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Abstract. An application featuring virtual humans is a program that simulates 
an artificial world inhabited by virtual people. Recently, only either small 
artificial worlds inhabited by a few complex virtual humans, or larger worlds 
with tens of humans, but performing only walking and crowding, are simulated. 
This is not surprising: a large world inhabited by complex virtual humans 
requires unreasonable amount of computational and memory resources. In this 
paper, we report on the project IVE, a common simulation framework for huge 
artificial worlds, pointing out the level-of-detail technique used at the 
behavioural level. The technique addresses the issue on reducing simulation 
demands by gradually decreasing simulation quality on unimportant places, 
while keeping the simulation plausible, with minimum scenic inconsistencies. 

1   Introduction 

Virtual humans are becoming increasingly popular both in the academic and industrial 
domains. Applications featuring virtual humans include computer games, virtual 
storytelling, movie industry, entertainment, military simulations, and behavioural 
modelling. An overview of domains of virtual humans is given for example in [11]. 

From the technical point of view, typically, each virtual human is viewed as an 
autonomous intelligent agent in the sense of Wooldridge [12]; such an agent that 
carries out a diverse set of goals in a highly dynamic, unpredictable environment with 
the objective to simulate behaviour of a human.  

The research on virtual humans (v-humans in the following) is mostly focused 
around graphical embodiment and action selection mechanism. Generally, the former 
means a graphical visualization of a v-human’s body, and the latter means deciding of 
what action to perform next in the virtual world. The main problem with the 
visualization is that v-humans must look believably. For example, it has been shown 
(e.g., [9]) that emotional modelling plays a significant role in a posture and face 
visualization. The main problem with the action selection is that the environment is 
dynamic and unpredictable. A v-human must respond in a timely fashion to 
environmental changes that are beyond the v-human’s control.  

In this paper, we address a different issue. During our previous work on a toolkit 
ENTs for prototyping v-humans [1], we discovered that it was not a problem to 
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develop a single v-human with meaningful and believable behaviour. The problem 
was to populate a large artificial world with tens of v-humans running on a single PC, 
because  of the limited  computational  and memory resources.  Most of the  current 
v-humans either “live” in a small artificial world (e.g., in a room, not in a village), or 
do exhibit only a small portion of human-like behaviour (e.g., only object-grasping, 
walking, or a few tasks, not weekly human activities). An application or a technique 
that would challenge large simulations is missing. Such a technique would be 
extremely useful in the fields of computer games, and virtual storytelling. 

At the time, we are working on a project IVE (an intelligent virtual 
environment) [2], [7], which is focused on v-humans in large and extensible 
simulations. One of the goals of the project is to explore and implement the level-of-
detail technique (LOD). This technique is widely used in computer graphics for 
reducing computational cost. Our aim is to use it at the behavioural level; it means to 
transfer it to the domain of artificial intelligence. 

The LOD technique for behaviour of v-humans is based on the simple idea: there 
often exist only few places in the artificial world important at a given simulation time 
and the unimportant places do not need to be simulated precisely. If the artificial 
world is simulated only partially, the demands of the simulation can be reduced 
significantly. However, there are three problems coming out with the implementation: 
1) how to identify the important places, 2) how to simplify the simulation in the 
unimportant places, 3) how to gradually simplify the simulation between an important 
and an unimportant place? 

In this paper, we present our approach to LOD technique at the behavioural level. 
We are motivated by the growing need of large simulations with v-humans in the 
domains of computer games, and virtual storytelling. The goal is to address the three 
aforementioned problems. The algorithms presented here are already implemented in 
the on-going project IVE. 

The rest of the paper proceeds as follows: First, we describe related work on the 
LOD technique in artificial simulations. Second, we briefly present our framework 
and its view of the artificial world. Then, in Section 4, we present main concepts of 
the simulation LOD followed by a brief description of our implementation, in 
Section 5. Finally, we conclude in Section 6. 

2   Related Work 

The LOD technique is widely used in computer graphics, but not often in behavioural 
simulations. The idea behind is simple: compute only such details that are important 
at a given simulation time. At the behavioural level, that means places observed by 
the user, and other places important for the overall course of the simulation.  

Sometimes, this idea is exploited in computer games, but only to a limited degree. 
Behaviour of the creatures out of the sight of the user is not simulated at all typically. 
This often causes a storyline inconsistency - the simulation is not believable. Instead 
of “non-simulation”, there is a need for a gradual simulation simplifying. 

More robust idea how to use the LOD at the behavioural level using hierarchical 
finite state machines is presented in [3], but it is only a sketch not further explored.  
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Sullivan et al. utilised the LOD for conversational behaviour by means of rules and 
roles filtering [10]. In a simplified fashion, the rules and roles can be viewed as pieces 
of a code layered upon a basic v-human. If the v-human is not seen, the role is not 
passed to it, and consequently only the basic behaviour is performed. Contrary to our 
approach, they simplify only the behaviour of v-humans, not the overall simulation. 

A robust approach to (non-pre-emptive) scheduling of processor time to individual 
v-humans is presented in [13]. However, as the not-scheduled behavioural scripts are 
not run, this approach seems to fit into the realm of “yes/no simulation”. 

3   Project IVE 

Let us first describe our framework and our view of the artificial world. In our 
framework we distinguish between objects, actors and processes. All physical objects 
in the artificial world are objects. Special objects that can manipulate with other 
objects are called actors. The only way how to affect objects is to perform a process. 

In our framework, the world consists of locations on which objects can be located. 
Locations are organised in a hierarchical structure related to the LOD technique. The 
structure is always a tree and levels of the tree correspond to the LOD levels. LOD 
value of an object is defined as a corresponding LOD level of the location on which 
the object is situated. 

Objects presented in our framework are smart (in the sense of [8]), which helps 
with world's extensibility. They contain necessary graphical information and 
description of low-level actions (e.g., grasping the object). However, they do not 
contain the artificial intelligence itself. Our objects also provide affordances [5] - each 
object is able to give a list of processes it is designed to participate on.  

In our framework, processes can be also labelled as smart. Each process has 
a number of sources on which it operates. When executing a process, objects are 
substituted as these sources. Some of the sources have a special actor position. From 
the view of the process, the position of actors differs from the other sources especially 
in the connection to the LOD, as we shall see later. Our processes have also an ability 
of suitabilities - they can say how much are the given objects suitable for being 
substituted to the process. In other words, each process can say, if it is a “good idea” 
to be executed with some particular objects as sources or not. 

Processes in our framework are organised in a hierarchical structure tightly 
connected with the LOD technique, as well. Each process can be performed 
atomically, or expanded to subprocesses. The structure is not as strict as in the case of 
the locations—process can be atomic at more LOD levels. Each executed process can 
stay in one of these states: 

− Not-existing – the LOD value is too low, a super process is running. This process 
does really not exist in the world. If the process is running and the LOD value goes 
too low, it is stopped, partially evaluated and discarded. 

− Atomic – the process is running atomically. It waits till its finish time and then 
changes the world’s state. 

− Expanded – the process is expanded to subprocesses. Such process performs no 
action, it only waits for it’s subprocesses to do all the work. However, it can 
become atomic as a consequence of the LOD changes. 
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To define the process’ state, we need for each process two border LOD levels -
minimum level (border between not-existing and atomic process) and maximum 
level (border between the atomic and the expanded process). The state of the 
particular process is then determined by the LOD values of its actors in relation to 
the border levels. That means, the process is atomic (the only process’ state in 
which the world’s state is influenced) if the actor’s LOD is between the process’ 
minimum and maximum levels, similarly for the other states. The process can 
have any number of actors, but their LOD values must not require different states 
of the process (they all must have the LOD value at the same side of the border 
levels). It is up to the framework to adjust LOD values in the corresponding 
locations. 

Hierarchical if-then rules are used to describe the processes. However, the 
subprocesses of an expanding process are not hardwired. The action selection is 
driven by a goal concept [4, 12]. The actor has a goal (an intention to reach some 
objective) and can try various processes to satisfy the goal. Processes also do not 
expand directly to subprocesses, but rather to the subgoals (see Fig. 1). In this 
concept, the actor obtains the list of goals needed to satisfy the parent process and its 
task is to find and perform appropriate processes. 

 

Fig. 1. Left – process hierarchy without goals. Right – goal-process hierarchy, where the 
process acts as an implementation of a goal. 

The actual artificial intelligence is not encapsulated in the actor’s object. This is 
the purpose of a presence of entities called geniuses. Genius is the one who chooses 
the processes, looks for the suitable sources and asks the framework to perform the 
chosen processes. An actor can have its own genius, which is actually his brain. But 
in addition to that, dedicated geniuses are present in our framework. These geniuses 
are specialized to particular activities and are able to control actors passed by 
another geniuses. This concept allows for example creation of dummy actors, which 
are driven by geniuses of locations as they travel within the world, or geniuses with 
ability to perform some non-trivial interaction among more actors. For example 
playing cards in a pub could be easily driven by a single specialized genius,  
while controlling such an action from more individual geniuses would be a 
tremendous task. 
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4   Simulation LOD 

In the previous section we have introduced our view of the artificial world and both 
the location and process hierarchy. Now let us take a closer look at the simulation 
LOD. In this section, we shall introduce few rules that control location hierarchy 
expansion and then, in the next section, we shall describe implementation of the 
component that enforces their abidance.  

 
Fig. 2. The simulation LOD can be viewed as an elastic membrane cutting thought the location 
hierarchy. If no other force exists, the membrane presses LOD to low values (fewer details). 

The best way to imagine the simulation LOD is an elastic membrane cutting 
through the location hierarchy (see Fig. 2). Only the locations above this membrane 
do currently exist and so only these locations are simulated. Objects are located only 
in leaves of the clipped hierarchy tree and their LOD values are equal to the LOD 
value of these leaf locations, as described in the previous section. 

The base framework aims to keep details low (the membrane presses upward) in 
order to simplify (and thus speed-up) the simulation. On the contrary, simulated objects 
press the membrane down to ensure enough details necessary for their own simulation. 

Each object has two values: the existence level and the view level. The existence 
level marks the border LOD value below which the object is not simulated. The view 
level is a LOD value which is enforced by the object if current LOD value is greater 
or equal to existence level (see Fig. 3). Situation, in which the actual LOD would be 
between the view and existence level, is considered invalid and our framework either 
expands or shrinks all such locations to adjust LOD value out of this interval. 

All objects in given location and their existence and view levels define possible 
LOD values that would not result in the invalid state (invalid states forms invalid 
areas on the Fig. 3). This is the basic rule that our framework must obey and that can 
be violated whenever an object changes its location. 

Typical use for an important object (such as the user’s avatar) is low existence level and 
high view level which enforces high LOD values in the location where the object stays. On 
the other hand, unimportant objects would have the existence level close to the view level 
and both quite high. This does not enforce nearly any changes in LOD (corresponding 
invalid area is small) but rather only specifies whether such an object exists or not. 
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Fig. 3. Valid and invalid LOD values based on the existence and view levels of more objects 

Unfortunately, this is not enough to ensure fluent simulation. Problem occurs when 
an important object frequently moves between two locations from different branches 
of the location hierarchy. This could cause many expansions and shrinks constantly 
which is definitely not acceptable. We would prefer a LOD membrane to create 
a ‘crater’ rather than a narrow ‘hole’ around the important objects. This would make 
neighbouring locations to prepare for a visit of the VIP object before it reaches their 
borders by gradually increasing their LOD value (expanding to sublocations).  

This idea is handled by adding LOD influence between locations. It is a relation 
which marks nearby locations by a certain number. This number defines how much 
can the LOD values differ between these two locations. 

These rules, when enforced, answer the three basic questions from Section 1. 
Important places are identified as places containing objects with low existence level 
and high view level. Even more, these levels can also say how much important the 
objects are. Answer to the second and the third question is inherent in the fact that the 
whole world is hierarchical with each hierarchy to some extend corresponding to the 
LOD levels. So we can easily simulate on different levels. Gradual LOD changes are 
assured by the use of LOD influence between neighbouring locations. 

5   Implementation 

In this section, we describe a component called LOD Manager which enforces 
abidance of the rules mentioned in the previous section. 

LOD Manager aims to expand and shrink locations to achieve valid LOD values 
with regard to objects’ view and existence levels and LOD influence. On the other 
hand, it keeps LOD value as low as possible to assure a fast simulation. 

Another requirement, that LOD manager must comply, is to avoid ineffective 
expands and shrinks when an object constantly moves around the border between two 
locations. Such situation would happen with a naïve solution that would shrink 
locations as soon as their existence was not strictly enforced. Such an object could 
cause unnecessary load on the system. We could solve this requirement by defining 
a second LOD crater with the same centre and greater radius. The inner crater would 
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affect expansions and the outer one shrinking. This approach would need additional 
information describing outer crater in the world description, so we decided to 
implement another solution. It resembles the garbage collection technique known 
from programming environments. 

LOD manager is gathering information about objects’ position and movement from 
the framework by a simple interface containing methods addObject(object, location), 
removeObject(object, location) and moveObject(object, oldlocation, newlocation). 
Beside these methods, LOD Manager can be asked to remove locations that are not 
needed—to push the LOD membrane upwards. It is up to the framework to decide 
when to invoke cleanup()—time by time or when the simulation goes too slow. 

LOD manager changes the state of the location tree by invoking expand() and 
shrink() methods on particular locations. During execution of expand() method, the 
location generates a net of its sublocations and objects specific for this location (e.g., 
flowers in the garden). All objects fall down to the new sublocations. Also an option 
of object’s expansion to subobjects is plausible but we have not implemented it yet. 
Method shrink() makes the target location atomic. Its location subtree is forgotten. 
Objects form the subtree are either placed on the shrunk location (if their existence 
level is lower than its LOD value) or cease to exist (these are typically specific for the 
given location and can be generated again during the expand() call). 

We say that the location holds the basic condition if there is no object placed in its 
subtree such that LOD value of the location would be between the object’s existence 
(included) and view (excluded) level. Such a location could easily be atomic without 
causing an invalid state (see Section 3) and so the shrink() method can be called on it. 
However, we could still violate influences between locations and lose the ‘crater’ 
optimalization. Fig. 3 shows 11 locations that hold the basic condition as squares and 
4 that do not as circles. 

During the simulation, LOD Manager is accepting notifications about objects’ 
movement (via methods mentioned above). It keeps notion about locations that hold 
the basic condition and also controls LOD influence. Thus it can dynamically detect 
an invalid state or violated influence. In both cases, it reacts by calling expand() on 
offending locations. 

This way, locations can get only expanded. The shrink() method is not called 
dynamically but only during the cleanup() method execution. In this method, LOD 
Manager finds a cut through the location hierarchy that is closest to the root while still 
acceptable with respect to the basic condition and LOD influence. 

For this purpose, we use the depth first search (DFS) algorithm. If a location is 
intended to be shrunk it is marked. In the instant moment, if the location is marked, no 
of its descendants or ancestors can be marked. We can see three types of edges in the 
graph of currently existing locations: 

− Disabled – heads from the location that holds the basic condition to each its child. 
This edge cannot be used during the traversal (unless shortcut by an influence 
edge). 

− Enabled – other edges that head from the parent to its child. These can be freely 
used during the traversal. 

− Influence edge – edges that correspond to the LOD influence. These are used too, 
but it could happen that an ancestor of influence target is already marked. In such 
a case the ancestor is unmarked and all its children are traversed.  
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Fig. 4. On the picture a, DFS algorithm have visited location 1 and have found no enabled edge 
to continue. So location 1 is marked and DFS continues by traversing the second child of the 
root location. This is shown on the picture b. On this picture DFS have found the influence 
edge 3 at location 2. Because there is no enabled edge going from location 2, it is marked. DFS 
then continues by traversing the influence edge to location 4. In this case there is a marked 
ancestor of influence target. So we must remove its mark 6 and traverse all its children 
(location 4 and 5). In this case the influence value is zero - general case is slightly different. 

 

Fig. 5. a, DFS have finished traversal caused by the influence edge. Locations in the subtree of 
location 1 are marked properly. Picture b, shows state of the location tree after whole DFS 
traversal. All marked locations will become atomic. 

Location is marked if there is no usable edge heading to any of its children. After 
completion of the DFS traversal, method shrink() is called on every marked location. 
This makes all marked locations atomic. See Algorithm 1, 2 and Fig 4, 5 for further 
details. 
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Algorithm 1:  Cleanup 

markRecursive(rootLocation); 
foreach (loc : marked locations) 
   loc.shrink(); 

Algorithm 2:  MarkRecursive(loc) 

if (location loc was already traversed) 
   return; 
if (no enabled edge from the location loc) 
   mark(loc); 
else 
   foreach (target : targets of enabled edges) 
      markRecursive(target); 
foreach (edge : influence edges from location loc) { 
   target = edge.target; 
   while (loc.LODvalue - target.LODvalue < edge.value) 
      target = target.parent; 
   while (there is a marked ancestor of target) { 
      ancestor = the marked ancestor of target; 
      unmark(ancestor); 
      foreach (child : children of ancestor) 
         markRecursive(child); 
   } 
} 

6   Conclusion 

Simulation of large artificial worlds with tens of v-humans with complex behaviour is 
a task requiring a special technique that can cope with limited computational and 
memory resources. In this paper, we have presented our approach to this issue. The 
approach is based on level-of-detail technique (LOD) that decreases simulation 
quality at unimportant places. Contrary to the common use of LOD in computer 
graphics, we have used it in the domain of artificial intelligence. Contrary to a few 
exploitations of LOD in the domain of computer games [3], [10], [13], our approach 
is robust. That means it simplifies the quality of simulation gradually, and it simplifies 
not only behaviour of v-humans, but also an underlying topology of the artificial 
world. The contribution is obvious: owing to the smoothness, we achieve better 
believability while preserving reasonable computational and memory demands. 

The technique is used in project IVE [2], [7]. The project itself is still in progress. 
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