character in the world should be
also able to have relationships with other characters, meet them, date, get married
etc. He can also earn, �nd or win some money in various ways.

The character. A designer wants to generate the contents of episodic memory of
a man named John, who is about 16 years old in the beginning of the period to be
generated. He lives in the village and his cash consists of ten golden coins. About
four years later, when this character is supposed to meet the player's character, the
designer wants John to be married (so we have to include a woman in the setting,
we will call her Stacy). He should become a soldier and take part in the battle
for City1. He should also �nd a lot of money. And there should be included some
random actions in his history, to make it more interesting.

In Chapter 4, we presented the types or requirements which a designer can have
on the history of an agent. One of the goals of this work was to �nd a mechanism
to convert these requirements to a valid input for planner, i.e. to PDDL. We will
now describe this mechanism using the example de�ned above. For explanatory
purposes, we will use an extract of our testing domain which is depicted in Fig. 5.1
and the extract from the problem depicted in Fig. 5.2. We will be referencing to
the numbered parts of the pictures in the text.

Requirements on the Virtual World

The logical representation of the actions possible in the world are PDDL's durative
actions. The locations and objects always present in the world can be translated to
constants (D1 � Fig. 5.1). However, the objects which are present in the world only
in this particular task should be translated to objects (P1 � Fig. 5.2).

Requirements on an Agent

1. General requirements. An example of this requirement is that the designer
wants John to be a married soldier. To be married or to be a soldier are

22

Figure 5.1: An extract from the planning domain. Description in the text.

23

Figure 5.2: Sample PDDL problem. Description in the text.

24

logical true/false states of a person. Thus we can convert these requirements
to PDDL predicates with a parameter of type person (D4). There are also
numerical requirements in this category, e.g. we could want a character to
have certain amount of money without caring how did he get them. These
requirements can be translated to numeric �uents (D3). The predicates (or
changes of the �uents) then become e�ects of one or multiple actions (D11,
D8). In the de�nition of the PDDL problem, we have to list the predicates
in the :init or :goal section if we want them to be true in that moment (P8)
� if a predicate is not declared to be true, it is treated as false. We always
have to set the initial value of the numeric �uents used in the domain, to avoid
changes of unde�ned �uents (P3). When we have some requirements on the
value of the �uent in the end state, we also have to include them in the :goal
section (P6). We included it to our sample problem only for demonstration
of use, it is not really necessary here to ful�ll the requirements of the model
example.

2. Requirements on a concrete action. In our example, the designer wants
John to �nd a lot of money, i.e. we need to achieve that this particular action
will appear in the resulting plan. This can be forced by adding a predicate
(D5) which is set true after performing this action (D9) and in no other case.
If we then insert this predicate in the :goal section of the problem de�nition
(P7), all the valid plans have to include this action. In fact, we have to insert
another predicate (D5) if this action has a probability associated. The reason
for this will be explained in Req. 4a.

3. Requirements on an action in a concrete time. John should take part in
the battle for City1. However, this action cannot be performed in any moment,
John can only take part in it when it is going on. Here we can advantageously
use timed initial literals � predicates, which are set to true/false automatically
in a given moment. We can insert another predicate to the domain (D6) and
make it a necessary precondition of the action in question during all the time
of its execution (D10). In the problem de�nition, we then specify when this
predicates turns true/false (P5).

4. Randomness.

(a) Probability of the actions. In our virtual world, participations in
di�erent battles have di�erent probabilities. The designer may want a
character to take part in at least two battles, not caring which concrete
battles these will be. She may just want to preserve the relative rates
of soldiers taking part in each of the battles. Probability of an action is
a numeric value, so we resolve this requirement by inserting a numeric
�uent with a parameter of type person for each action with probability
(D2). This numeric �uent is set to a random value for each person in
the problem de�nition (P2). And a value small enough of this �uent is
required in the action de�nition to allow the action to be performed (D7).
However, the designer may want a character to perform an action of this
type without regarding its probability. In our example, the designer wants
John to take part in the battle for City1. This is why we include another

25

predicate for this type of actions (D9) which can override probability
(D7). In this case, we set the predicate to true in the :init section of the
problem de�nition (P4).

(b) Insigni�cant actions to �animate� a virtual agent. To force a plan-
ner to include a random action from a set of actions to the plan, we
could insert to the domain a predicate which is set to true as an e�ect
of the actions from this set (and only by them). Then we could require
this predicate to be true in the goal state. Nevertheless, we could not
specify in this way that we want the planner to include to the resulting
plan more than one action from this set. Moreover, we would not be able
to control the frequency of insertions of particular actions, although we
may have an idea that some �noise actions� are more probable than other.
A general-purpose planner would probably always insert to the plan the
�rst action from the set. So we decided that if we include a preprocessing
step in our design method, the best way to achieve inserting insigni�cant
actions to the plan is to do it in this step. The designer then can simply
tell the authoring tool how many actions marked as �noise actions� she
wants to include and the tool will add predicates to the goal state (and
the initial state, if necessary) analogically as in Req. 2 (P9).

5.4 High-level Language and Its Transformation to

PDDL

As shown in the previous section, the transformation of some requirements to PDDL
is not very straightforward. To de�ne that a concrete action has to happen during
the period to be planned (Req. 2), we have to introduce an arti�cial predicate to
the domain and add it to the action's a�ects. Allowing an action to be undertaken
only in a concrete time (Req. 3) has to be speci�ed using timed initial literals,
which turns to be di�cult to manage when we have a lot of these actions in our
domain. PDDL also has no structure to introduce probability of actions (Req. 4a),
this has to be done by introducing arti�cial functions into the domain and using
them in preconditions of an action. And above all, introducing some random �noise
actions� (Req. 4b) to the history cannot be done directly in PDDL, we have to do
this during a preprocessing step. For these reasons, we think a designer should be
provided with a high-level formalism better suited for specifying her requirements.
We will now introduce this formalism here and show how it can be converted to
PDDL automatically, avoiding so a lot of repetitive work and errors.

Input De�nition

We will now de�ne formally the structure of the high-level designer language. It is
not necessary for our present purposes to de�ne exact syntax of the language. It
is also possible that it will not be necessary ever, as a user-friendly authoring tool
should enable the designer to input his requirements in an intuitive way, by �lling in
forms, for example. So we will describe just the abstract structure of the language,
together with notes and examples to ease its comprehension to the reader. When it

26

Figure 5.3: Graphical depiction of an input instance. See the text for further de-
scription.

is convenient, we will use the example of a soldier in a fantasy RPG. We also include
graphical schemes of the structure in UML.

De�nition 1 Input instance An input instance is a pair

Inst = (Dom, Prob)

where Dom is a domain and Prob is a problem.

Input instance represents all the designer's requirements, both on the virtual
world and the agents for whom the history is to be generated. The graphical struc-
ture of an input instance is depicted in Fig. 5.3.

De�nition 2 Domain A domain is a 6-tuple

Dom = (did, T, C, F, S, A)

where did is the domain identi�er, T is a list of types, C is a list of constants, F is
a list of functions, S is a list of states and A is a list of actions.

A domain is a representation of a virtual world, represents its topology, actions,
states which can be adopted by an agent etc.

27

De�nition 3 Type A type is a pair

Type = (tid, p)

where tid is a unique identi�er of the type and p is an identi�er of a de�ned parent
type - the type from which the new type inherits. The parent type can be null.

Some actions and states are logically possible just for some types of objects.
For example, only a person can get married, not a location. That is why we need
a system of types. There are several types which are prede�ned in our system -
location, person, man and woman (the last two inherit from person).

De�nition 4 Constant A constant is a pair

Constant = (cid, t)

where cid is a unique identi�er of the constant and t is an identi�er of a de�ned
type or null for untyped constants.

A constant represents a part of the world which can take part in an agent's
actions. A typical constant is a city or another location in the world.

De�nition 5 Function A function is a pair

Function = (�d, P)

where �d is a unique identi�er of the function and P is a list of its parameters. It
represents an integer value.

Generally, a function is a parametrized variable with a numeric value. For in-
stance, it describes how much money has a particular agent or in how many battles
has he taken part.

De�nition 6 Parameter A parameter is a pair

Param = (pid, t)

where pid is an identi�er of a parameter (unique in a de�nition of one function,
state or action) and t is an identi�er of a de�ned type or null for parameters which
can be of any type.

De�nition 7 State A state is a pair

State = (sid, P)

28

where sid is a unique identi�er of the state and P is a list of its parameters. It
represents a boolean value.

We need states to describe true/false states of the world and the agents, e.g.
whether an agent is married, whether he is a soldier, whether he can ride a horse
etc.

De�nition 8 Action An action is a tuple

Action = (aid, P, d, s, e, pb, ns, TC, E)

where aid is a unique identi�er of the action, P is a list of its parameters, d is its
duration in time steps (a positive integer), s is the �rst time step when an agent can
start this action, e is the last time step when an agent can end this action (last two
are positive integers or nulls for actions which can take place in any moment), pb is
its probability (null if this action does not need probability), ns is true if this is a
�noise action� (int this case, P can contain only one parameter, which is always of
type person) and false if not, TC is a list of timed conditions describing necessary
preconditions which has to be ful�lled for the action to take place and E is a set of
e�ects of the action.

This is the key part of the description of a virtual world, it describes actions
which are possible in it. As we are focusing on actions which can be undertaken
by a human-like virtual agent, the list of parameters of every action must include
at least one parameter of type person. The de�nition of an action also includes its
probability and the time window when the action can happen, if necessary. For a
designer, this is arguably better way to handle with these aspects than manually
introducing arti�cial �uents and predicates directly into PDDL.

The graphical structure of an action is depicted in Fig. 5.4.

De�nition 9 E�ect An e�ect is a pair

E�ect = (tv, ae)

where tv is the time of validity of the e�ect, i.e. the moment in the execution of the
action when this e�ect takes place (its possible values are �start� and �end�) and ae
is an atomic e�ect, which can be an instantiated state, a negated instantiated state
or a function change.

If an agent studies a military academy, in the end he becomes a soldier. When
this soldier wins some money in poker, one of the e�ects of this action is that the
amount of his money rises. But an e�ect also can become true at the beginning of
the action, for example, when an agent starts moving from one location to another,
he is no more in the original location.

De�nition 10 Instantiated state An instantiated state is a pair

IS = (sid, CP)

29

Figure 5.4: Graphical depiction of an action. See the text for further description.

where sid is an identi�er of a de�ned state and CP is a list of de�ned constant
identi�ers and parameter identi�ers de�ned in the current action. The number and
types of the constants and parameters have to correspond to the state with identi�er
sid. An instantiated state has a boolean value.

An instantiated state is a concrete instance of a state, i.e. all his parameters have
assigned concrete values (parameters de�ned in the action in which this instantiated
state is used or constants de�ned in the domain). When used as an e�ect of an
action, this instance becomes true in the time of validity of the e�ect. When used
as a condition of an action, this instance must be true in the time of validity of this
condition.

De�nition 11 Function change A function change is a triple

FC = (�d, CP, val)

where �d is an identi�er of a de�ned function, CP is a list of de�ned constant
identi�ers and parameter identi�ers de�ned in the current action and val is a value
to be added to the actual function value (integer number). The number and types
of the constants and parameters have to correspond to the function with identi�er
�d. As an e�ect of an action, describes the change of the value of the function in
the point speci�ed by the parameters.

A function change is one of possible e�ects of an action. For example, if we have
de�ned function money_amount with one parameter of type person, representing

30

the amount of money an agent owns, then when an agent performs an action like
win_some_money, money_amount of this agent increases.

De�nition 12 Timed condition A timed condition is a pair

TC = (t, c)

where t de�nes validity of the condition (�start�, �end�, �over all�) and c is a condition.

Basically, a timed condition is a condition of an action enriched with the informa-
tion when this condition has to be ful�lled to allow the action to be undertaken � at
the start of the action, at the end or during all the time when the action is executed.

De�nition 13 Condition A condition is an atomic condition, a negated atomic
condition or a boolean condition. It has a boolean value.

De�nition 14 Atomic condition An atomic condition is an instantiated state,
an instantiated action or a function equation.

De�nition 15 Boolean condition A boolean condition is a pair

BC = (oper, C)

where oper is a boolean operator (�and� or �or�) and C is a list of conditions.

De�nition 16 Instantiated action An instantiated action is a pair

IA = (aid, CP)

where aid is an identi�er of a de�ned action and CP is a list of de�ned constant
identi�ers and parameter identi�ers de�ned in the action in whose de�nition this
instantiated action is used. The number and types of the constants and parameters
have to correspond to the action with identi�er aid. It has a boolean value.

An instantiated action is analogical to an instantiated state. If an instantiated
action IA is used as an atomic condition of an action A, it means that the action
identi�ed by aid must have happened earlier in the history, with according param-
eters, to allow the action A to be executed.

De�nition 17 Function equation A function equation is a triple

FE = (IF, val, oper)

where IF is an instantiated function, val is a numeric value (integer) and oper is
one of the operators =, <=, >= and !=. It has a boolean value, it is true when the
(in)equation �value of IF� oper val holds true.

31

If a function equation is used as an atomic condition of an action, it means that
the value instantiated function in question has to satisfy the (in)equation de�ned
by val and oper.

De�nition 18 Instantiated function An instantiated function is a pair

IF = (�d, CP)

where �d is an identi�er of a de�ned function and CP is a list of constant identi�ers
de�ned in the domain and parameter identi�ers de�ned in the action in whose de�-
nition this instantiated function is used. The number and types of the constants and
parameters have to correspond to the function with identi�er �d. It has an integer
value.

Instantiated function is analogical to instantiated state, the only di�erence is
that instantiated function has numeric and not boolean value.

De�nition 19 Problem A problem is a 6-tuple

Prob = (pid, did, O, is, gs, ran)

where pid is the problem identi�er, did is an identi�er of a de�ned domain, O is
a set of objects, is is an initial state, gs is a goal state and ran is the level of
randomization of the problem (a number of �noise actions� per agent which should
be included in the output).

A problem is a representation of the requirements on a virtual agent demanded
by a designer. The graphical structure of a problem is depicted in Fig. 5.5.

De�nition 20 Object An object is a pair

Object = (oid, t)

where oid is a unique identi�er of the object and t is an identi�er of a de�ned type
or null for untyped objects.

The di�erence between constants and objects is that constants is that constants
form a solid part of the virtual world in question while objects are typically important
just for one task. A most typical example of an object in this sense is a virtual agent,
but an object also can be a sword, a pot of gold etc.

De�nition 21 Initial state An initial state is a pair

IS = (GFV, GS)

where GFV is a list of grounded function values and GS is a list of grounded states
or negated grounded states.

32

Figure 5.5: Graphical depiction of an problem. See the text for further description.

An initial state describes the state of the domain and the agents in the moment
from which we want to start to generate the contents of episodic memory.

De�nition 22 Grounded function value A grounded function value is a pair

GFV = (GF, val)

where GF is a grounded function and val is a numeric value (integer number).

A grounded function value de�nes the value of a grounded function in the initial
state.

De�nition 23 Grounded function A grounded function is a pair

GF = (�d, CO)

where �d is an identi�er of a de�ned function and CO is a list of de�ned identi�ers
of constants and objects. The number and types of the constants and the objects
have to correspond to the function with identi�er �d.

The di�erence between an instantiated function and a grounded function is that
an instantiated function is used inside a particular action in the domain de�nition,
thus its parameters can be instantiated by the constants de�ned in the domain or
by the parameters of the action in question. Meanwhile a grounded function is used

33

in the problem de�nition, so its parameters can be instantiated or by the constants
or by the objects de�ned in the problem.

De�nition 24 Grounded state A grounded state is a pair

GS = (sid, CO)

where sid is an identi�er of a de�ned state and CO is a list of de�ned identi�ers of
constants and objects. The number and types of the constants and the objects have
to correspond to the state with identi�er sid.

A grounded state is analogical to a grounded function. When used in the de�-
nition of an initial state, it de�nes a state which is true in the moment from which
we want to start to generate the contents of episodic memory. When used in the
de�nition of a goal state, it de�nes a state which has to be true in the end of the
generated period.

De�nition 25 Goal state A goal state is a triple

GoS = (GS, GA, GFE)

where GS is a set of grounded states and/or negated grounded states, GA is a set
of grounded actions and GFE is a set of grounded function equations.

A goal state describes the state of the domain and the agents which has to be
reached by the end of the period to be generated.

De�nition 26 Grounded action A grounded action is a pair

GA = (aid, CO)

where aid is an identi�er of a de�ned action and CO is a list of de�ned identi�ers
of constants and objects. The number and types of the constants and the objects
have to correspond to the action with identi�er aid.

A grounded action is analogical to a grounded state. Using a grounded action in
the de�nition of goal state means that the corresponding action has to be undertaken
during the generated period.

De�nition 27 Grounded function equation A grounded function equation is a
triple

GFE = (GF, val, oper)

where GF is an grounded function, val is a numeric value (integer number) and oper
is one of the operators =, <=, >= and !=.

A grounded function equation de�nes the value of a grounded function which
this grounded function must have in the end of the generated period.

34

Name: ConvertDomain
Input: Domain Dom = (id, T, C, F, S, A)
Output: A valid PDDL domain

writeline �(de�ne (domain �, id, �)�
writeline �(:requirements :typing :durative-actions :equality :�uents :negative-
preconditions :disjunctive-preconditions :timed-initial-literals)�
write �(:types �
write �location person man - person woman - person �
foreach type Type = (tid, p) in T

write tid, � �
if p != null write �- �, p, � �

writeline �)�
write �(:constants �
foreach constant Constant = (cid, t) in C

write cid, � �
if t is not null write �- �, t, � �

writeline �)�
ConvertFunctions(F, A)
ConvertPredicates(S, A)
ConvertActions(A)

Figure 5.6: Domain conversion algorithm.

Conversion to PDDL

We have showed how a designer's requirements can be expressed in PDDL. We have
also de�ned the structure of a high-level language which is better suited to formulate
these requirements. Now we will describe how this high-level input can be translated
to PDDL automatically.

Generally, a domain is converted to a PDDL domain and a problem is converted
to a PDDL problem, as depicted in Fig. 5.6 and 5.7, respectively.

When translating a domain, types, constants and functions are converted directly
to PDDL types, constants and numeric �uents. There are also added prede�ned
types mentioned in the previous section and one numeric �uent for each action with
probability (Fig. 5.8). States are converted to PDDL predicates and actions to
PDDL durative actions.

We also generate from one to three predicates for each action, these are:

• aid_goal � used to enable the designer to specify a concrete action for an
agent, as it is also added to the list of e�ects of the action in question.

• aid_init � used for actions with probability, to overdrive it in case when the
designer wants the particular action to be included in output.

• aid_going_on � used for actions which can occur just in a speci�ed time
window, the validity of this predicate is added to the list of conditions of the
action.

The preconditions of the generated durative actions are a direct re�ection of condi-
tions of actions, there are just added some new preconditions in case of actions with

35

Name: ConvertProblem
Input: Domain Dom = (did, T, C, F, S, A) and problem Prob = (id, did, O, is,
gs, ran)
Output: A valid PDDL problem

writeline �(de�ne (problem �, id, �)�
writeline �(:domain �, did, �)�
write �(:objects �
foreach object Object = (oid, t) in O

write oid, � �
if t is not null write �- �, t, � �

writeline �)�
NA := list of pairs P = (random noise action identi�er, person identi�er), where

there are ran actions for every person in O
ConvertInitState(is, gs, NA, O, A)
ConvertGoalState(gs, NA, A)

Figure 5.7: Problem conversion algorithm.

Name: ConvertFunctions
Input: Set of functions F, set of actions A
Output: De�nition of PDDL �uents belonging to the domain

writeline �(:functions�
foreach action Action = (aid, P, d, s, e, pb, ns, c, E) in A where pb != null

writeline �number_thrown_�, aid, �?p - person�
foreach function Function = (�d, P) in F

write �d
ConvertParameters(P)

writeline �)�

Figure 5.8: Algorithm to convert functions.

36

Name: ConvertActionCondition
Input: Action Action = (aid, P, d, s, e, pb, ns, TC, E)
Output: De�nition of PDDL condition of a durative action

writeline �:condition�
writeline �(and�
if pb != null

writeline �(at start�
writeline �(or�
writeline �(<= (number_thrown_�, aid, � ?p) �, pb, �)�
writeline �(�, aid, �_init)�
writeline �)�
writeline �)�

if s != null writeline �(over all (�, aid, �going_on))�
foreach TCond = (t, c) in TC

if t == �start� writeline �(at start�
elseif t == �end� writeline �(at end�
else writeline �(over all �
ConvertCondition(c)
writeline �)�

writeline �)�

Figure 5.9: Algorithm to convert conditions of actions.

probability or actions which can occur only in a speci�ed time window, as depicted
in Fig. 5.9. Predicate aid_goal is added to the e�ects of each action, which is later
used for problem generation.

When translating a problem, objects are converted to PDDL objects. We include
to the :init section of the problem de�nition direct translation of initial state speci�ed
by the designer, as well as the de�nitions of time windows for the actions (timed
initial literals) and random values of �uents included for probability (Fig. 5.10). We
also choose a speci�ed number of noise actions per agent and include predicates of
form aid_init to to :init section, if this noise actions have probability - in that case,
we have to override it. Generating the :goal section of the problem de�nition is very
straightforward, similar to the generation of the :init section.

For readability, we include in this chapter only algorithms mentioned in the text
above. The rest of algorithms needed for the conversion can be found in Appendix B.

5.5 Summary

In this chapter, we have summarized necessary features of a planner suitable for
our task. We have chosen three general-purpose planners which ful�ll these criteria.
Then we have presented a mechanism how a designer's requirements on a virtual
world and the history of an agent can be translated to PDDL. Stemming from the
mechanism, we have introduced the structure of a high-level language which is better
suited for specifying these requirements. Then we have showed how this language
can be automatically converted to PDDL. By doing so, we have ful�lled the �rst
and partly the second goal of this work as listed at the end of Chapter 1.

37

Name: ConvertInitState
Input: Initial state IS = (GFV, GS), goal state GoS = (GSt, GA, GFE), list of
noise actions and person identi�ers NA, list of objects O, list of actions A
Output: A valid PDDL de�nition of initial state

writeline �(:init�
foreach action Action = (aid, P, d, s, e, pb, ns, c, E) in A

if s != null
writeline �(at �, s, � (�, aid, �_going_on))�
writeline �(at �, e, � (not (�, aid, �_going_on)))�

if pb != null
foreach object of type person Object = (oid, t) in O

writeline �(= (number_thrown_�, aid, � �, oid, �) �,
random value from [0, 100], �)�

foreach grounded function value GFVal = (GF, val) in GFV
GF = (�d, CO)
write �(= (�, �d
foreach constant or object identi�er id in CO

write � �, id
writeline �) �, val, �)�

foreach grounded state GState = (sid, CO) in GS
write �(�, sid
foreach constant or object identi�er id in CO

write � �, id
writeline �)�

foreach grounded action GAction = (aid, CO) in GA where the maternal
action's pb != null

write �(�, aid, �_init�
foreach constant or object identi�er id in CO

write � �, id
writeline �)�

foreach P = (aid, pid) in NA where the maternal action's pb != null
writeline �(�, aid, �_init �, pid, �)�

writeline �)�

Figure 5.10: Algorithm to convert initial state.

38

Chapter 6

Results

In this chapter, we will �rst present the testing environment. We will discuss the
design of the experiments and describe the planning domain we created. This will
be followed by the list of the planners and hardware used in our tests. Then we will
describe closely our experiments, present their results and discuss them.

6.1 Testing Environment

Design of the Experiments

The design of our experiments stemmed from the fact that the task is scalable in
several dimensions:

1. The number of actions which must be included in a plan to solve the problem.

2. The number of agents included in the problem.

3. The amount and complexity of interconnections between agents.

4. The type of the actions that must be included in the plan to solve the problem
� whether their execution is limited only to certain time windows.

5. The size of the domain.

Points 1 and 2 are similar, at least when we are speaking about ten or twenty
agents as a maximum. So we decided to treat them as a single criterion during
the design of our experiments. To test the in�uence of the movement along the
resulting four scales, we created four experiments featuring standalone agents and
four experiments featuring agents with relationships between them (point 3). In each
group of experiments, there are two experiments using actions limited to certain time
windows and two that do not use them (point 4). One of this pair of experiments is
performed on the complete domain, one on a reduced one (point 5). And �nally, each
experiment is composed from several tests which have growing number of included
actions in case of standalone agents (points 1 and 2) or growing complexity of
relationships in case of interconnected agents (point 3).

39

Testing Domain

To test our approach, we manually created a PDDL domain according to the algo-
rithms described in the previous chapter. This domain describes a simpli�ed fantasy
virtual world inspired by RPG games. The world contains ten cities and one village.
The actions and states of an agent possible in this world could be logically divided in
these seven categories: basic, soldier, mage, studies, relationships, money and other.
We will present them more in detail now.

Basic. This group serves for describing location and movement of the agents in
the world. Contains the predicate at_place ?l - location ?p - person and the action
move with two parameters of type location and one parameter of type person. The
duration of this action is always 3 (meaning three days), as we actually want to
focus on other aspects than the exact topology of the world.

Soldier. This category contains above all predicates expressing whether an agent
is a soldier and which is his rank. There are several predicates of types _init,
_going_on and _goal, needed for Req. 2, 3 and 4, as described in the previous
chapter (this is also true for the rest of the categories, we will not mention them
repeatedly in their descriptions). The actions in this group can be divided into three
subgroups:

• Studying a military academy - study_military_academy_in_City10 ?p - per-
son. This is a long durative action. After studying the military academy, an
agent becomes a soldier.

• Battles. Ten actions like take_part_in_City1_battle ?p - person, one for each
city. These are durative actions lasting several days which can only occur
in a speci�ed interval (time window). The actions have probability, so there
are also de�ned functions like number_thrown_take_part_City1_battle ?p -
person. An agent can take part in a battle only if the value of the corresponding
function is low enough. Or when his participation in a given battle is required
directly in the goal.

• Promotions to higher ranks. After taking part in given number of battles,
monitored by the function battles_count ?p - person, a soldier can be promoted
to lieutenant, captain etc. These actions are short.

Mage. The structure of this category is similar to the previous one, but this time
we describe mages. To become a mage, an agent has to study a magic university to
master the basics of magic. Then he can start to learn spells (e.g. �reball, freezing,
enchanting), these are also long actions lasting weeks or months. Each spell has four
levels, after learning the �rst level of a spell, a mage can learn the second level of this
spell and so on. The number of �rst level spells learned is described by functions
level1_spells_count ?p - person and analogically for the rest of levels. After learning
the �rst level of at least three spells, a mage can get the �rst degree of initiation,
then the second level of initiation after learning the second level of at least three
spells etc. - it is a variance on the promotions to higher ranks from the previous
category. A mage can also attend magic conferences, there are �ve de�ned in the
domain, each of them can take part only in a concrete time window.

40

Studies. This group describes general academic studies of an agent or skills that
can be learned. It contains actions like studying the university or learning to ride a
horse.

Relationships. This category represents common human relationships. We have
here predicates like have_met ?p1 - person ?p2 - person, married ?p - person,
are_married ?m - man ?w - woman etc. The actions in this group are meeting,
dating, getting married, getting divorced and having a love a�air.

Money. This category contains the function money ?p - person, describing the
actual amount of money of an agent. There are also several actions which increase
the value of this function as an e�ect, for example win_some_money_in_poker or
earn_some_money.

Other. This group contains noise actions which do not �t to any of the previous
group, e.g. go_to_a_theater or meet_a_famous_hero.

The resulting complete domain contains 11 constants, 26 numeric �uents with
one parameter of type person, 132 predicates with one to three parameters and 73
durative actions with one to three parameters. However, in several tests we used
smaller domains which do not involve all the mentioned packages, as described later.

Planners and Hardware

We had some issues with �nding planners that would support all levels of PDDL
2.2, which is the version that supports all our requirements on PDDL, as described
in the previous chapter. Generally, there is not a lot of such planners and many of
them contain signi�cant bugs and/or are several years old and no longer supported.
We were able to �nd only one usable planner fully ful�lling our requirements. This
planner is SGPlan6 [28].

To perform the tests using more than one planner, we had to yield some technical
requirements, in concrete :timed-initial-literals to use TFD [16] and :timed-initial-
literals, :negative-preconditions and :disjunctive-preconditions to use POPF [8]. To
create domains equaling our original domain, but without need for these require-
ments, we used procedures described in 5.1. We also had to set the duration of
all actions to at least 1 in order to use POPF, because POPF considers invalid the
domains containing durative actions with zero duration.

The experiments were run on two PCs, one of them with Intel Core i5 2.66 GHz
CPU and 2 GB RAM running Ubuntu 9.10 (PC1) and the second with Intel Core2
Quad 2.83 GHz CPU and 3 GB RAM running Gentoo Linux 10.1 (PC2).

The sources and/or binaries of the chosen planners, the domains and problems
used in all the experiments as well as the resulting plans can be found on the
accompanying CD in the corresponding directories.

41

6.2 Standalone Agents

Experiment 1: Standalone Mages

We designed an experiment with linearly increasing number of uniform agents who
have no relationships between them. We wanted to see whether in this setting the
computation time will also increase linearly.

Hypothesis. When generating contents of episodic memory for uniform agents
who are not interconnected, the time required for computation will be growing
approximately linearly with the growing number of agents.

Method. In this experiment, we are generating history of mages who are forced
by the goal to attend the magic university and learn spells to get the third level of
initiation. This setting does not need the planner to include in the plan actions that
are limited to certain time windows (e.g. to attend a particular magic conference
which took place at a given time in the history). An extract from the PDDL problem
for generating contents of episodic memory of one mage (created using algorithms
described in the previous chapter) is depicted in Fig. 6.1. PDDL for more mages is
analogical.

We used the full testing domain as described in the previous section. When
generating one, two resp. three agents, the task contains 252, 489 resp. 726 grounded
predicates and so on. This is true for the domain and problems used for SGPlan6,
the adjusted inputs for TFD and POPF contain more grounded predicates.

We ran the experiment with each planner for the number of mages from 1 to 20,
each task with the deadline of 30 minutes. On both testing PCs, we performed �ve
repetitions of each task.

Results. The average computation times are graphed in Fig. 6.2. The exact
numbers, together with standard deviations, are listed in Table 6.1. As can be
observed, the time needed for computation increases quickly and TFD and POPF
did not accomplish to generate a plan for more than 4 resp. 7 agents, although the
time needed to output plans for these number of agents was very short. The planner
which performed the best in this experiment, SGPlan6, was able to �nd a plan for
the maximum of 15 agents. In cases of more agents, the planners usually did not
manage to �nd a plan in the limit of 30 minutes or, more frequently, exhausted all
the available memory.

Discussion. Although one could expect that the time needed for computation will
grow linearly or only a bit slower with increasing number of standalone agents of
the same type, our results show that this hypothesis is not true for the used sample
of state of the art general-purpose planners. Their heuristics arguably are not able
to detect the isolation of the subgoals.

Experiment 2: Standalone Mages on a Smaller Domain

As the results of Experiment 1 were not very encouraging, we wanted to test the
performance of the planners on a smaller domain.

42

(de�ne (problem rpg-problem-exp1-liter1)
(:domain rpg-domain-complete-liter)
(:objects Man1 - man)
(:init

(at 1280 (take_part_City1_battle_going_on))
(at 1300 (not (take_part_City1_battle_going_on)))
(at 1350 (take_part_City2_battle_going_on))
(at 1400 (not (take_part_City2_battle_going_on)))
...
(= (number_thrown_�nd_a_lot_of_money Man1) 1)
(= (number_thrown_earn_a_lot_of_money Man1) 1)
...
(= (number_thrown_take_part_City1_battle Man1) 1)
(= (number_thrown_take_part_City2_battle Man1) 1)
...
(= (battles_count Man1) 0)
(= (money Man1) 0)
(= (level1_spells_count Man1) 0)
(= (level2_spells_count Man1) 0)
(= (level3_spells_count Man1) 0)
(= (level4_spells_count Man1) 0)
(at_place City1 Man1)

)
(:goal

(and
(get_third_degree_of_initiation_goal Man1)

)
)

)

Figure 6.1: Experiment 1 - extract of the PDDL problem.

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

No. of agents M SD M SD M SD M SD M SD M SD

1 0.09 0.01 0.10 0.01 0.51 0.02 0.61 0.00 0.24 0.01 0.23 0.01

2 0.23 0.01 0.24 0.01 - - - - 0.69 0.12 0.64 0.00

3 0.65 0.01 0.63 0.00 5.31 0.02 7.08 0.01 1.72 0.06 1.68 0.00

4 1.58 0.00 1.44 0.00 7.16 0.13 9.42 0.01 4.26 0.04 4.20 0.01

5 3.34 0.02 2.82 0.01 - - - - 9.98 0.04 9.85 0.02

6 6.02 0.04 5.12 0.03 - - - - 21.94 0.12 21.78 0.04

7 10.34 0.02 8.56 0.02 - - - - 44.71 0.22 44.84 0.09

8 16.27 0.23 14.22 1.11 - - - - - - - -

9 24.21 0.10 20.83 0.11 - - - - - - - -

10 34.99 0.08 30.62 0.19 - - - - - - - -

11 48.91 0.25 42.95 0.13 - - - - - - - -

12 67.17 0.33 58.11 0.13 - - - - - - - -

13 89.15 0.26 77.97 0.76 - - - - - - - -

14 116.40 0.35 100.56 0.48 - - - - - - - -

15 - - 143.30 1.51 - - - - - - - -

Table 6.1: Experiment 1 - times of computation (M - mean, SD - standard deviation).

43

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of agents

T
im

e
(s

)

SGPlan6 - PC1

SGPlan6 - PC2

TFD - PC1

TFD - PC2

POPF - PC1

POPF - PC2

Figure 6.2: Experiment 1: Generating history of standalone mages - average times
of computation.

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of agents

T
im

e
(s

)

SGPlan6 - PC1

SGPlan6 - PC2

TFD - PC1

TFD - PC2

POPF - PC1

POPF - PC2

Figure 6.3: Experiment 2: Generating history of standalone mages on a smaller
domain - average times of computation.

44

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

No. of agents M SD M SD M SD M SD M SD M SD

1 0.05 0.00 0.04 0.00 0.11 0.01 0.12 0.00 0.10 0.01 0.08 0.00

2 0.10 0.01 0.09 0.00 0.54 0.01 0.67 0.00 0.29 0.01 0.28 0.00

3 0.26 0.01 0.23 0.00 1.88 0.02 2.39 0.00 0.85 0.01 0.85 0.00

4 0.61 0.01 0.56 0.00 3.77 0.02 4.83 0.01 2.29 0.01 2.28 0.00

5 1.34 0.01 1.15 0.01 18.12 0.04 23.76 0.03 5.65 0.13 5.55 0.00

6 2.52 0.01 2.09 0.00 - - - - 12.91 0.41 12.50 0.01

7 4.31 0.02 3.47 0.00 - - - - 27.09 0.25 26.25 0.00

8 6.91 0.14 5.53 0.01 - - - - 54.06 0.75 52.88 0.11

9 10.32 0.07 8.40 0.02 - - - - - - - -

10 15.10 0.05 12.30 0.03 - - - - - - - -

11 21.29 0.07 17.82 0.03 - - - - - - - -

12 29.51 0.12 24.99 0.07 - - - - - - - -

13 39.71 0.11 34.90 1.24 - - - - - - - -

14 52.88 0.09 45.64 0.15 - - - - - - - -

15 72.84 0.20 66.29 0.39 - - - - - - - -

16 94.30 0.25 85.21 0.82 - - - - - - - -

17 118.32 0.22 111.80 4.03 - - - - - - - -

18 147.83 0.49 137.09 4.06 - - - - - - - -

19 - - 174.99 3.56 - - - - - - - -

Table 6.2: Experiment 2 - times of computation (M - mean, SD - standard deviation).

Hypothesis. By performing the experiments on a smaller domain, we will reduce
the state space that has to be searched by the planner signi�cantly. This will result
in dramatically decreased times needed for computation of each task.

Method. We generated plans for the same PDDL problems as in Experiment 1
on a smaller domain including just packages basic, mage and relationships. When
generating one, two resp. three agents, the task contains 178, 351 resp. 524 grounded
predicates and so on. We performed �ve repetitions on each PC.

Results. The results of this test are graphed in Fig. 6.3. The exact numbers,
together with standard deviations, are listed in Table 6.2. Using a smaller domain
decreased the amount of time needed for computation signi�cantly and postponed
the problem of exhausting all the memory. As the result, SGPlan6 was able to
output a plan for 19 mages, i.e. a plan containing as many as 264 actions.

Discussion. The results of this experiment support our hypothesis that reducing
the domain could reduce required computation time a lot. This means that it could
be very helpful to include a package managing system in the authoring tool. A
designer will often know she does not need all the actions from the domain (if she is
about to generate history of several mages, why to include actions which are typical
only for a soldier). So she could use a package manager to include only packages she

45

(de�ne (problem rpg-problem-exp3-liter1)
(:domain rpg-domain-complete-liter)
(:objects Man1 - man)
(:init

(at 1280 (take_part_City1_battle_going_on))
(at 1300 (not (take_part_City1_battle_going_on)))
...
(= (number_thrown_take_part_City1_battle Man1) 1)
...
(= (battles_count Man1) 0)
...
(at_place City1 Man1)

)
(:goal

(and
(>= (battles_count Man1) 2)

)
)

)

Figure 6.4: Experiment 3 - extract of the PDDL problem.

will need, and doing so probably reduce the time needed for computation. However,
it does not solve e�ciency issues completely, as a designer may need to generate
history for several interconnected agents of di�erent types. We can also anticipate
other e�ciency issues in the case when the actions needed to ful�ll the goal can be
executed only in a certain period of time, which is why we designed the following
experiments.

6.3 Standalone Agents with Time Windows

Experiment 3: Standalone Soldiers

Hypothesis. If the goals in a PDDL problem require the planner to include actions
which can be undertaken only in a speci�ed time window, the complexity of the task
for the planner will grow signi�cantly.

Method. In this experiment, we also generated the contents of episodic memory
for as many standalone agents as possible, but this time we were generating soldiers.
These soldiers had to take part in at least two random battles. The main di�erence
between the previous tests and this one is that a soldier can take part in each of
the ten battles de�ned in the domain only in a certain time window. It stems from
the fact that one can take part in a particular battle only when this battle takes
place. A short extract from the PDDL problem for generating history of one soldier
is depicted in Fig. 6.4. The tests were performed on the full testing domain. We ran
the experiment with each planner for the number of soldiers from 1 to 10, each task
with the deadline of 30 minutes. On both testing PCs, we performed �ve repetitions
of each task.

Results. The results of this test were not very encouraging. Only the problem
with one soldier was solved in the time limit and only by SGPlan6. This planner

46

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

No. of agents M SD M SD M SD M SD M SD M SD

1 3.75 0.03 2.22 0.01 0.14 0.01 0.15 0.01 - - - -

2 - - - - 0.95 0.01 1.22 0.01 - - - -

3 - - - - - - - - - - - -

Table 6.3: Experiment 4 - times of computation (M - mean, SD - standard deviation).

needed to output a plan on average 821.33 s (standard deviation 0.44 s) on PC1 and
1469.46 s (standard deviation 29.28 s) on PC2, although this plan contains only six
actions. TFD did not generate any output at all and POPF marked the problem as
unsolvable.

Discussion. The results acknowledge our hypothesis that using actions which can
occur only in certain time windows brings a lot of di�culties to the planners. The
time limit used for the experiment, 30 minutes, is much shorter that would be a
reasonable limit for real use, however, the PDDL problems used are also very simple.
A designer's requirements in real use would be supposedly more complicated than
just require one or two agents to take part in two battles. It suggests that for
real application we would need a planner more optimized for planning with time
windows.

Experiment 4: Standalone Soldiers on a Smaller Domain

The planners did not perform very well in the previous experiment. So we wanted
to repeat it on a smaller domain, which could reduce the time of computation as in
Experiment 2.

Hypothesis. By performing the experiments involving time windows on a smaller
domain, we will reduce the space that has to be searched by the planner signi�cantly.
This will result in dramatically decreased times needed for computation of each task.

Method. We repeated the previous experiment on a smaller domain (Experiment
4) including only packages basic, soldier and relationships. When generating one,
two resp. three agents, the task contains 179, 348 resp. 517 grounded predicates
and so on. We performed �ve repetitions on each PC.

Results. The results are showed in Table 6.3. The time of computation needed by
SGPlan6 to solve the problem with one soldier decreased dramatically, but despite
of this the planner was not able to generate a plan for two or more soldiers in the
limit. On the other hand, TFD achieved computing plans for one and two soldiers
on this reduced domain, although it did not compute any plans on the complete
domain.

Discussion. The results of the experiment support our hypothesis, although the
performance of the planners was still unsatisfactory.

47

(de�ne (problem rpg-problem-exp5-liter1)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy - woman)
(:init

...
)
(:goal

(and
(get_fourth_degree_of_initiation_goal John)
(get_fourth_degree_of_initiation_goal James)
(meet_goal John James)
(married John)

)
)

)

Figure 6.5: Experiment 5, Part 1 - extract of the PDDL problem.

6.4 Interconnected Agents

After testing the generation of history of standalone agents, we also designed ex-
periments with several interconnected agents to see how the relationships between
agents in�uence the performance of the planners. We started by experiments with-
out actions that can occur only in particular time windows.

Experiment 5: Interconnected Mages

Hypothesis. When there are relationships among the agents, i.e. when they are
forced common points in their memories, the planners will have more di�culties
with �nding a valid plan. More relationships will need more computation time, as
it introduces more constraints between plans for individual agents. Nevertheless,
inserting only one or two common points to the memories of the agents should not
complicate the task so much.

Method. We designed three tests that form parts of this experiment, with in-
creasing complexity of connections between the agents. In the �rst part (Fig. 6.5),
there are two men (John and James) who have to become skilled mages and meet.
One of them also has to get married. In the second part, both of them have to get
married (Fig. 6.6). And in the last test in this experiment, John is also supposed
to have an a�air with his friend's wife (Fig. 6.7). We used the full testing domain
in the experiment. The task in part 1 contains 786 grounded predicates, in parts
2 and 3 there are 1143 grounded predicates. We ran the tests �ve times with each
planner on both PCs. We used the time limit of one hour.

Results. The results are depicted in Table 6.4. SGPlan6 solved the �rst and the
second problem very quickly, but it was not able to solve the last one. POPF was
only able to solve the �rst problem, and only on one of the testing PCs, curiously.
On the second one it exhausted all the available memory. TFD did not manage to
solve any of the problems.

48

(de�ne (problem rpg-problem-exp5-liter2)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy Kate - woman)
(:init

...
)
(:goal

(and
(get_fourth_degree_of_initiation_goal John)
(get_fourth_degree_of_initiation_goal James)
(meet_goal John James)
(married John)
(married James)

)
)

)

Figure 6.6: Experiment 5, Part 2 - extract of the PDDL problem.

(de�ne (problem rpg-problem-exp5-liter3)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy Kate - woman)
(:init

...
)
(:goal

(and
(get_fourth_degree_of_initiation_goal John)
(get_fourth_degree_of_initiation_goal James)
(married John)
(married James)
(had_a�air John Kate)

)
)

)

Figure 6.7: Experiment 5, Part 3 - extract of the PDDL problem.

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

M SD M SD M SD M SD M SD M SD

Part 1 0.69 0.01 0.65 0.01 - - - - 2.11 0.02 - -

Part 2 2.51 0.01 2.22 0.01 - - - - - - - -

Part 3 - - - - - - - - - - - -

Table 6.4: Experiment 5: Interconnected agents without time windows. Times of
computation in seconds (M - mean, SD - standard deviation).

49

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

M SD M SD M SD M SD M SD M SD

Part 1 0.44 0.01 0.39 0.01 21.04 0.23 27.11 0.04 1.13 0.00 0.76 0.00

Part 2 0.89 0.00 0.80 0.01 - - - - 5.06 0.02 4.96 0.01

Part 3 - - - - - - - - 4.68 0.02 4.59 0.01

Table 6.5: Experiment 6: Interconnected agents without time windows on a smaller
domain. Times of computation in seconds (M - mean, SD - standard deviation).

Discussion. The results suggest that relationships between agents increase the
complexity of the task, as none of the planners was able to output a plan for the
third problem, although there is a valid plan for this task with only 78 actions and
the longest plan outputted by SGPlan6 in Experiment 1 was 208 actions long.

Experiment 6: Interconnected Mages on a Smaller Domain

As in the previous experiments, we wanted to determine the e�ect of reducing the
testing domain on the performance of the planners.

Hypothesis. Reducing the domain will signi�cantly decrease the di�culty of the
tasks for the planners.

Method. We repeated the tests from the previous experiment on a smaller domain
containing only packages basic, mage and relationships. The task in part 1 contains
584 grounded predicates, in parts 2 and 3 there are 817 grounded predicates. We
again performed �ve repetitions of each test with each planner on both PCs.

Results. The results are listed in Table 6.5. As in the other experiments, the
performance of the planners was better on the reduced domain. POPF managed to
solve all the problems. TFD was able to solve at least the �rst problem. SGPlan6
solved the �rst two problems as in the previous experiment, but the time needed for
computation was shorter.

Discussion. The results of the tests suggest that in case of interconnected agents,
reducing the domain also helps the planners to solve the problems. We also discov-
ered that our assumption that Part 3 of this experiment is more di�cult than Part 2
was not completely true. POPF was able to solve the third problem on this domain
faster than the second one.

6.5 Interconnected Agents with Time Windows

As in the case of standalone agents, we also performed experiments where valid
plans have to include actions which can occur only in particular time windows.

50

(de�ne (problem rpg-problem-exp11-liter)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy - woman)
(:init

...
)
(:goal

(and
(take_part_City1_battle_goal John)
(take_part_City1_battle_goal James)
(married John)

)
)

)

Figure 6.8: Experiment 7, Part 1 - extract of the PDDL problem.

(de�ne (problem rpg-problem-exp12-liter)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy Kate - woman)
(:init

...
)
(:goal

(and
(take_part_City1_battle_goal John)
(take_part_City1_battle_goal James)
(married John)
(married James)

)
)

)

Figure 6.9: Experiment 7, Part 2 - extract of the PDDL problem.

Experiment 7: Interconnected Soldiers

Hypothesis. If the goals in a PDDL problem require the planner to include actions
which can be undertaken only in a speci�ed time window, the complexity of the task
for the planner will grow signi�cantly.

Method. We designed PDDL problems analogical to the problems used in the
previous two experiments. The requirements on the personal life of the agents are
the same as in the previous set of experiments, but this time John and James have
to become soldiers and meet in the battle for City1. Extracts of these problems
are depicted in Fig. 6.8, 6.9 and 6.10. The tests were performed on the full testing
domain. As in the previous case we ran the experiment �ve times with each planner
on both PCs with the time limit of one hour.

Results. The results are depicted in Table 6.6. Introducing actions which can
occur only in a certain time window is a big complication for SGPlan6, which needed
signi�cantly more time for the �rst test in the set than in Experiment 5. However,
POPF performed better in this experiment than in Experiment 5, solving two of the
set of problems, although only on the testing PC with more memory.

51

(de�ne (problem rpg-problem-exp13-liter)
(:domain rpg-domain-complete-liter)
(:objects John James - man Stacy Kate - woman)
(:init

...
)
(:goal

(and
(take_part_City1_battle_goal John)
(take_part_City1_battle_goal James)
(married John)
(married James)
(had_a�air John Kate)

)
)

)

Figure 6.10: Experiment 7, Part 3 - extract of the PDDL problem.

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

M SD M SD M SD M SD M SD M SD

Part 1 1097.97 0.88 1552.41 2.89 0.52 0.02 0.63 0.00 0.22 0.00 0.25 0.00

Part 2 - - - - - - - - - - 105.96 0.31

Part 3 - - - - - - - - - - - -

Table 6.6: Experiment 7: Interconnected agents with time windows. Times of
computation in seconds (M - mean, SD - standard deviation).

52

SGPlan6 TFD POPF

PC1 PC2 PC1 PC2 PC1 PC2

M SD M SD M SD M SD M SD M SD

Part 1 279.64 1.29 475.58 1.37 68.82 0.33 88.50 0.10 0.12 0.01 0.11 0.00

Part 2 - - - - 797.15 1.18 1143.34 3.33 - - - -

Part 3 - - - - - - - - - - - -

Table 6.7: Experiment 8: Interconnected agents with time windows on a smaller
domain. Times of computation in seconds (M - mean, SD - standard deviation).

Discussion. The results correspond to our hypothesis. The planners in this tests
performed worse than in tests without time windows (Experiment 5) or similarly,
although the problems in Experiment 5 needed plans with many more actions to be
solved.

Experiment 8: Interconnected Soldiers on a Smaller Domain

To complete our tests of e�ects of reducing the domain, we repeated also Experi-
ment 7 on a smaller domain.

Hypothesis. As in the previous experiments, reducing the domain will signi�-
cantly decrease the di�culty of the tasks for the planners.

Method. We repeated the tests from the previous experiment on a smaller domain
containing only packages basic, soldier and relationships. The task in part 1 contains
577 grounded predicates, in parts 2 and 3 there are 806 grounded predicates. We
again repeated the tests �ve times with each planner on both PCs.

Results. The results are listed in Table 6.7. SGPlan6 needed less time for com-
putation than in the last experiment, which was anticipated. However, the results
of TFD and POPF are surprising. POPF only managed to compute plan for the
�rst problem in this set of tests, although in Experiment 7 it also computed a plan
for the second problem. Moreover, although the reduction of the domain enabled
TFD to compute a plan for the second problem, the time of computation needed
for the �rst problem was signi�cantly longer than in Experiment 7. Besides, the
plan outputted as a solution of the second problem is valid, but surely would not
be accepted by a designer, as it contains a lot of marriages and immediate divorces,
which are not needed at all.

Discussion. The results show that when the agents are interconnected and we
need to include into the plan some actions which can occur only in a speci�ed
time windows, we can encounter a very strange behavior of the planners, probably
due to the properties of used heuristics. This experiment proves that although the
hypothesis that reducing a domain reduces the time of computation is generally
true, there are also exceptions from this rule.

53

6.6 Summary

In this chapter, we have presented our testing domain and the results of a set of
experiments we performed. By this, we ful�lled the remaining part of goal 2 and
goal 3 of this work, as they are listed at the end of Chapter 1.

The experiments show that the approach we chose works in general. However,
using the actual general-purpose planners we were able to solve only simple plan-
ning problems, mainly because of insu�cient amount of memory. Real problems
generated from a designer's requirements would be supposedly much more complex.
A designer would probably also create a more comprehensive virtual world, ours is
just a prototype for testing with less than 100 actions.

The main performance issue appears when we need to include in the resulting
plan some actions which can take place only in certain time windows. The amount
of time for computation needed by the planners increases rapidly, or the planners
are not able to generate a plan at all. Generation of history of interconnected agents
is also more complicated for the planners than generation of history of standalone
agents.

A promising possible solution of these issues would be implementing a special-
purpose planner equipped with suitable heuristics. This is discussed in the next
chapter.

The experiments also demonstrate that an authoring tool developed for the de-
signers should support package management. When we repeated the experiments
on a smaller domain, the performance improvement was usually signi�cant. Pack-
age management would also facilitate better organization of the actions and states
possible in a designer's virtual world, as well as reusability of its parts.

54

Chapter 7

Future Works

7.1 Special-Purpose Planner

As shown in the previous chapter, actual general-purpose planners have di�cul-
ties with our domains and problems, although some of them perform very well on
domains used for competitions like the International Planning Competition (IPC),
which is held each two or three years during the International Conference on Plan-
ning and Scheduling (ICAPS). This issue probably could be solved by implementing
a special-purpose planner with heuristics suited for our type of problems.

On one hand, in comparison with IPC domains and problems, our domain con-
tains more operators and predicates and also requires more PDDL features than the
majority of IPC domains. For example, from the domains used in temporal satis�c-
ing track in IPC-2008 [22], the domain containing the largest number of actions is
parcprinter-strips. It contains 13 predicates and 40 durative actions.

On the other hand, our problems are not so complicated. Usually, just a few
actions are needed to achieve a particular goal, the resources are not very limited
and we do not need to optimize for time. That brings us to the belief that a carefully
designed special-purpose planner should improve the e�ciency of the computational
step of the method a lot and so implementing such a planner is one of the meaningful
future works.

7.2 SAT or CSP

The issue with the computation could be also solved by switching from planning to
other approaches, like SAT or CSP. Converting a designer's requirements directly
into a SAT or CSP task is not very straightforward. However, if we found a way to
do it automatically, we could then use some of the almost professional, but freeware
SAT resp. CSP solvers, e.g. [15] resp. [19]. Trying this approach is probably the
most interesting way in which our research could continue now.

7.3 Authoring Tool

The proposed design method will only be complete with a software tool used to
carry out Steps 1, 2, 4 and 5 from the work�ow. This tool should enable a designer
not only to specify her requirements in a user-friendly way, but should also help her

55

with managing her domains, creating logical packages (as �mage�, �soldier�, �relation-
ships�). Above all, it would perform the conversion from the designer's requirements
to PDDL, described in Chapter 5, and run the planner. After converting the re-
sulting plan into an intelligible representation (maybe graphical), it would allow the
designer to administer her changes to the resulting contents of episodic memory,
guiding her through the process and warning her when she is about to perform a
change that breaks up some logical constraints.

Although implementing such a tool is an essential step for practical use of our
method, at the moment we see solving the issues with Step 3 of the work�ow to be
the most urgent task to tackle.

7.4 More Detailed World

There are several directions in which we could go to have the resulting contents of
episodic memory more detailed. For example, the virtual world used actually for
our tests is just a list of places. Later, it could be useful to create a topology of the
world. This should be possible conceptually, however, we have not tackled it yet.

The content of episodic memory generated by the method also contains just
brief information about the actions which happened � the name of the action, when
it took place and which people, locations etc. were involved. For example, John
from Experiment 5 knows that he married Stacy in his village on the 201st day of
the history, but nothing more. The designer may want to equip her NPCs with
more details about the actions, e.g. a detailed description of the mentioned wedding
ceremony. In this case, she has to use some suitable mechanisms to accomplish this
in the Step 5 of the work�ow. One possible systematical approach to this problem
is to generate details of memories using the hierarchical approach described in [5].

56

Chapter 8

Conclusion

We proposed a complex method for automatic generation of episodic memory for
virtual agents, intended to be used for instance by game designers. We used planning
to perform the crucial step of the method, the computation of coherent content of
episodic memory corresponding to a designer's requirements. When implemented
completely, the method will enable the designer to specify her requirements on
the history of the agent being created. It will also ensure that generated content
of episodic memory will comply with prede�ned logical constraints of the events.
Besides, some level of randomness will be included, to create �more animated� agents
and also to enable creation of more agents from just one setting. After the automatic
generation of memories of the agents, the designer will be enabled to perform her
adjustments to create the �nal version of these memories.

We tested the performance of planning in our task. It works well in simple cases,
however, more complicated settings seem to be out of the possibilities of state of the
art general-purpose planners. Thus we foresee a necessity to implement a special-
purpose planner optimized for this type of problems or to try a di�erent approach
to the computational step of the method, like CSP or SAT.

Despite of the actual technical issues with the computational part of the method,
we think that this approach, when re�ned, can facilitate fast enough automatic
generation of widely parametrized history of virtual agents.

57

Bibliography

[1] Bickmore, T., Schulman, D., Yin, L. (2009): Engagement vs. Deceit: Virtual
Humans with Human Autobiographies. In Proc. of Intelligent Virtual Agents
'09, LNCS 5773, 6-19. Springer.

[2] Bioware (2008): Mass E�ect. http://masse�ect.bioware.com/me1/.

[3] Blizzard Entertainment (2004): World of Warcraft. http://us.blizzard.com/en-
us/games/wow/.

[4] Brom, C., Lukavský, J. (2009): Towards Virtual Characters with a Full Episodic
Memory II: The Episodic Memory Strikes Back. In Proc. Empathic Agents 1-9.
AAMAS workshop.

[5] Brom, C., Pe²ková, K., Lukavský, J. (2007): Modelling human-like RPG agents
with a full episodic memory. Technical Report No. 2007/4 of the Department
of Software and Computer Science Education, Charles University in Prague.

[6] Burkert, O. (2009): Connectionist Model of Episodic Memory for Virtual Hu-
mans. Master thesis, Charles University in Prague.

[7] Castellano, G., Aylett, R., Dautenhahn, K., Paiva, A., McOwan, P. W., Ho, S.
(2008): Long-term a�ect sensitive and socially interactive companions. In 4th
Int. Workshop on Human-Computer Conversation.

[8] Coles, A. J., Coles, A. I., Fox, M., Long, D. (2010): Forward-Chaining Partial-
Order Planning. In Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS-10).

[9] Cresswell, S., Coddington, A. (2003): Planning with timed literals and deadline.
In UK Planning and Scheduling SIG (PlanSig) 22-35.

[10] Dias, J. (2005): Fearnot!: Creating emotional autonomous synthetic characters
for empathic interactions. Master's thesis, Universidade Técnica Lisboa.

[11] Dias, J., Ho, W.C., Vogt, T., Beeckman N., Paiva, A., Andre, E. (2007): I Know
What I Did Last Summer: Autobiographic Memory in Synthetic Characters.
In Proc. of ACII 606-617. Springer-Verlag.

[12] Doherty, D., O'Riordan, C. (2008): Toward More Humanlike NPCs for First-
/Third-Person Shooter Games. In AI Game Programming Wisdom IV 499-512.
Charles River Media.

58

[13] Ebert, D. S., Musgrave, F. K., Peachy, D., Perlin, K., Worley, S. (2003): Tex-
turing & Modelling - A Procedural Approach. Morgan Kaufmann.

[14] Edelkamp, S., Ho�mann, J. (2004): PDDL2.2: The Language for the Classical
Part of the 4th International Planning Competition. Technical Report 195,
Albert-Ludwigs-Universität Freiburg, Institut für Informatik.

[15] Eén, N., Sörensson, N. (2005): Minisat a sat solver with con�ict-clause mini-
mization. In SAT 2005 Competition.

[16] Eyerich, P., Mattmüller, R., Röger, G. (2009): Using the Context-enhanced
Additive Heuristic for Temporal and Numeric Planning. In Proceedings of the
19th International Conference on Automated Planning and Scheduling (ICAPS
2009).

[17] Fox, M., Long, D. (2003): PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. In Journal of Arti�cial Intelligence Research 20,
61-124.

[18] Funcom (2008): Age of Conan: Hyborian Adventures.
http://www.ageofconan.com.

[19] Gecode: a Generic Constraint Development Environment.
http://www.gecode.org

[20] Glassner, A. (2004): Interactive Storytelling: Techniques for 21st Century Fic-
tion. A. K. Peters, Natick.

[21] Greuter S., Parker J., Stewart N., Leach G. (2003): Real-time procedural gen-
eration of 'pseudo in�nite' cities. In Proceedings of GRAPHITE 2003 87-95.
ACM Press.

[22] Helmert, M., Do, M., Refanidis, I. (2008): International planning competition
ipc-2008, the deterministic part. http://ipc.informatik.uni-freiburg.de/.

[23] Helmert, M., Ge�ner, H. (2008): Unifying the causal graph and additive heuris-
tics. In Proceedings of ICAPS 2008, 140-147.

[24] Hirst, W., Manier, D. (1995): Remembering as communication: A family re-
counts its past. In Remembering Our Past: Studies in Autobiographical Memory
271-290. Cambridge University Press.

[25] Ho, W., Dautenhahn, K., Nehaniv, C. (2005): Autobiographic Agents in Dy-
namic Virtual Environments - Performance Comparision for Di�erent Memory
Control Architectures. In Proc. IEEE CEC, 573-580.

[26] Ho, W. C., Watson, S. (2006): Autobiographic knowledge for believable vir-
tual characters. In Proc. of Intelligent Virtual Agents, LNCS 4133, 383-394.
Springer-Verlag.

[27] Ho�mann, J. (2003): The Metric-FF planning system: Translating �Ignoring
Delete Lists� to numeric state variables. In Journal of Arti�cial Intelligence
Research 20, 291-341.

59

[28] Hsu, C.-W., Wah, B. W. (2008): The SGPlan planning system in IPC6. In 6th
International Planning Competition Booklet (ICAPS-08).

[29] Ku£erová, L., Brom, C., Kadlec, R. (2010): Towards Planning the History of a
Virtual Agent. In Proceedings of ICAPS'10 Workshop on Planning in Games.

[30] Li, B., Riedl, M. O. (2010): Planning for Individualized Experiences with
Quest-Centric Game Adaptation. In Proceedings of ICAPS'10 Workshop on
Planning in Games.

[31] Loyall, B. A. (1997): Believable Agents: Building Interactive Personalities.
Ph.D. dissertation. Carnegie Mellon University.

[32] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M.,
Weld, D., Wilkins, D. (1998): PDDL � The Planning Domain De�nition Lan-
guage � Version 1.2, Techical Report, CVC TR-98-003, Yale Center for Com-
putational Vision and Control.

[33] Meehan, J. R. (1976): Tale-spin, an interactive program that writes stories. In
Proceedings of the �fth international joint conference on arti�cial intelligence,
91-98. Cambridge, Massachussets.

[34] Nuxoll, A. (2007): Enhancing Intelligent Agents with Episodic Memory. Ph.D.
thesis, The University of Michigan.

[35] Pérez y Pérez, R., Sharples, M. (2001): Mexica: A computer model of a cogni-
tive account of creative writing. Journal of Experimental and Theoretical Arti-
�cial Intelligence 13, 119-139.

[36] Porteous, J., Cavazza, M. (2009): Controlling Narrative Generation with Plan-
ning Trajectories: The Role of Constraints. In Proc. Of 2nd Int. Conf. on
Interactive Digital Storytelling. LNCS 5915, 280-291, Springer.

[37] Prusinkiewicz, P., Lindenmayer, A. (1990): The Algorithmic Beauty of Plants.
Springer-Verlag, New York.

[38] Rickel, J., Johnson, W. L. (1999): Animated Agents for Procedural Training
in Virtual Reality: Perception, Cognition, and Motor Control. App. Arti�cial
Intelligence 13(4-5), 343-382.

[39] Riedl, M. (2009): Incorporating authorial intent into generative narrative sys-
tems. In Intelligent Narrative Technologies II, TR SS�09�06, pp. 91�94. AAAI,
Menlo Park.

[40] Riedl, M. O., Young, R. M. (2006): Story Planning as Exploratory Creativ-
ity: Techniques for Expanding the Narrative Search Space. New Generation
Computing 24(3): 303-323.

[41] Si, M., Marsella, S.C., Pynadath, D.V. (2005): Thespian: Using multi-agent
�tting to craft interactive drama. In AAMAS, pp. 21�28. ACM, New York.

[42] Trescak, T., Esteva, M., Rodriguez, I. (2010): A Virtual World Grammar for
automatic generation of virtual worlds. In The Visual Computer 26(6-8), 521-
531. Springer.

60

[43] Tsang, E.P.K. (1993): Foundations of Constraint Satisfaction. Academic Press,
London and San Diego.

[44] Tulving, E., Donaldson, W. (1972): Organization of Memory. Academic Press,
New York.

[45] Williams, H.L., Conway, M.A., Cohen, G. (2008): Autobiographical memory.
In Memory in the real world 21-90. Psychology Press.

[46] Wooldridge, M. (2002): An Introduction to MultiAgent Systems. John Wiley
& Sons.

61

Appendix A

Attachments

This thesis goes accompanied by a CD containing:

• Source code and/or binaries of all the planners used for the experiments (SG-
Plan6, TFD and POPF).

• All PDDL domains and problems used for the experiments.

• Results of the experiments.

• Shell scripts for easy replication of the experiments.

• README.TXT � guide for step by step installation of the planners and repli-
cation of the experiments.

• Text of this thesis in PDF.

62

Appendix B

Conversion Algorithms

Name: ConvertParameters
Input: List of parameters P
Output: PDDL de�nition of parameters of a function, predicate or action

foreach parameter Param = (pid, t) in P
write � ?�, pid
if t != null write � - �, t

writeline

Figure B.1: Algorithm to convert parameters.

Name: ConvertInstantiated
Input: Instantiated state, action or function I = (id, CP)
Output: De�nition of a part of PDDL condition of a durative action

write �(�, id
if I is instantiated action write �_goal�
foreach identi�er ident in CP

if ident is parameter identi�er write � ?� else write � �
write ident

write �)�

Figure B.2: Algorithm to convert an instantiated state, an action or a function.

63

Name: ConvertStates
Input: List of states S, list of actions A
Output: De�nition of PDDL predicates belonging to the domain

writeline �(:predicates�
foreach action Action = (aid, P, d, s, e, pb, ns, c, E) in A

if pb != null
write aid, �_init�
ConvertParameters(P)

write aid, �_goal�
ConvertParameters(P)
if s != null writeline aid, �_going_on�

foreach state State = (sid, P) in S
write sid
ConvertParameters(P)

writeline �)�

Figure B.3: Algorithm to convert states.

Name: ConvertActions
Input: List of actions A
Output: De�nition of PDDL durative actions belonging to the domain

foreach action Action = (aid, P, d, s, e, pb, ns, c, E) in A
writeline �(:durative-action �, aid
if P != null

write �:parameters
ConvertParameters(P)

writeline �:duration (= ?duration �, d, �)�
if c != null or pb != null

ConvertActionCondition(A)
writeline �:e�ect�
writeline �(and�
ConvertE�ects(E)
write �(at end (�, aid, �_goal�
foreach parameter Param = (pid, t) in P

write � ?�, pid
writeline �))�
writeline �)�

Figure B.4: Algorithm to convert actions.

64

Name: ConvertCondition
Input: Condition Cond
Output: De�nition of one PDDL condition of a durative action

if Cond is atomic condition
if Cond is negated write �(not �

if Cond is instantiated state or instantiated action
ConvertInstantiated(Cond)
writeline

elseif Cond is function equation
Cond = (IF, val, oper)
write �(�, oper, � �
ConvertInstantiated(IF)
writeline � �, val, �)�

if Cond is negated write �)�
writeline

elseif Cond is boolean condition
Cond = (oper, C)
writeline �(�, oper
foreach condition c in C ConvertCondition(C)
writeline �)�

Figure B.5: Algorithm to convert a condition of an action.

Name: ConvertE�ects
Input: List of e�ects E
Output: PDDL de�nition of e�ects of an action

foreach e�ect E�ect = (tv, ae) in E
if tv == �start� write �(at start (� else write �(at end (�
if ae is negated write �not (�
if ae is instantiated state ConvertInstantiated(ae)
if ae is function change

ae = (�d, CP, val)
if val > 0 write �(increase (� else write �(decrease (�
write �d
foreach identi�er ident in CP

if ident is parameter identi�er write � ?� else write � �
write ident

write �) �, val, �)�
if ae is negated write �)�
writeline �))�

Figure B.6: Algorithm to convert e�ects of an action.

65

Name: ConvertGoalState
Input: Goal state GoS = (GS, GA, GFE), list of noise actions and person identi�ers
NA, list of actions A
Output: A valid PDDL de�nition of goal state

writeline �(:goal�
foreach grounded state GState = (sid, CO) in GS

if GState is negated write �(not �
write �(�, sid
foreach constant or object identi�er id in CO

write � �, id
if GState is negated write �)�
writeline �)�

foreach grounded function equation GFEq = (GF, val, oper) in GFE
GF = (�d, CO)
write �(�, oper, � (�, �d
foreach constant or object identi�er id in CO

write � �, id
writeline �) �, val, �)�

foreach grounded action GAction = (aid, CO) in GA
write �(�, aid, �_goal�
foreach constant or object identi�er id in CO

write � �, id
writeline �)�

foreach P = (aid, pid) in NA
writeline �(�, aid, �_goal �, pid, �)�

writeline �)�

Figure B.7: Algorithm to convert a goal state.

66

