
 

Towards Planning the History of a Virtual Agent 

Lucie Kučerová, Cyril Brom, Rudolf Kadlec 
 

Charles University, Faculty of Mathematics and Physics 

Malostranské náměstí 2/25, Prague, Czech Republic 

lucie.kucerova@mensa.cz, brom@ksvi.mff.cuni.cz, rudolf.kadlec@gmail.com 

 

 

 

Abstract 

Episodic memory is an important component of “minds” of 
many long-living virtual agents, for instance non-player 
characters from role-playing games. So far, research on 
episodic memory modeling in the context of these agents 
has focused mostly on producing the memory content on-
line, that is, when the agent is being simulated. In this paper, 
we address a complementary issue: automatic generation of 
the memory content off-line. The intended use is generating 
memories that anticipate the start of the simulation, that is, 
generating history of an agent. We propose here a complex 
design method enabling a designer to specify high-level 
requirements on the agent’s history and use planning to 
generate this history according to these requirements. We 
also detail that part of this method that concerns itself with 
the planning, and describe a prototype implementation and 
the first results. 

Introduction   

Recently, there has been increasing interest in modeling 
episodic memory (memory for the past events) for 
intelligent virtual agents. Some of that work focuses on on-
line storage and later recall, including explaining by the 
agent (e.g. Rickel and Johnson 1999; Dias et al. 2007; 
Brom, Pešková, and Lukavský 2007). For example, a 
typical RPG (role-playing game) features a vast virtual 
world inhabited by tens or hundreds of virtual agents (non-
player characters, NPCs) and it may be vital to equip them 
with episodic memory abilities (Castellano et al. 2008; 
Doherty and O’Riordan 2008; Brom and Lukavský 2009). 
 Other work in this field focuses on learning from past 
experience (e.g. Ho and Watson 2006; Nuxoll 2007), 
which can improve the performance of a virtual agent 
dramatically. For instance, an agent with the hunger drive 
can satisfy his eating need more quickly when he 
remembers where he saw food recently. 
 To our knowledge, no one has addressed yet other issue 
concerning episodic memory modeling – the automatic off-
line generation of the memory content in cases when it is 
impossible or inconvenient to create it manually. For 

                                                 
Copyright © 2010, Association for the Advancement of Artificial 

Intelligence (www.aaai.org). All rights reserved. 
 

instance, if an RPG designer wants the NPCs to have 
memories for events that anticipate the start of the game, 
she has to write them manually. While this approach is 
befitting in the case of main characters, it can get very 
irritating in the moment when the designer has to model 
many NPCs of low importance (background characters 
throughout). Creating the history of the 125th palace guard 
is not very amusing. Another possibility for the designer is 
to have at her disposal a method to generate these 
supplementary NPCs automatically according to her 
wishes, which is precisely the aim of our research now. 
 How to approach this issue? According to some, one of 
the main functions of episodic memory1 is social (e.g., 
Williams et al., 2008). In a nutshell, people tend to 
exchange their personal stories for various social reasons. 
As Hirst and Manier (1995, pp. 271) put it: “We cannot 
divorce the act of remembering from the act of 
communicating. ... Recollections arise... from a desire to 
communicate with others about the personal past.” The 
conceptualization of (some) recollections as personal 
narratives brings us to the idea of generating these 
recollections similarly to how narratives are generated in 
the field of virtual storytelling. 
 There are more approaches to generating narratives, but 
arguably the most promising is planning. In our domain, 
using of planning would mean generating the content of 
episodic memory, i.e. the underlying representation 
enabling the agent to tell stories about himself, based on a 
planning domain and planning problem. This content 
would be generated based on the agent’s initial state, his 
possible memories and a designer’s requirements 
constraining the to-be-generated agent’s memory. The core 
of a planning domain is formed by predicates and 
operators. Predicates can serve to describe possible agent’s 
states, Operators have preconditions and effects, which 
makes them a suitable representation of actions in the 
virtual world, thereby of the agent’s possible memories. A 
planning problem consists of description of the initial state 

                                                 
1 Recent psychological literature tends to use the term 

“autobiographic memory” for what we refer to as “episodic 

memory”. We use here the latter term for the reasons of 

consistency with our previous papers on this topic. 



and the goal state. These two can serve to represent the 
designer’s constraints on the to-be-generated memory.  
 The issue of memory contents generation is scalable in 
at least two ways, the length of content of episodic 
memory and the number of agents whose histories are 
being generated. For example, we can generate an agent’s 
memories for the entire lifetime, but we can also omit 
childhood and/or old age as memories from these life 
periods and not necessary for many purposes. It is also 
different whether we generate memories of one agent, 
several agents that never interacted with each other during 
the time period in question, or hundreds of interconnected 
agents, i.e. agents who have relationships among them. 
Generating such agents separately could cause 
inconsistencies in their memories. 
 Each of these concepts brings different complexity. As 
this is, to our knowledge, the first work addressing this 
problem, we intentionally focus here on the less complex 
variants. We create memories of an agent or a few of 
interconnected agents spanning over several years of their 
adult life.  
 A typical agent with the content of episodic memory 
generated by our method would be a background character, 
e.g. a soldier, an ordinary mage, a villager or a shopkeeper 
in a fantasy RPG. Such RPG is just one of the possible 
applications, however, we will center on the soldier 
example in this text, for explanatory purposes. This agent 
would be able to tell the player a brief summary of his life 
or respond him to basic questions about his life. For 
instance, the soldier would be able to say in which battles 
he took part, when and where he got married or when he 
was ascended to lieutenant, as illustrated in Fig. 1. 
 However, we cannot expect a game designer to describe 
the planning domain and the planning problem directly. At 
the same time, we can expect that the designer may want to 
fine-tune the generated plan (history) manually. Thus, we 
foresee a necessity of a complex design method enabling 
the designer to work with a sort of user-friendly software 
tool encapsulating the very process of planning. 
 The goal of this paper is a) to propose such design 
method, and present b) a proof-of-concept implementation 
of the planning part and c) results of a small-scale case 
study. 

 The rest of this paper proceeds as follows: In the next 
section, we will introduce our problem in more detail. 
Then we will discuss the choice of a suitable planner. In 
the following part, we will present the results we have 
obtained so far. This will be followed by a discussion of 
the results and then by a short conclusion. 

Problem Detailed 

We will describe the problem on two levels. First, we will 
present the general overview of the design method, and 
then we shall centralize on the parts concerning generation 
of appropriate planning domains/problems and planning 
itself. 

General overview 

The process of generating content of episodic memory of 
an agent from a high-level input using our method is 
captured schematically in Fig. 2. 
 As the game designer will not want to describe the 
planning domain and the planning problem directly, we 
have to enable her to write down her intentions in a high-
level, user-friendly language, using appropriate authoring 
tool. For this reason, we introduce Step 1 in our method 
workflow. This high-level definitions and requirements 
then have to be converted by an input-processing tool to a 
valid planning domain and a corresponding planning 
problem, which occurs in Step 2. The planner afterwards 
generates the appropriate plan describing content of 
episodic memory of the agent (Step 3). Next, the plan has 
to be converted back to the form suitable for the designer. 
This is done by an output-processing tool (Step 4). The 
designer then may want to make some manual changes to 
the created content of episodic memory. So we have 
supplied the workflow with Step 5. 
 While not trivial, Steps 1, 2, 4 and 5 are arguably much 
simpler than Step 3 (from the technical standpoint). 
Therefore, we focus on this step, addressing the preceding 
steps only as much as necessary. We will present them 
more in detail now. 

Get money for studies 

100 

Go to the battle for Suncity 

Marry Susan 

Date Susan 

Study military academy 

950 

500 

700 days 

800 

Starting point (e.g. 18 years of age) 

Fig. 1. Schema of content of episodic memory. 

A real schema would be more complex; this one is simplified for intelligibility. 



Input Design and Planning 

Generally, in Step 1, the designer must create high-level 
description of the virtual world, i.e. define its topology, 
objects and possible actions which can be executed by an 
agent. At the same time, she has to specify her 
requirements on a concrete agent or a group of agents. 
Then, in Step 2, this high-level input has to be transformed 
to a planning domain and a planning problem. 
 We have not formalized the high-level language used by 
the authoring tool so far. Currently, we generate planning 
tasks manually, to verify feasibility of Step 3 and hence the 
method in general. 
 Now, we will summarize the types of conceptual 
requirements which can be demanded by the designer to 
specify the properties of content of an agent’s memory and 
the properties of the virtual world in general. We will use 
the soldier example. 

Requirements on the virtual world. The first essential 
part of the description of the virtual world is its topology 
(cities, villages, important places…) and objects the world 
contains. The designer will need a way to specify all of 
this. The other part is the specification of actions that are 
possible in the world, together with their preconditions and 
effects. Moreover, some real-like actions are naturally 
durative and permit other actions to occur during them. For 
example, studying military academy takes some time and a 
future soldier can perfectly plausibly date a girl or win 
some money in roulette during his studies. So we have to 
permit durative actions in the world definition. 

Requirements on an agent. Conceptual requirements on 
the generation of history of an agent can be categorized 
into these groups: 
1. General requirements on the agent’s achievements or 

states. 
2. Requirements on a concrete action. 
3. Requirements on an action in a concrete time. 
4. Randomness for the possibility to generate more agents 

from just one setting. 

 We will discuss these requirements in more detail now. 
1. General requirements. The designer may wish to 
specify a general requirement on the end state of the agent, 
without assigning a particular way to achieve it. For 
example, she may want the soldier to be rich, letting 
completely to randomness whether he has gained the 
money by fighting, winning in a lottery or inheriting it. 
2. Requirements on a concrete action. In some cases, the 
designer may want to specify a more concrete requirement: 
not only the end state, but also the means to achieve it. For 
instance, she may want the soldier to earn money by 
playing roulette, because it is important for the story. 
3. Requirements on an action in a concrete time. 
Sometimes, it is important that an action occur in a 
concrete time. For example, the designer may want the 
soldier to take part in a particular battle. Since this can 
happen only in the moment when the battle takes place, 
there has to be a mechanism to accomplish this. 
4. Randomness. The designer may need the agent to 
achieve a concrete end state (in a random way) or to 
perform a particular action. But she also may want to use 
randomness to generate other memories of the agent. In 
addition, for the purpose of saving her time, she may need 
to generate histories of several similar, but not identical, 
agents from the same high-level specification. Thus we 
need to introduce randomness in these two ways: 

• Probability of the actions. For example, it is a lot more 
probable to earn money for living by working than by 
finding them in a secret cave. So the designer can assign 
probability to each of these actions. 

• Insignificant actions to “animate” a virtual agent. The 
designer can mark some of the actions as “noise 
actions”, which can be inserted to the history randomly 
(providing their preconditions are fulfilled). These could 
be actions like “go for a trip to the capital”, “see a 
falling star” etc. They are absolutely not important for an 
agent’s history, but can make him seem more vivid 
during the communication with a player. 

 

High-level 

World 

Description 

High-level 

Start/End-

state 

STEP 2: 

Input-

processing 

Tool 

Planning 

Domain 

Planning 

Problem 

STEP 3: 

Planner 

Plan 

STEP 4: 

Output-

processing 

Tool 

Content of 

Episodic 

Memory – 

Prelim. 

Version 

Content of 

Episodic 

Memory – 

Final 

Version 

 

STEP 5: 

Designer 

Adjustments 

Fig. 2. Method Workflow 

Designer’s 

Ideas 

STEP 1: 

Authoring 

Tool 



 The planning mechanism should cope with all of these 
requirements. Indeed, we have been addressing all of them, 
however, the work is still in progress and we are having 
several open issues, most notably with Req. 3, as detailed 
later. 
 The key decision is the appearance of the interface 
between Step 2 and Step 3. As PDDL (McDermott et al. 
1998) seems to be actually the most used language for 
specifying planning problems, we decided to describe our 
domain and problems in this formalism. 

Selecting a Planner 

Many requisitions on the used planner rise from the 
requirements described above. We will list them now in the 
form of PDDL requirements, divided in two groups – 
essential requirements, which are indispensable for our 
purposes, and technical requirements, which would be 
useful, but are not absolutely necessary. 
 
 Essential requirements: 

• :durative-actions – This requisition stems directly from 
the requirements on the virtual word. 

• :fluents – It is necessary to include several numeric 
variables, e.g. amount of money or a randomly 
generated number to introduce uncertainty in the 
generated problem/plan (see Req. 4). 

• :equality – First, this is needed for randomness (Req. 4). 
Second, a designer may want an action to include 
preconditions comparing numeric variables with a 
predefined value. For example, she may want to specify 
that a soldier can be ascended to lieutenant only after 
taking part in a concrete number of battles. 

• :timed-initial-literals – Timed initial literals are needed 
for Req. 3 from the previous section. 

 
 Technical requirements: 

• :typing – It is a lot more transparent to describe some 
preconditions of an action by specifying the type of 
parameters (e.g. action get_married(v1, v2) does not 
make sense with locations as its parameters). However, 
if typing is not available, this can also be solved by 
inserting predicates of type is_person(v), although it 
makes the domain less human-readable. 

• :disjunctive-preconditions – Many real-like actions may 
require disjunctive preconditions, nevertheless, these 
could be also formally written like several different 
actions. 

• :negative-preconditions – There are many possible real-
like actions which need their preconditions to include 
negation of a predicate. However, this can be bypassed 
by inserting other predicates (for example adding 
predicate not_married ?person to supplement a 
predicate married ?person). 

 

 From the listed requirements it is obvious that we need a 
planner supporting all levels of PDDL3 (Gerevini and 
Long 2005). In this, we depart from the work in virtual 
storytelling (e.g. Riedl and Young 2006, Porteous and 
Cavazza 2009), which usually do not demand so much 
equipped planner (although it tends to have other 
requirements). 
 Implementing a satisfactory planner would be quite 
demanding, so we decided to use an already existing 
planner, at least for present purposes. Sadly, we have not 
found many planners fulfilling all these requisites. At this 
moment, we are using SGPlan6 (Hsu and Wah 2008), since 
in addition to meet all our requirements, its authors are still 
working on it. Thus they are able to address some technical 
problems we have with the planner (regarding timed initial 
literals), which are probably caused by the fact that our 
domain is not a typical planning contest domain. 

Results 

Our present purpose was to demonstrate that our approach, 
the complex design method encapsulating planning, can 
work. This means developing a proof-of-concept 
implementation and obtaining results of a small-scale case 
study. 
 In this moment, we have at our disposal a planning 
domain created manually, bypassing the authoring and 
input-processing tools from Fig. 2. The domain contains 
definitions of about 50 operators and 100 predicates. For 
practical use and more thorough investigation, the domain 
has to be extended and we also should design another 
domain for tests. Nevertheless, we are already able to 
generate different plans over this domain for problems 
which differ only in randomness (Req. 4 from the section 
“Problem Detailed”). 
 Our testing domain serves for generation of a 
prototypical soldier in a fantasy RPG. A brief extract from 
the domain is depicted in Fig. 3. We will now comment the 
marked fragments from the point of view of the designer’s 
requirements. 

Requirements on the virtual world. The actions possible 
in the world are translated to PDDL’s durative actions. The 
rest of the world description is converted to constants (1). 

Requirements on an agent. We will discuss the 
translation of these requirements to the domain one by one. 
1. General requirements. Each requirement is converted 
to a predicate or a function (4, 3). This predicate (or 
change of the function) then becomes an effect of one or 
multiple actions (11, 8). 
2. Requirements on a concrete action. These 
requirements are converted to two predicates (5). The first 
of them is an effect of exactly one action (9); the second is 
a sufficient precondition of this action (7), to overpower 
the action’s probability, as explained later. 
3. Requirements on an action in a concrete time. In 
addition to the predicates from Req. 2, this requirement 



introduces other predicate (6), which is also a necessary 
precondition of the action in question (10). 
4. Probability of the actions. For this purpose, a function 
representing a random number is inserted (2). It is intended 
that its value is generated randomly for a particular agent 
by an input-processing tool to the planning problem 
definition, as showed later. This random number is used to 
set the probability of particular actions (7). Presently, we 
set the number manually. 
 We will demonstrate our results now on the task of 
generation of history of two soldiers, which are very 
similar and are not interconnected. So we will generate 
their memory contents from one domain and one initial 
state and goal (with very subtle changes). At the beginning, 

these future soldiers are about 16 years old (we do not 
generate memories for childhood) and they have not 
studied military yet. 
 The high-level input from the designer that is to be 
converted to the PDDL could look approximately like this: 

Initial state: 
Name: John (James for the second soldier) 
Sex: male 
Initial locality: Village (City10 for the second soldier) 
Money: 10 
No battles so far. 
Other people, who could take part in his history, 
however will not get in contact with the player: Stacy, 

Fig. 3. An extract from the planning domain. Description in the text. 

(define (domain rpg-domain-test) 

  (:requirements :typing :durative-actions :equality :fluents 

    :negative-preconditions :disjunctive-preconditions 

    :timed-initial-literals) 

  (:types location city - location village - location person 

    man - person woman - person) 

  (:constants City1 City2 City3 City4 City5 City6 City7 City8 City9 

    City10 City11 City12 City13 City14 City15 - city Village - village) 

  (:functions 

    (number_thrown ?p - person)  

    (money ?p - person) 

    (battles_count ?p - person) 

  ) 

  (:predicates 

    (at_place ?l - location ?p - person) 

    (lieutenant ?p – person) 

    (has_found_a_lot_of_money ?p - person) 

    (has_to_find_a_lot_of_money ?p - person) 

      … 

    (going_on_City1_battle) 

    (taken_part_City1_battle ?p - person) 

    (has_to_take_part_City1_battle ?p - person) 

  ) 

  (:durative-action find_a_lot_of_money 

    :parameters (?p - person) 

 :duration (= ?duration 1) 

 :condition 

      (and 

        (at start 

          (or  

            (>= (number_thrown ?p) 800) 

            (has_to_find_a_lot_of_money ?p) 

          ) 

        ) 

      ) 

    :effect 

      (and  

        (at end (increase (money ?p) 3000)) 

        (at end (has_found_a_lot_of_money ?p)) 

      ) 

  ) 

  (:durative-action take_part_City1_battle 

    :parameters (?p - person) 

    :duration (= ?duration 20) 

 :condition 

      (and 

        (at start 

          (or 

            (has_to_take_part_City1_battle ?p)  

            (>= (number_thrown ?p) 20) 

          ) 

        ) 

        (over all (soldier ?p)) 

        (over all (at_place City1 ?p)) 

        (over all (going_on_City1_battle)) 

        (at start (not (taken_part_City1_battle ?p))) 

      ) 

 :effect 

      (and 

        (at end (increase (battles_count ?p) 1)) 

        (at end (taken_part_City1_battle ?p)) 

      ) 

  ) 

  (:durative-action be_ascended_to_lieutenant 

 :parameters (?p - person) 

 :duration (= ?duration 1) 

 :condition 

      (at start 

        (or 

          (>= (battles_count ?p) 2) 

          (has_studied_elite_academy ?p) 

        ) 

      ) 

 :effect  

      (at end (lieutenant ?p)) 

  ) 

    … 

) 

3 

1 

2 

4 

5 

6 

7 

8 

9 

10 

11 



female, Village (Kate, female, City5 for the second 
soldier). 
When the important battles take place (omitted for 
brevity). 
Requirements (at the end of the generated period): 
Married. (Req. 1) 
Will find a lot of money. (Req. 2) 
Will take part in the battle for City1. (Req. 3) 
Lieutenant of the army. (Req. 1) 
Generate other one or two “noise goals”. (Req. 4) 

 
 The designer is expected to formalize this input using an 
authoring tool. The two example planning problems which 
could be generated from the high-level language by an 
input-processing tool in Step 2 (and which were translated 
by us manually) are depicted in Fig. 4 and 5, with marked 
differences between them. Generally, the initial state was 
translated to the initial state of the planning problem. Most 
requirements were converted to the goals of the planning 
problem. Some of them (Req. 2, 3) must also insert some 
predicates into the initial state. There has been also set the 
value of the numeric fluent number_thrown – to a random 
number. This is necessary for the first part of Req. 4. 
Furthermore, there have been added effects of several 
randomly chosen “noise actions” to the set of goals, 

forcing the planner to include these actions in the resulting 
plan. This makes the output plans more variable, which is 
the second part of Req. 4. 
 The generated problems can be supplied directly to the 
planner, together with the planning domain. This is exactly 
what we did, using SGPlan6. The resulting plans (i.e. the 
output of Step 3), presenting the tentative memory content 
subject to further changes in Step 5, are captured in Fig. 6, 
7. On these figures, each line starts with the time when an 

(define (problem rpg-problem-test1) 

  (:domain rpg-domain-test) 

  (:objects John - man Stacy - woman) 

  (:init 

    (= (number_thrown John) 10) 

    (= (money John) 10) 

    (= (battles_count John) 0) 

    (has_to_find_a_lot_of_money John) 

    (has_to_take_part_City1_battle John) 

    (at_place Village Stacy) 

    (at_place Village John) 

    (at 1280 (going_on_City1_battle)) 

    (at 1300 (not (going_on_City1_battle))) 

    (at 1350 (going_on_City2_battle)) 

    (at 1400 (not (going_on_City2_battle))) 

    (at 1480 (going_on_City3_battle)) 

    (at 1520 (not (going_on_City3_battle))) 

  ) 

  (:goal 

    (and 

      (married John) 

      (>= (money John) 3000) 

      (has_found_a_lot_of_money John) 

      (taken_part_City1_battle John) 

      (lieutenant John) 

      (can_ride_a_horse John) 

      (can_hunt John) 

    ) 

  ) 

) 

Fig. 4. The first generated problem. 

(define (problem rpg-problem-test2) 

  (:domain rpg-domain-test) 

  (:objects James - man Kate - woman) 

  (:init 

    (= (number_thrown James) 20) 

    (= (money James) 10) 

    (= (battles_count James) 0) 

    (has_to_find_a_lot_of_money James) 

    (has_to_take_part_City1_battle James) 

    (at_place City10 Kate) 

    (at_place City5 James) 

    (at 1280 (going_on_City1_battle)) 

    (at 1300 (not (going_on_City1_battle))) 

    (at 1350 (going_on_City2_battle)) 

    (at 1400 (not (going_on_City2_battle))) 

    (at 1480 (going_on_City3_battle)) 

    (at 1520 (not (going_on_City3_battle))) 

  ) 

  (:goal 

    (and 

      (married James) 

      (>= (money James) 3000) 

      (has_found_a_lot_of_money James) 

      (taken_part_City1_battle James) 

      (lieutenant James) 

      (has_found_a_quaterfoil James) 

    ) 

  ) 
) 

Fig. 5. The second generated problem. 

0.001: (FIND_A_LOT_OF_MONEY JOHN) [1.0000] 
0.003: (STUDY_BASIC_MILITARY JOHN) [600.0000] 
0.005: (LEARN_TO_RIDE_A_HORSE JOHN) [60.0000] 
0.007: (MEET STACY JOHN VILLAGE) [1.0000] 
0.009: (LEARN_TO_HUNT JOHN VILLAGE) [60.0000] 
1.011: (DATE JOHN STACY VILLAGE) [200.0000] 
201.013: (GET_MARRIED JOHN STACY VILLAGE) [1.0000] 
202.015: (MOVE VILLAGE CITY5 JOHN) [3.0000] 
600.017: (STUDY_ELITE_MILITARY_ACADEMY_IN_CITY5 

JOHN) [600.0000] 
1200.019: (BE_ASCENDED_TO_LIEUTENANT JOHN) [1.0000] 
1200.021: (MOVE CITY5 CITY1 JOHN) [3.0000] 
1280.023: (TAKE_PART_CITY1_BATTLE JOHN) [20.0000] 

Fig. 6. The first generated plan. 



action started (days after beginning), followed by the 
action in question and then by its duration. 
 The generated plans respect all the requirements asked 
by the designer and also satisfy all logical preconditions of 
the actions. As we did not include many timed initial 
literals (Req. 4), the computation was quick; it took less 
than a second.  
 In our experiments, we have trialed with several variants 
of the soldier domain, and generated more memory 
contents similar to those from Fig. 6 and 7. Importantly, 
we have also tried generating memories of a few 
interconnected agents, in particular two couples connected 
by an extramarital affair. In the case of so small amount of 
agents, the computation was also fast, about one second.  

Discussion 

We have proposed a design method for off-line generation 
of content of episodic memory of virtual agents using 
planning. We have developed a proof-of-concept 
implementation of its central, planning part and managed 
to generate memories of a single virtual agent using this 
method. We have also showed that the method can be used 
to generate memories of several similar agents from the 
same designer’s input, introducing randomness. The 
method is suitable for generating history of a few 
interconnected agents as well. However, we are dealing 
with several issues, which will be discussed now. 

Conceptual Issues 

1. Scalability. The generation of the plans described in the 
previous section using SGPlan6 takes about a second. 
However, for practical use the domain will have to be 
extended. We do not see it to be a problem for a designer 
to enlarge the domain; however, the speed of generation 
may increase too much and become unacceptable. As we 
want to generate the memories off-line, minutes or even 
hours of generation are tolerable, but months or years not, 
obviously. On one hand, in comparison with IPC domains 
and problems, our domain contains more operators and 

predicates and also requires more PDDL features than the 
majority of IPC domains. On the other hand, our problems 
are not so complicated. Usually, just a few actions are 
needed to achieve a particular goal and searched plans are 
shorter than plans in a typical IPC task.  This brings the 
possibility that after enlarging the domain, the speed of 
computation will be still reasonable. In our opinion, the 
more serious problem is inter-agent consistence, which will 
be discussed now. 

2. Inter-agent consistence. We are able to generate history 
of a single agent, as well as histories of a few 
interconnected agents. However, generating contents of 
episodic memory of tens or hundreds agents with 
relationships among them would lead to a very complex 
planning problem and we will surely encounter 
performance issues. The remedy to this problem may be to 
generate memory contents for just small groups of agents 
using the proposed method and develop a mechanism for 
correcting inconsistencies between them. This could be 
achieved by incorporating methods used for solving 
constraint satisfaction problems. Treating this problem will 
be one of the next steps in our work. 

3. Detailed actions. The content of episodic memory 
generated by the method contains just brief information 
about the actions which happened – the name of the action, 
when it took place and which people, locations etc. were 
involved. For example, John from the previous section 
knows that he married Stacy in his village on the 201st day 
of the simulation, but nothing more. The designer may 
want to equip her NPCs with more details about the 
actions, e.g. a detailed description of the mentioned 
wedding ceremony. In this case, she has to use some 
suitable mechanisms to accomplish this in the Step 5 of the 
workflow. One possible approach is to generate details of 
memories using the hierarchical approach described in 
(Brom, Pešková, and Lukavský 2007). 

4. Categories of actions. It would be convenient to 
provide the designer with support for easy management of 
possible actions of agents. For instance, it should be 
possible to organize the high-level action definitions in 
packages (e.g. “relationships”, “studies”, “soldier”, 
“mage”). 

5. High-level language. At the moment, we are focusing 
on the planning part of our proposed method, as it is 
arguably the most important one. So we have not 
formalized so far the high-level language used by a 
designer to describe the world and requirements on an 
agent. This issue also has to be addressed to enable 
implementation of the method as a whole. 

6. Virtual world description. The virtual world used 
actually for our tests is just a list of places. Later, it could 
be useful to create a topology of the world. This should be 
possible conceptually, however, we have not tackled it yet. 

Technical Issues 

1. Few planners. In this moment, there are not many 
planners supporting all the features of PDDL we need. 

0.001: (FIND_A_LOT_OF_MONEY JAMES) [1.0000] 
0.003: (FIND_A_QUATERFOIL JAMES) [0.0000] 
0.005: (STUDY_BASIC_MILITARY JAMES) [600.0000] 
600.007: (STUDY_MILITARY_ACADEMY_IN_CITY10 JAMES) 

[600.0000] 
1200.009: (MOVE CITY10 CITY1 JAMES) [3.0000] 
1280.011: (TAKE_PART_CITY1_BATTLE JAMES) [20.0000] 
1300.013: (MOVE CITY1 CITY2 JAMES) [3.0000] 
1350.015: (TAKE_PART_CITY2_BATTLE JAMES) [50.0000] 
1400.017: (BE_ASCENDED_TO_LIEUTENANT JAMES) [1.0000] 
1400.019: (MOVE CITY2 CITY5 JAMES) [3.0000] 
1403.021: (MEET KATE JAMES CITY5) [1.0000] 
1404.023: (DATE JAMES KATE CITY5) [200.0000] 
1604.025: (GET_MARRIED JAMES KATE CITY5) [1.0000] 

Fig. 7. The second generated plan. 



That limits our possibilities to test. We are considering 
addressing this issue by developing our special-purpose 
planner, adapted to the general properties of generated 
domains and problems. This would also enable 
implementation of some domain-specific heuristics. 

2. Timed initial literals. The incorporation of more timed 
initial literals currently delays the computation a lot. As 
they are essential for our planning problems, we have to 
solve this issue in some way. Currently, we are discussing 
it with the authors of SGPlan6. It is possible that this issue 
is specific only to this planner; however, it could be an 
integral property of our planning domains and problems. In 
that case, we would be obliged to implement a special-
purpose planner. 

Conclusion 

We proposed a complex method for automatic generation 
of episodic memory for virtual agents, intended to be used 
for instance by game designers. When finished, it will 
enable the designer to specify her requirements on the 
history of the agent being created. It will also ensure that 
generated content of episodic memory will comply with 
predefined logical constraints of the events. Besides, some 
level of randomness will be included, to create “more 
animated” agents and also to enable creation of more 
agents from just one setting. After the automatic generation 
of memories of the agents, the designer will be enabled to 
perform her adjustments to create the final version of these 
memories. 
 As the first step, we have developed a prototype 
implementation of key parts of the method, to verify its 
feasibility. 
 Results we gained so far show that even with relatively 
simple testing domain, the problems created using this 
method enable the planner to generate brief content of 
episodic memory of an agent or even several agents with 
relationships between them. These results suggest that the 
picked approach to the problem is promising. 
 Our work in progress is to test the method on more and 
larger domains and problems. In future, we also want to 
implement its remaining parts. We are currently having 
some conceptual and technical issues; nevertheless, we 
think that the method in general will enable fast enough 
automatic generation of widely parameterized history of 
virtual agents. 

Acknowledgements 

This work was partially supported by the research project 
MSM0021620838 of the Ministry of Education of the 
Czech Republic, by the student research grants 
201/09/H057 (GA ČR) and GA UK 21809, and by project 
P103/10/1287 (GA ČR). 

References 

Brom, C.; Pešková, K.; and Lukavský, J. 2007. What does your 

actor remember. Towards characters with a full episodic memory. 

In Proc. of 4th ICVS, LNCS 4871. 89-101. Berlin, Springer-

Verlag. 

Brom, C.; and Lukavský, J. 2009. Towards Virtual Characters 

with a Full Episodic Memory II: The Episodic Memory Strikes 

Back. In Proc. Empathic Agents 1-9. AAMAS workshop. 

Castellano, G.; Aylett, R.; Dautenhahn, K.; Paiva, A.; McOwan, 

P. W.; and Ho, S. 2008. Long-term affect sensitive and socially 

interactive companions. In 4th Int. Workshop on Human-

Computer Conversation. 

Dias, J.; Ho, W.C.; Vogt, T.; Beeckman N.; Paiva, A.; and Andre, 

E. 2007. I Know What I Did Last Summer: Autobiographic 

Memory in Synthetic Characters. In Proc. of ACII 606-617. 

Springer-Verlag. 

Doherty, D.; and O’Riordan, C. 2008. Toward More Humanlike 

NPCs for First-/Third-Person Shooter Games. In AI Game 

Programming Wisdom IV 499-512. Charles River Media. 

Gerevini, A.; and Long, D. 2005. Plan Constraints and 

Preferences in PDDL3, Technical Report, RT 2005-08-47, Dept. 

of Electronics for Automation, University of Brescia, Italy. 

Ho, W. C.; and Watson, S. 2006. Autobiographic knowledge for 

believable virtual characters. In Proc. of Intelligent Virtual 

Agents, LNCS 4133, 383-394. Springer-Verlag. 

Hsu, C.-W.; and Wah, B. W. 2008. The SGPlan planning system 

in IPC6. In 6th International Planning Competition Booklet 

(ICAPS-08). 

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; 

Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL – The 

Planning Domain Definition Language – Version 1.2, Techical 

Report, CVC TR-98-003, Yale Center for Computational Vision 

and Control. 

Nuxoll, A. 2007. Enhancing Intelligent Agents with Episodic 

Memory. Ph.D. thesis, The University of Michigan. 

Porteous, J.; and Cavazza, M. 2009. Controlling Narrative 

Generation with Planning Trajectories: The Role of Constraints. 

In Proc. Of 2
nd

 Int. Conf. on Interactive Digital Storytelling. 

LNCS 5915, 280-291, Springer. 

Rickel, J.; and Johnson, W. L. 1999. Animated Agents for 

Procedural Training in Virtual Reality: Perception, Cognition, 

and Motor Control. App. Artificial Intelligence 13(4-5): 343-382. 

Riedl, M. O.; and Young, R. M. 2006. Story Planning as 

Exploratory Creativity: Techniques for Expanding the Narrative 

Search Space. New Generation Computing 24(3): 303-323. 

William, H.; and Manier, D. 1995. Remembering as 

communication: A family recounts its past. In Remembering Our 

Past: Studies in Autobiographical Memory 271-290. Cambridge 

University Press. 

Williams, H.L.; Conway, M.A.,; and Cohen, G. 2008. 

Autobiographical memory. In Memory in the real world 21-90. 

Psychology Press. 


