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Abstract. Reactive or dynamic planning is currently the daninparadigm for

controlling virtual agents in 3D videogames. Vasgoueactive planning

techniques are employed in the videogame industnjjewmany reactive

planning systems and languages are being deveiopth& academia. Claims
about benefits of different approaches are supgob the experience of
videogame programmers and the arguments of resrarchut rigorous

empirical data corroborating alleged advantagesdifferent methods are
lacking. Here, we present results of a pilot stirdywhich we compare the
usability of an academic technique designed forgmmmming intelligent

agents’ behavior with the usability of an unaltergdssical programming
language. Our study seeks to replicate the simatif professional game
programmers considering using an unfamiliar acadensystem for

programming in-game agents. We engaged 30 commgience students
attending a university course on virtual agents tmo programming

assignments. For each, the students had to codtelehigl behavior of a 3D

virtual agent solving a game-like task in the Uhr@aurnament 2004

environment. Each student had to use Java forasieand the POSH reactive
planner with a graphical editor for the other. \dtdlected quantitative and
qualitative usability data. The results indicatattROSH outperforms Java in
terms of usability for one of the assigned taskisrmi the other. This implies
that the suitability of an Al systems-engineeripgm@ach is task sensitive. We
also discuss lessons learnt about the evaluatiateps itself, proposing
possible improvements in the experimental designe \dbnclude that

comparative studies are a useful method for anayhienefits of different

approaches to controlling virtual agents.

1 Introduction

Reactive planning is currently the dominant paradfgr controlling virtual agents in
3D videogames and simulations. Prominent reactiaaning techniques used in the
industry are derivations of finite state machin€sNIs) [1], and more recently,
behavior trees [2]. Technically, these are implet@@rin a scripting language, be it a



general-purpose language such as Lua [3] or aagmeipose language tailored at a
particular game, such as UnrealScript [4], or hayded in a game’s native language,
typically C++ [5]. Advantages and drawbacks of eliint approaches used by the
industry have been commented on widely [6,7,8].

At the same time, academic action-selection systemal planning are becoming
increasingly mature, and the question arises whetiey have advantages over the
solutions employed presently by the industry. Thsgtems include decision making
modules of several cognitive architectures, e.gar@&nd ACT-R [9, 10], stand-alone
BDI-based programming languages, e.g. GOAL [11]d astand-alone reactive
planners such as POSH [12]. It has been alreadyudgemnated that some of these
systems, for instance Soar [9], POSH [13], GOAL][a4d Jazzyk [14], can be used
for controlling virtual agents acting in game-likavironments. From the perspective
of efficacy of code execution, these systems arggish and can be considered as
prototypes only at the present stage of maturitwvédver, they could potentially
outperform some industry solutions in terms of i#gb(from the programmers’
perspective), re-usability (of parts of code) amgrd’s cognitive performance, as
assumed, for instance, by part of the academic aaomiyn studying BDI-based
languages [15].

Sound empirical data demonstrating the alleged ratdgas of different reactive
planning technique, both industrial and academie generally lacking. Tyrell
analyzed various robotics and ethology-based asgtgction mechanisms in terms of
agent performance given approximately equal amouwftgdime devoted by a
programmer [16]. This work was extended by Brysonan effort to provide an
evaluation for her own POSH action selection. [TAjtrell’'s system was to test a
single action-selection mechanism over a large mundd “lifespans” by agents
inhabiting an extremely rich and varied environmemhe complexity of the
environment lead to enormous variation in the tessb statistical significance was
determined by running enough trials to compare diaedard error rather than the
standard deviation.

Bryson also provided a more theoretically formal kess rigorous comparison of
POSH action selection to FSMs, showing that POS&hglwere able to express
action an intelligence was likely to choose to d@imore efficient way than an FSM
[18]. However, none of these studies engaged pnogiers other than the authors
themselves in the mechanisms’ evaluation. In cehttdindriks et al [19] conducted
an extensive qualitative analysis of the code ofil8D year computer science students
developing (in teams of five students) three Captilihe Flag agents for the
videogame Unreal Tournament 2004 (UT 2004) usingAG@gent programming
language. Hindriks’s team aimed at “providing imgignto more practical aspects of
agent development” and “better understanding problthat programmers face when
using (an agent programming) language” and idextii number of structural code
patterns, information useful for improvements te tanguage. However, that study
was not comparative and did not report the programahieedback.

Here, we are interested in a complementary approaaimely feasibility of
guantitative comparative quasi-experimental stughssused in psychology and social
sciences) for investigating usability of action estion systems from the users’
(programmers’) perspective. We specifically addtbssusability issue as opposed to
the efficiency or performance issue. This perspectincompasses various objective



and subjective measures, such as steepness otdheing curve, time spent by
development, programming vs. testing time ratiombar of bugs made by the
programmer, subjective attitude towards the tealmicetc. We designed and
conducted a pilot study with the following objeetss

a) to investigate the subjectively-perceived usabilidfy an academic action
selection system designed to be useful for progragnagents’ behavior,
when compared to perceived usability of an unend@dnclassical
programming language; this mimics the situation gafme programmers
considering using an academic system they are aaotiliair with for
programming in-game artificial intelligence;

b) to compare the quality of solutions implementedtlie academic action
selection system and in the classical programmarguage; this measure
plays an important role in the adoption of neweyw in general;

c) to consider whether the experimental metpedseis useful and whether (and
under which conditions) it can produce helpful tssu

We have been running a course on virtual agenteldpment for computer science
students at Prague University since 2005. Studmetsaught various techniques for
controlling virtual agents [20] and trained to praxyp their behavior in the virtual
environment UT 2004 (similarly to Hindriks et allyor that task, our integrated
development environment Pogamut [21] is used bysthdents. In the academic year
2009/10, we turned the final exam for the course @nscientific experiment engaging
30 computer science students in two programminyasegents lasting 3 hours each.
Each student had to code the high-level behavioa @D virtual agent solving a
game-like task in the UT 2004. The conventionalgleage and the language
underlying the academic system were both Java. ug¢eJava because its learning
curve is less steep than that of C++ (a more ugamale development language) and
because our students are expected to be at lesst® extent familiar with Java. For
the academic system, we used the POSH reactivagilavith a graphical editor. This
is because POSH has been already demonstratedrfyoking UT agents [13] and
because POSH has previously been investigated bpasigraduates and integrated
into Pogamut.

For both the tasks and in both programming envirems the students’ task was
to organize low-level action and sensory primitit@produce complex behavior, but
not to program the primitives as such. The drag@nogh graphical editor we
developed for POSH disguised its Lisp-like undewyiplan syntax students might
have struggled with. The study was only possil#eanse the Pogamut platform
provided the same development environment for kagks and allowed us to
predesign the same sets of behavior primitivedatisg the features of the language
as the subject of the study.

We collected various quantitative and qualitativeahility data in four
guestionnaires. Our main hypothesis was that stdjettitude towards POSH would
be at least as high as towards Java. As this iBoa giudy, we kept the research
question as simple as possible. Of course, fortipedc commercial application of
POSH, it would be an advantage to specifically fdgiits benefits compared to Java
(and other systems), but this was not our aimHizr $tudy and is left for future work.



The rest of the paper proceeds as follows. We dinite POSH in Section 2 and
detail the methods of our study in Section 3. Témults are presented in Section 4
and discussed in Section 5, and Section 6 concludes

2 POSH

POSH action selection was originally developedhia tate 1990s in response to
criticism of what was at the time an extremely dapagent design approach (at least
in academic discussion): the Subsumption Architec(®A) [27]. SA was used to
produce considerable advances in real-time inwiligagents, particularly robotics. It
consists primarily of two components: a highly miaduarchitecture where every
action is coded with the perception it needs torajge and a complex, highly
distributed form of action selection to arbitratetbeen the actions that would be
produced by the various modules. Although extremedii-known and heavily cited,
the SA was seldom really used outside of its dgari® Bryson hypothesized that the
emphasis on modular intelligence was actually thee contribution of SA, but that
the complexity of action selection, while succellgfanforcing a reactive approach,
confused most programmers who were not used thitigjrabout concurrent systems.

POSH was developed then to simplify the constractid action selection for
modular Al. Briefly, a programmer used to thinkiaQout conventional sequential
programs is asked to first consider a worst-casaa for their agent, then to break
each step of the plan to resolve that scenariodmiart of a reactive plan. Succeeding
at a goal is the agent’s highest priority, so stidad the thing the agent does if it can.
The programmer then describes for the agent hopetoeive that its goal has been
met. Then for each step leading up to the goalsthmme process is followed: a
perceptual condition is defined allowing the agentecognize if it can take the action
leading most directly to its goal [12, 18]. Theiaws are each small chunks of code
that control the agent, so-called behavior priragiysee Tab. S2 — all supplementary
figures and tables can be found in the appendixd, the perceptions are sensory
primitives (Tab. S4).

After a period of experimenting with the systemy®m embedded POSH in a
more formal development methodology called Behawiwiented Design (BOD).
BOD emphasizes the above development process, landtlee use of behavior
modules written in ordinary object-oriented langesigo encode the majority of the
agent’s intelligence, and to provide the behaviand sensory primitives. BOD
includes a set of heuristics for recognizing whetelligence should be refactored
either from a plan towards a behavior module omfeomodule into a plan. BOD and
POSH have now been adopted or recommended by aemwhkeading thinkers and
toolkits in Al, including Pogamut [21], RePast [28]d AlIGameDev [6].

Recently, a graphical editor for POSH plans hasmbdeveloped as part of the
Pogamut effort. Its new version is used in the gmestudy (Fig. S1).



3 Method

3.1 Experimental design

As explained earlier, the study compares the usabif an academic reactive
planner, POSH, and an unenhanced classical prograglamnguage, Java. Low-level
behavior primitives were prepared for both groupsdvance by the authors of the
study. The set of primitives were fully sufficiefot solving the presented tasks.

The study was set in an Al course for computer negestudents in Charles
University in Prague. The syllabus of course iscdbed in [20, 22]. Subjects were
given a pretest (3 hours) after the course to enthat they have acquired elementary
skills for solving sub-problems from the final exa@®nly subjects that have passed
the pretest were admitted to the final exam.

The final exam was structured to obtain comparatia¢ga on Java and POSH
usability. In the final exam, each subject haddlves two tasks, the Hunter Task (3
hours) and the Guide Task (3 hours), see SecSBlgects were split into two groups,
Group A and Group B. Group A was instructed to edunter Task in POSH first
and Guide Task in Java second while Group B wasuicted to solve Hunter Task in
Java first and Guide Task in POSH second. For tastks, syntax highlighting was
available for Java and a graphical editor for PQuts (Fig. S1).

Figure 1. The course of the experiment.
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Subjects were given 4 questionnaires in total dutie exam (15 minutes each).
There was a 30 minutes long break for a light lubetween the tasks. The course of
the experiment is summarized in Fig. 1. Subjectsevieformed that the study will
take about 8 hours in total in advance, but thectire and the exact content were
revealed only during the study. The assignmentgwdministered immediately prior
to each task and the subjects given 30 minutesatd them.



3.2 Participants

We recruited 30 students for the study out of S32ratants of the Al course. The
study was the course’s final exam and if studentceeded in its both parts, they
were given a final grade based on their agent’®opmance. Students had the option
of withdrawing from the study if they preferred ifetent kind of final exam.

We excluded 3 students from the analysis due ta idabmpleteness. In total, we
analyzed data from 27 students of which 2 were fentudents were sampled into
two groups. Due to the low number of subjects, gheups were not assigned to
conditions entirely at random. Rather the studewdse ranked by their ability as
determined by their pretest performance, and thenwo groups were matched with
as close to equal sums of rank status as pos$ibdenumber of students according to
their years of study and assigned groups is predentTab. S1.

3.3 Materials

The Course.The students attended an introductory course ercdmtrol of virtual
characters. The course is intended for studentsowitprevious Al or 3D graphics
knowledge but with previous programming experien@mly students from the
second or a higher year of study can attend. Theseocomprises of 12 theoretical
lectures (90 minutes each) and 6 practical lesspreomputers (90 minutes each).
The theoretical classes are detailed in [20, 22Finy practical lessons, the students
are taught how to work with Pogamut 3 platform aityr (2 lessons) and develop
behavior of virtual agents using both Java (2 lessand POSH (2 lessons) [23].

The Pretest. The general aim of the Pretest was to rule outestibjthat were not
sufficiently prepared for the final exam. Unpreghseibjects would bias the data as
they would likely fail during the final exam whiakould influence their answers in
guestionnaires.

The Pretest task was to create an agent capal#gpbdring the environment of
UT2004 game and collect items of a specific typky.ohhe agent had no adversaries
in this task. Subjects were not given behavior fitves in advance; they had to
create them in Java for themselves. Regarding anagning of a high-level behavior,
subjects had the opportunity of choosing betweea dad POSH. This approach was
chosen to test the level of subjects’ comprehensfdhe Pogamut library so that they
would be able understand behavior primitives pregitb them during the final exam.

Three programmers skilled in VR technology solveel pretest task in advance to
calibrate the difficulty of the test. The time affeent (3 hours) was at least three
times longer than average time needed by thesergrogers to finish the task.
Subjects had 3 attempts to pass the Pretest. Mesegd on their first attempt.

Task Hunter. The Hunter Task was designed as a game-like Soeisarbjects were
to create an agent (called Hunter) that exploresehvironment collecting blood
samples of another computer-driven agent calledmdiither by finding them around
in the environment or by shooting Alien. Alien was adversary agent that was
capable of killing Hunter when nearby. If Hunter Alien got killed, they were



restarted in the environment far from each otheraddition, Hunter started with no
weapons. Thus, the Al behavior must correctly jitie the following intentions: 1)

finding a weapon, 2) collecting blood samples, &yponding to Alien. For instance,
the Hunter agent should stop pursuing a blood saiitgrin and responded to Alien if
Alien has approached, otherwise Hunter could b&diresulting in the loss of
weapons and blood samples collected so far.

In contrast to the Pretest, subjects were givenllasét of behavior primitives
(canSeeEneny, runTol tem shoot Eneny etc., see list in Tab. S2) that were
sufficient to solve the task. All behavior primitiv were carefully commented inside
the code to make their usage clear. Action priragidid not contain any decision
making logic, e.g.shoot Eneny action did not contain any checks whether the agen
has a loaded weapon to shoot from or whether tleengnis close enough for the
weapon to be effective. Such logic was to be ctkate each subject using proper
sensors, e.ghasWapon andget EnenyDi st ance (example can be seen in the Fig.
S1). The task was again solved by two skilled progners in advance using these
primitives and their feedback was used to adjustith

After filling in a pre-exam questionnaire, each jegb was given the assignment
written on the paper and was provided a sufficiené (30 minutes) to read it and ask
guestions to clarify any ambiguities. Group A wiaesn instructed to solve the task in
Java while Group B in POSH. Time allotment was 8repwhich is roughly three
times more than was required by the skilled prognens. Both groups had the same
set of primitives. The POSH version of the pringswiffered only in implementation
details so that they could be easily used insid8P@active plans.

Group A and Group B were working in parallel in taidferent rooms. Subjects
were not allowed to cooperate on the solution het/twere allowed to utilize any
documentation about the Pogamut library availabléhe Internet [24].

Task Guide. The Guide Task was designed to be more cognitia& the Hunter
Task. Subjects were to create an agent called Ghigtecan find a Civilian agent
inside the environment and guide it back to its Boirhe Civilian agent was created
to wander aimlessly around the environment far fisnhome unless the Guide agent
instructed it otherwise. The Guide agent must comoaie with the Civilian agent if
it wants the Civilian agent to follow its lead. Tkemmunication has a fixed and
rather simplistic protocol described in the assigntr{see Tab. S3).

Communication was reliable and the two agents cheltt each other up to a specific
distance. Apart from finding Civilian, there wellgerde obstacles that Guide had to
overcome in order to successfully lead Civilian leorhirst, Civilian was willing to
start to follow Guide only if it can see it. SecoffdCivilian lost Guide from view, it
stopped following. Third, Civilian was created te Bbsent-minded and ceased to
follow the Guide agent from time to time for no sea. Thus, the challenge was not
only to find Civilian and persuade it to follow ti&uide agent to its home, but also to
constantly observe whether Civilian is doing so.

As in the previous task, subjects were given adetlof behavior primitives (Tab.
S4) and the task was tested by two skilled progrararhoth in Java and POSH. The
only exception was the handling of the communicati@as always in Java, but it was
sufficient to write three lines of Java code toredhe task in the POSH variant.



Group A was instructed to solve the task in POSHIewviGroup B in Java.
Everything else (the assignment description, thecsdor questions, the prohibition
of cooperation, the allowance of Internet usagmhsldifferences in the POSH
primitives) remained the same as in the previosis. ta

3.4 Questionnaires

Every subject was given four questionnaires inltdthe timing of administration of
each questionnaire is pictured in Fig. 1. Questines were:

1) PreExam questionnaire,

2) Hunter Task questionnaire (in Java and POSH vaiant

3) Guide Task questionnaire (in Java and POSH vajiants

4) PostExam questionnaire.

The PreExam questionnaire contained questions aheusubject’s biographical
backgroundand their Al/Agent/Programming literacy. Only reden results are
presented in this paper. The main questions foptlksent interest are: “How many
person-months of programming/Al/Java experiencegalohave?” and “How many
hours have you spent experimenting with Pogamhboate?”

The two task questionnaires were designed to elatd about comprehensibility of
sensory and behavior primitives and subjects’ pesfees for the programming
formalism used in the task. The main questionpfesent interest are:

“Did you find POSH/Java sensor/action primitivesnpehensible?”

Answers (Likert item with 5-point Likert scale):

1) | had a lot of troubles understanding them.

3) I did not understand a few primitives.

5) I had no troubles at all, everything was perfectéar.
“Did you find the number of POSH/Java sensor/actiomitives sufficient?”
Answers (Likert item with 5-point Likert scale):

1) Totally insufficient.

3) | had to create a few for myself.

5) Totally sufficient.

“Which formalism do you prefer, Java or POSH?”"

Answers (Likert item with 5-point Likert scale):

1) Strong Java preference.

2) Weak Java preference.

3) Cannot tell which is better.

4) Weak POSH preference.

5) Strong POSH preference.

The PostExam questionnaire contained many ques#bost the comfort of the
Pogamut library API, Java, POSH GUI and other festwf the Pogamut platform. It
also contained the final question about the overedference between POSH and
Java:

“Which formalism do you generally prefer for higewel behavior specification,
POSH or Java?”

Answers (Likert item with 5-point Likert scale):

1) Strong POSH preference.



2) Weak POSH preference.
3) Can't tell which is better.
4) Weak Java preference.

5) Strong Java preference.

Subjects were also given a space for a free-tgptaation of their answer.

The POSH/Java preference question was given thress in total and they have
appeared in both (POSH/Java) variants of task’sstipmnaires. Our aim was to
observe subject preferences with regard to therdifit tasks (Hunter Task vs. Guide
Task) they had to solve as well as their overallhe questionnaires were not
anonymous so we were able to pair them with coaagénts later on (see 4.2).

3.5 Data analysis

Answers of subjects from questionnaires of bottugsowere analyzed. We usgd
tests of independence to test whether both groapssame or different language
preferences. As the number of subjects in eachpgorather small, we have grouped
subjects with Java/POSH preferences into 3 cla@sstead of 5) for the purpose of
the y*tests. Answer 1-2 is considered dava preferenceanswer 4-5 a®OSH
preferenceand answer 3 as indifference.

Additionally, all agents were tested for qualityeWxecuted a corresponding task
scenario for every agent 15 times and checked whelie agent fulfilled the task’s
objective within the time frame of 10 minutes. Warked every run with either 0
(agent failure) or 1 (agent success). Average nurobsuccesses was counted as the
agent success rate (ASEyen though every run was identical (the saméremnment
setup was used, the same starting positions ofvberts used, the same random seeds,
etc.), we had to perform multiple runs due to smmadh-determinism caused by
UT2004 and by asynchronous execution of agentsawiels which resulted in
different outcomes from the behavior deliberations.

ASR was taken as the degree of agent quality. AR AS1 indicates the agent
always succeeded, while an ASR of 0 indicates geniaalways failed — real values
could fall between these. Logistic regression wasduto identify relationships
between the agent quality and the chosen techngulgect experiences and their
understanding of the provided primitives. The regien was made for every
task/group combination (4 regression models) as agefor all agent runs for Task 1
and for Task 2 (combining data from Group 1 andupr@, model is including the
group parameter) and is presented in 4.2.

There were 4 questions testing subject understgnafirthe behavior primitives.
For the subsequent analysis, we averaged respohseasse questions and used this
average as therimitives apprehensiownariable.



4 Results

4.1 Comparison of the two groups with regards tcsubjective Java/POSH
preference

The attitude of the students towards the languagtee two tasks is shown in Tab. 1,
3, S2-S7 together with their means and standartiens.

Regarding the first task, Group A exhibits a strpngference to POSH (Hunter in
POSH) while Group B (Hunter in Java) was more iiedént. The contingency table
of Java/POSH preference after the first task isvshin Tab. 2. The preferences in
Group A and B are not significantly different (phva = 0.12).

Table 1. Left: Group A, Hunter Task (in POSH), Java/POSlHdfgrence. Right: Group B,
Hunter Task (in Java), Java/POSH preference.

Ans. # % Ans. # %
1 0 0 1 0 0
2 2 15.4 2 5 35.7
3 1 7.6 3 4 28.6
4 3 23.1 4 1 7.1
5 7 53.9 5 4 28.6
Mean 4.15+1.14 Mean 3.29+1.27

Table 2. Contingency table of the Java/POSH preferencestafidirst task.

Java pref. (1-2) Can't decide (3) POSH pref. (4-5 Total
Group A 2 1 10 13
Group B 5 4 5 14
Total 7 5 15 27

Concerning the second task, Group A (using Java) imdifferent and Group B
(using POSH) exhibited preference to Java (TabTHe.preferences in Group A and
B are not significantly different (p-value = 0.3&).general, the students shifted their
preference to Java after the second task, whishrismarized by Tab. S5.

General preference between Java and POSH, as exbsdéss PostExam
guestionnaires, is not a clear one. The preferenge&roup A and B were
significantly different with Group A preferring P®ISwvhile Group B preferring Java
(p-value = 0.01jsummarized in the Tab. 5).

Table 3. From left to right: i) Group A, Guide Task (in &gyvJava/POSH preference, ii) Group
B, Guide Task (in POSH), Java/POSH preference, Giipup A, PostExam, Java/POSH
preference, iv) Group B, PostExam, Java/POSH pmdere

Ans. # % Ans. # % Ans. # % Ans. # %
1 2 15.4 1 3 215 1 0 0 1 3 21.5
2 4 30.8 2 7 50.0 2 3 23.1 2 6 42.8
3 1 7.6 3 2 14.3 3 2 15.4 3 4 28.6
4 4 30.8 4 1 7.1 4 3 23.1 4 1 7.1
5 2 15.4 5 1 7.1 5 5 38.4 5 0 0

Mean 3.00+1.41 Mean 2.29+1.14 Mean 3.77£1.19 Mean 2.21+0.86




Table 4. Contingency table of the Java/POSH preferencestaftesecond task.

Java pref. (1-2) Can't decide (3) POSH pref. J4-5 Total
Group 1 6 1 6 13
Group 2 10 2 2 14
Total 16 3 8 27

Table 5. Contingency table of the general Java/POSH prefeseas answered in the PostExam
guestionnaire.

Java pref. (1-2) Can't decide (3) POSH pref. J4-5 Total
Group A 3 2 8 13
Group B 9 4 1 14
Total 12 6 9 27

4.2  Comparison of the two groups with regards tmbjective task solution
quality

Logistic regression was used to identify relatiopshbetween an agent’s quality
(dependent variable) and chosen technique (Ja®0&H), subject experiences and
apprehensions of provided primitives. The paramdter the group was not
statistically significant and was left out from thedel for the sake of simplicity. We
have created 3 models (using data from both Groapd\B, from Group A only and
from Group B only) for both tasks (6 models in tpta

Models description. The models’ parameters are summarized in Tab. o8neS
dependencies between model variables and ageralgygare presented in Figs. S8 —
S10. Every figure contains graphs for Task 1 (left)d Task 2 (right) models
separately. Models using data from both groups aionthe additional discrete
variable Technique(Java / POSH), therefore they are visualized witbh graphs
separately in each picture (for the Java and PO&#¢scseparately). As all models
amount to a function from the n-dimensional spagielded from the Cartesian
product of model variables’ ranges) into <0;1> fagrmuccess rate, model dependent
variable), every presented graph can be seen &marput through chosen variable
of the whole model’s n+1-dimensional graph wheteotlier variables are fixed at
data’s means.

Tasks comparison.Task 1 was solved considerably better by subjiota higher
years of study (Fig. S8, left). The data for Taskal$o suggests that subjects’
comprehension of provided primitives affects thaligy of their agents (Fig. S9,
left); this is more pronounced in Group A’s subgechdditionally, solutions from
Group B (implementing the Hunter agent in Java)caig correlation with previous
Java experiences (Fig. S10, left). The chosen tgeobn(Java or POSH) did not
influence the agents’ success (see first P@SH-influencecolumn in Tab. 6) in
Task 1.

The interpretation of results of Task 2 is not lsic Task 2 was also sensitive to
Java experience as well as primitive comprehen@iamn S10, S9, right), but results
were more widely distributed this time. Also, ageat Group B driven by POSH did



considerably worse than agents of Group A that veenatrolled by Java (see the
fourth rowPOSH influenceolumn in Tab. 6).

Table 6. Logistic models of agent success with respectre@iamming technique, subject’s
year of study, his/her experiences and primitivesngrehension. Every row contains the
parameters of one model. ColunPOSH-influence(discrete variable) explains how the
probability of an agent’s success changes whenatient was programmed using POSH
(present only when data from both groups are ugdtipther columns (continuous variables)
show how respective variables contribute to ASRIds ratio describes how the variable
influences the probability of an agent’s succesalu¥s greater than one indicate that the
probability grows proportionally with the varialded vice versa. Values in bold are discussed
in Section 5.

Model fit
comp. Primitives
against ) POSH Year of study Ja\_/a Pogamut used comprehensi-
influence experience at home
Data used empty on
model
Odds . Odds . Odds . Odds - Odds .
P-Value ratio Sig. ratio Sig. ratio Sig. ratio Sig. ratio Sig.
GA+B, T1 10'2 1.10 2.08 ** | 1.08 0.96 2.58  w*
GA T1 10 o ok
(POSH) 10 X 2.10 1.19 1.04 1.24
GB, T1 (Java) 16 X 181 1.30 * 0.96 0.74
GA+B, T2 10° 0.44 ** 0.88 1.11 ** 1.05 . 1.58 *
GA, T2 (Java) 0.057 X 0.99 0.91 0.91 * 2.37 xx
GB, T2 7 -
(POSH) 10 X 0.81 1.09 1.23 1.46

Significance (P-Value): 0 < ***< 0.001 < **<0.04*0.05<.<0.1

5 Discussion

This pilot study compared the usability of an acaitereactive planning system to
the usability of a common programming language wéweplied to programming the
behavior of virtual agents in 3D game-like taskheTPOSH reactive planner
empowered by a graphical editor of plans was chdseirthe former and the Java
programming language for the latter. This quantiéaexperimental study is, to our
knowledge, the first in the field of virtual aggarbgramming techniques (but see also
[29]). The purpose of the study was twofold. Firgte aimed at investigating
objectively the usability of the two techniques,king a small step towards the grand
goal: isolating features that contribute to usapitif different approaches to control
virtual agents in 3D videogames and simulationgo8dly, we aimed at answering
the question whether the chosen experimental mgtkodeis promising for future
studies. We now discuss these two points.



5.1 Results

Summary of the data. The answer for the question of usability of Jand #OSH
has two sides which are intertwined. First, thera subjective answer of comfort in
using a chosen system as presented in Sec. 4.dn&dbere is an objective answer
that comes of assessing the quality of agentsesepted in Sec. 4.2.

Regarding the subjective answer, there are two maticomes:

a)

b)

Subjects, in general, reported that they prefefP€SH for the first task

(Tab. 1, 2, S2, S3) while they preferred Java lier latter (see Tab. 3, 4, S4,
S5);

group A subjects tend to prefer POSH while GroupuBjects tend to prefer
Java (Tab. 5).

The objective answer as showed by logistic regoessidicates several outcomes:

<)
d)

e)

Students in a higher year of study tend to perfbatter in the first task while
there was no such influence in the second taskHigpe8);

previous Java experience was important in Task Grioup B (using Java in
that task) but not in Task 2 in Group A (using Jawvthat task) (Fig. S10, left;
Tab. 6);

comprehension of the provided primitives was higlgéeneral (Fig. S9 left;
means in both tasks were higher than 4.1) and s¢éenmfluence ASR a bit
(Fig. S9 left; Tab. 6);

the first task was done equally well in both POSid dava (se©dds ratioof
POSH influencen the first row of Tab. 6) while in the secondkasubjects
using POSH performed significantly worse (§&ads ratioof POSH influence
in the third row of Tab. 6).

General comments.Arguably, the main underlying theme is that théadadicates
different outcomes for the two groups. Why? Let start with comments on
distribution of subjects into Group A and B wittspect to major variables (Comment
1), proceed with comments on several uncontrollediables that may have
influenced the outcome (Comments 2, 3, 4), andlljingturn to the individual
outcomes A-F above.

1.

Is the average programming experience of the stsbjbe same for the two
groups? Tab. S6 indicates that Group B may havsistea of slightly more
Java experienced subjects, but the difference legtvibe groups is rather
small. Data for the total previous programming eig@ee look similarly (note
that mean is not a useful aggregative variable bigree the learning curve is
not linear). Students from Group B also have highears of study on average
(A: mean=3.3; SD=1. B: mean=4.4; SD=1.5). Thishis dtutcome of the rank-
based sampling procedure, which will be commente8&c. 5.2. For present
purpose, it is important that Group B may have casegd slightly more
experienced programmers on average than Group A.

Subjects were undergoing a coding marathon asirtaé dxam lasted 8 hours
so the results from the second task could have lé@sed by subjects’
tiredness. However, it seems reasonable to asshatebbth groups were
equally tired.



3. It may be that the second task is harder in genémdependently of the
tiredness. We did not consider the complexity aksabeforehand; therefore
we have askegbost hocfour independent VR experienced programmers to
judge tasks’ complexity out of the assignmentsy(tiliel not perform them, we
have just presented them written assignments) ask s$uitability for the
chosen technique. The second task was perceivezhsisr only by one of
them; the others thought that the second task idehaTheir comments
regarding the suitability of techniques diverged.

4. It also may be that POSH fits better for solving finst task while Java for the
second. This idea is actually supported by fre@nteparts of questionnaires.
Some subjects indicated that Java was more suitabtee second task while
none the other way round. Some subject’s commertteet?° task:

“There were more if-then rules in the first taslkathhere, therefore POSH
would have suited the first task more, using ieh&as mere overkill.”

“Using POSH for this task would be a nuisance.”

“In contrast with the first task, this was too colewto niggle with POSH plan
graphical editor. It was better to address it invaa’

Main interpretation. In our opinion, the most plausible explanationtad tesults is
that they are produced by combination of two effettte fact that the second task can
be more easily solved using Java (unlike the fask), and the fact that the graphical
drag&drop editor and POSH (it is not clear whichtliése or whether both of them
together) is more appealing to a less skilled anaieand such an audience can use it
more effectively than Java. This statement agradsResults (A) and (B) and partly
with (C), and is further supported by Comments @ 4n Of course, our data only
indicates that this can be the case; a useful hgsat for further testing rather than a
conclusive result.

It is also possible that the essential differenes that Task 2 was best completed
by altering or adding to the provided the primisv@8ecause of the way POSH was
introduced with the emphasis on the graphical towst subjects appeared to feel
obliged not to alter any Java code while they wierédhe POSH condition. One
student did provide an exceptionally good ageritask 2 by combining POSH and
altered Java primitives. This strategy is more @eging with the way POSH is
presented in the academic literature as a part afe@elopment methodology
(Behaviour Oriented Design) rather than a standealpproach. However, only one
exceptional programmer tried this strategy.

Another way of looking at the data is that POSHredurprisingly well (Tab. 2,
4, 5) given many subject’s initial Java experietecg no initial POSH experience.
Investigation of steepness of the learning curvghinibe fruitful in the future. Useful
information could also come out of studies of pesgmers already skilled in using an
agent-based technique. Sadly, finding such a supg is presently a difficult task.

It is not surprising that understanding the priwai§ (Result (E)) has a positive
effect on ASR. In fact, the influence is rather mahich is most likely caused by a
ceiling effect: the average understanding of piirag was high in general, suggesting
that our primitives were well chosen, prepared @éoclmented.

Several questions remain open. We do not know Waketwas no influence of the
students’ years of study on the agents’ performanade 2° task (Result (C), ™



part); perhaps the assignment was not sensitivaginar perhaps the difference on
the T task indicated more advanced students become autmet at a new problem
more quickly, whether through learning more quictydue to being less stressed by
exam conditions.

Concerning Result (D), it is not surprising thakeyous Java experience was
important in Task 1 in Group B but not A, becauseformer group used Java. We do
not know why previous Java experience had no infteeon Group A in Task 2;
again perhaps the"2assignment was not sufficiently sensitive to thasiable. Also
the sensitivity to previous Java experience in Tdsksuggests that classical
programming languages are not as suitable fordgpsfienced programmers such as
game designers as higher-level graphical toolspéanthing languages are.

Generalization. The results of this study indicate that academitin@ues may in
certain cases provide advantages over classicgramoning languages, but it is too
soon to generalize based on the results of oney stedformed on two particular
approaches and tasks. More studies are neededtam ahore conclusive data for
further supporting or refuting such a claim. Nekel¢ss, it is a good sign for
developers of various agent-based languages sutdsan [26] or GOAL [11]. Closer
examination is needed to identify different comfties underlying virtual agents’
development. Such examination may help recognizsipilities and limits of various
techniques and uncover their strong and weak polfas instance, it may be that
when augmented by drag&drop graphical editors @SIP was in our study), some
of these languages may be better suited than isgrifinguages for people with
mediocre programming skills, such as some gamgues. We believe that without
such analysis the gaming industry would unlikelybeamece academic techniques for
virtual agent’s development.

5.2 Lessons learned

As the comparative study of different techniquesbls for virtual behavior
development is new, we report lessons learned agdest improvements for future
studies. The main lessons are:

1. Performing the study in two consecutive parts pramdiased data on the
second part due to subjects’ tiredness. This caadoeessed by altering the
experiment design either by a) dividing subject® ih groups giving every
group only one combination from the task-technique pairs, whicbuld
however require at least twice as many subjectb) dny dividing each group
into two subgroups, which would solve both taskshehut in the reverse
order; that would allow the statistical computatafrthe effect of tiredness, or
¢) to perform the second task in another day.

2. It would be beneficial to administer one more gioestaire during the pretest
to obtain the initial preferences of subjects rdgay the techniques compared
in the study. In general, several other variabtaddbe controlled better, e.g.
the task difficulty (see also Comments 2, 3, 468.%.1).

3. The analysis should be complemented with qual#astudies to gain more
insight. This may have several forms. a) Intergstiata can be obtained by



analyzing the agent code as has been previouslg diyn Hindriks and
colleagues [19]. We may still do this with the cdd®m the present study. b)
Focus groups or structured interviews can be cdedufter the main study to
obtain more precise explanations for subjects’grmfces and their solutions’
quality. ¢) Questionnaires should encourage subjactdescribe reasons for
their preference (the importance of this has beghlighted in Comment 4 in
Sec. 5.1).

4. Attention should be paid to the evaluation’s tagkach task should be judged
not only for its general difficulty by programmerskilled with VR
technologies, but also for its difficulty regarditige technique being tested. In
general it is presumably a good thing to make assigasks varied so that an
over-general conclusion is not reached without adtsgjustification. After the
evaluation, subjects should be asked for their assessment of the tasks to
check if it correlates with the experts’. Note thmith subject and expert
assessment should be checked against actual qaidletifesults.

5. The sampling procedure should be carefully consmlleEvidently, even a
rank-based sampling may produce unequal groupsh (véspect to some
variables). When there are a lot of variables anglatively small sample size,
such an outcome may be inevitable. The samplingeguhare will also be
different for different questions asked, e.g.,ritovould like to assess group of
experienced Java programmers against inexperieooed, the criterion for
sampling would be previous Java experience.

6. Pretests are important in order to ensure thatestsdhave certain minimal
skills for the main study, e.g. from the presentdsgtthe ability to understand
behavior primitives. Pretests are also importamt dbtaining data for the
sampling procedure.

5.3 Future work

Our results clearly indicate a need to continudnwiimparative studies and to begin
to identify the different aspects of the complesktaf virtual behavior development.
We are considering performing another study thiaryaaking into account the
lessons learnt, possibly utilizing GOAL [10] as awcademic reactive planning
technique that is based on the BDI paradigm. We atsy run the same test again but
with POSH clearly set forward not as an alternativelava but rather as a way to
supplement it. Al action selection systems arenidégl to simplify the development
of agent intelligence, not to replace it.

6 Conclusions

This pilot study compared an academic reactive rptantechnique (namely POSH)
against a common programming language (namely Jaid) respect to their
usability for programming behaviors of virtual atemn 3D game-like tasks. The
study has investigated the performance of subjeatgnts with respect to the
technique used as well as subjects’ preferencesrttsithe techniques.



The conclusion, stated with caution, is threefélist, from a general perspective,
POSH scored comparable to Java. Second, in a mergfained manner, usability of
Java and POSH seem to be task-sensitive and subjgqgberceived usability of the
techniques as well as objective quality of the salyy agents with respect to the
techniques may change with subjects’ programminges&nce. Third, the
experimental method is useful, but should be complged by other approaches.

Taken together, these are promising news for agesed control mechanism
developers. Future studies are needed and theydstoaus on isolating mechanisms’
features that contribute most to the mechanismability for different target groups
of users, e.g., game designers vs. programmers.
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Appendix

This section contains additional tables, figured aome additional text concerning
presented study.

Reusable package.The package containing the assignment texts, Paigan
platform, template agent projects and the scemasp can be downloaded from [25].

Table S1.Number of students in groups according to thgiesyof study and years of study.
Master students have number of years spent for laehelor studies included into their years

of study. Note that bachelor studies last 3-4 yégpgcally and master studies takes usually
extra 2-3 years.

Group A
Study / Year of 2nd 3¢ 40 5N Total
study
Bachelor 4 2 0 0 6
Masters 0 0 6 1 7
Total 4 2 6 1 13
Group B
Study / Year of | 2™ 3¢ 40 5n 6" g Total
study
Bachelor 2 1 3 0 0 0 6
Masters 0 0 3 2 2 1 7
Total 2 1 6 2 2 1 14




Table S2.List of all behavior primitives that were providedthe Task 1.

Sensors

class of primitives

X parameter

Y parameter

RunningToltem,
RunningToPlayer,

RunningToNavPoint

canSee X AlienBlood, Ammo, Enemy,
Weapon, WeaponOrAmmo
get/know X NavPointToExplore
know XY SpawningPoint AlienBlood, Ammo, Weapon,
WeaponOrAmmo
Spawned AlienBlood, Ammo, Weapon,
WeaponOrAmmo
getXyY Random NavPoint
Nearest NavPoint
NearestVisible AlienBlood, Ammo,
AmmoOrWeapon, Enemy,
NavPoint, Weapon
NearestSpawned AlienBlood
Ammo
Weapon
WeaponOrAmmo
AlienBlood, Ammo, Item,
Weapon, DistanceToTarget
has X Ammo, Weapon
is X Moving, Shooting,

wantToSwitchToltem

Actions
run X Toltem
ToNavPoint
ToPlayer
shootEnemy

stop X

| Movement, Shooting




Figure S1.Example of the code that the subjects were crgalinp: part of a POSH plan of
the Hunter task as visualized by the graphicabedB&elow: Hunter code in Java. The code and
the plan were taken from an exemplary solution tedbaby one of VR experienced
programmers.
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Competence

shoat
Action
{0 Hunter-Java - NetBeans IDE 6.
File Edit View Navigate Source Refactor Run Debug Profile Team Tools Window Help
PEES DCE o T DB G
2 [ stertPage w[E° Huntedavaiava &
§ BER-F-aetFf@eereuon| s
Ce| 1010 if (canshoot () && canSeeEnemy()) {
8| 1011 if (isEnemyInShootingDistance()) {
ﬁ 1012 shoot (getNearestVisibleEnemy () ) ;
o 1013 return;
=] 1014 }
é 1015 runToPlayer (getNearestVisibleEnemy () ) ;
1016 1} else if ('hasWeapon()
1017 && canSeeWeapon()
1018 && wantToSwitchToItem(getNearestVisibleWeapon())) {
1019 runToItem(getNearestVisibleWeapon());




Table S3.List of possible commands that can be issued kyGhide and corresponding
possible answers.

Guide commands Possible Civilian answers
commandCivilianCanSee answerAngry
answerDontUnderstand
answerCanSee
answerCantSee
commandCivilianFollowMe answerAngry
answerDontUnderstand
answerCantFollowingCantsee
answerFollowingOk

commandCivilianStop answerAngry
answerDontUnderstand
answerStopped

commandCivilianTurn answerAngry
answerDontUnderstand

answerTurning

Table S4.List of all behavior primitives that were providedthe Task 2.

Sensors

class of primitives X parameter Y parameter
can XY See Civilian, Player
FollowCivilian
get/know X NavPointToExplore
getXyY NearestVisible NavPoint, Player
DistanceTo Civilian, NearestPlayer, Target
is X CivilianFollowing,
CivilianMoving, CivilianNear
PlayerinTalkingDistance, Moving,
RunningToPlayer,

Actions
command X Y | Civilian | CanSee, FollowMe, Turn, Stop
faceCivilian
followCivilian
run X ToNavPoint, ToPlayer
set X CivilianSpeed, GuideSpeed

stopMovement




Figure S2.Group A, Hunter Task (in POSH), Java/POSH prefazen
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Figure S3.Group B, Hunter Task (in Java), Java/POSH preferenc
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Figure S4.Group A, Guide Task (in Java), Java/POSH preferenc
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Figure S5.Group B, Guide Task (in POSH), Java/POSH preference
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Figure S6.Group A, PostExam, Java/POSH preference.
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Figure S7.Group B, PostExam, Java/POSH preference.
10 4
9
8 Ans. # %
o 1 3 215
£s 2 6 428
ER) 3 4 28.6
2 4 1 7.1
: 5 0 0
0 Mean 2.21+0.86
1 2 3 4 5
Strong Java Strong POSH

Answers

pref. pref.

Table S5.Contingency table of the Java/POSH preferences shif

Change in preferences of Group A

T2 - Java T2 - Can't decide T2 - POSH | Total (Task 1)
T1 - Java 2 0 0 2
T1 - Can't decide 1 0 0 1
T1 - POSH 3 1 6 10
Total (Task 2) 6 1 6 13

Change in preferences of Group B

T2 - Java T2 - Can't decide T2 - POSH | Total (Task 1)
T1 - Java 5 0 0 5
T1 - Can't decide 3 1 0 4
T1 - POSH 2 1 2 5
Total (Task 2) 10 2 2 14

Table S6.Table summarizing previous Java experiences in gaups (in man-months).

0-1 months  2-5 months 6-9 months > 9 months Total
Group A 9 2 0 2 13
Group B 6 4 1 3 14
Total 15 6 1 5 27




Figure S8.Dependency of ASR on subject’s year of study (k€fask 1; Right — Task 2).

Group A+B, Task 1: Agent success rate ~ Year of study Group A+B, Task 2: Agent success rate ~ Year of study
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Figure S9.Dependency of ASR on primitives’ comprehension {kefask 1; Right — Task 2).

Group A+B, Task 1: Agent success rate ~ Primitives appreh. Group A+B, Task 2: Agent success rate ~ Primitives appreh.
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Figure S10.Dependency of ASR on previous Java experience {L&ask 1; Right — Task 2).

Group A+B, Task 1: Agent success rate ~ Java experience Group A+B, Task 2: Agent success rate ~ Java experience
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