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Abstract. This position paper presents our approach to
development a long term episodic memory model featuring the false
memory effect. We will explain motivation for the model, data
structures used in the model and algorithms working over these
structures. Finally we will present a prototype of an agent embodied
in a 3D virtual world equipped with our model.

1 INTRODUCTION

Human memory is fallible: we do not remember everything we
perceive, we forget, we may fail to retrieve information. A less
traditional trait of memory fallibility - related to errors of commission
rather than omission - is false memory [3]. Generally, false memory
refers to “circumstances in which we are possessed of positive,
definite memories - although the degree of definiteness may vary - of
events that did not actually happen to us” [3, pp. 5]. Examples include
remembering a gist of experience that may actually not correspond
exactly to what has happened [3, 2, 20]; implanting distressing
childhood memories, either accidentally at a psychotherapy [3,
ch. 8][1, pp. 150] or in a laboratory experiment [18]; enhancing
memories by or blending them with post-event information [17,
ch. 4]; or fabrication of non-existing details of a criminal event by
an eyewitness [3, ch. 6].

False memory is characteristic of normal rather then pathological
remembering [3, 23]. Yet many people have only limited knowledge
of false memory or may neglect its importance [28][1, pp. 151]. This
can be particularly troublesome at courts and during psychotherapies.
Therefore, the research on false memory phenomena (and increasing
awareness of them) is important.

Computational approaches to memory modeling have become
increasingly important in the past decade [21, 9]. In silico
simulations enable a researcher to specify hypothetical mechanisms
in precise detail, systematically explore the model and manipulate its
parameters, and generate new predictions [26, 19, 25, 9]. It is known
in computational cognitive sciences for some time that computational
(neuro-)psychological episodic memory models, predominantly sub-
symbolic ones, can produce some false memory-like phenomena (see
[21], for a review of these models). However, to our knowledge, the
issue of false memory has never been studied systematically in that
field. At the same time, development of mathematical models of false
memory by the community studying false memory directly is in its
early stages [3, pp. 426-447].

In this position paper, we present our approach to computational
modeling of false memory. We have been developing for about
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a year a generic episodic memory model featuring false memory
characteristics, a model extending our previous episodic memory
models [7, 4]. Of course there are some false memory characteristics
that are out of our scope. The model is intended for acquisition,
retention and retrieval of complex everyday events, such as cooking
dinner (as opposed to events from laboratory tasks, e.g. presentations
of lists of words). The memory representation is organized around
memories of single objects (but not their features, e.g. not features of
faces) and hierarchically nested events/episodes lasing from seconds
to hours (e.g. knocking a door, opening the door, a visit) (see [5] for
details). Our present aim is to develop architecture for false memory
models rather than a single model fitting data from a particular
experiment. Still, we believe that in future, when the model is stable
enough, it can be used for the purpose of computational cognitive
sciences. Additionally, because the underlying platform on which
we test the model is a virtual character inhabiting a complex 3D
virtual environment (see [6] for more on using VR for development
of high-level cognitive models), the model can be also used in virtual
reality applications. For instance, think of a serious game explaining
to jurors limitations of eyewitness testimony with respect to false
memory phenomena.

The rest of the paper is organised around the following points:
1) psychological underpinnings, 2) architecture of the model, 3)
problems stemming from validating the model against human data,
including human data acquisition.

2 GENERAL APPROACH

Our false memory model capitalizes on the fuzzy-trace theory [3, 12].
In a nutshell, this theory posits two parallel mechanisms that encode
incoming information: verbatim and gist. While the former encodes
the surface-form of the information in detail, the latter encodes
the meaning in a coarse-grained way [12]. Of course, it may not
be always clear what exactly a gist is. In our approach, the gist
resembles the notion of a script [24], a knowledge structure about
a stereotypical situation, including typical events that will occur and
the most common deviations. The verbatim corresponds to a detailed
log-based hierarchical representation of a particular flow of events
as we used in [7]. The overall representation can be also linked to
the event segmentation theory [29] and parts of the Conway’s self-
memory system, namely to episodic memories and general events
[10].

Concerning recollection and familiarity, verbatim and gist
mechanisms may operate in opposition to each other. For instance,
when a memory trace for a particular detail is not strong enough,
this detail may be replaced during recall by a different information
“fabricated” based on the respective gist memory trace.
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3 ARCHITECTURE OF THE MODEL

Our cognitive architecture integrates a decision making module, a
memory system, a perception module and an emotion generator.
The architecture is detailed in [6]. The next section provides a brief
introduction into already existing decision making module. Then
the extended long term memory module of our architecture will be
described.

3.1 Decision making module

Our agent is driven by the existing decision making module based
on AND-OR trees [7]. Terminology used in our model largely comes
out from the structures of this module. An AND-OR tree is a tree
consisting of two types of nodes: AND nodes, also called actions
in our model; and OR nodes, also called goals. The property of
AND nodes (actions) is that in order to accomplish it, all its children
must be performed. On the contrary the OR nodes (goals) can be
completed by performing any of its direct children. AND nodes not
containing any child can be performed directly and are also called
atomic actions. The root of a tree is always an OR node and it is
usually referred to as a fop-level goal. All goals and actions can also
have affordance slots, that are placeholders for objects, places, etc.
that provide resources for a node’s execution, i.e. they define the
roles of missing objects. The term affordance [14] was coined by
Gibson. The set of all AND-OR trees specifying an agent’s behavior
is denoted as D. The agent also has a short term memory module [7]
that keeps a track of its current goals.

3.2 Elements of the episodic memory

Our memory structure for storing episodic memories is a pair (C, .S)
where C'is a set of chronobags and S is a schema bag. A chronobag
is a unit of memory representing a certain period of time, it stores the
episode structures that model the verbatim of episodes experienced
in that period. The term chronobag was first used in our paper [4]. A
schema bag holds the gist of a typical episode of a certain type. The
gist is represented by a statistics about co-occurrences of goals and
their satisfying actions together with objects used by the agent. The
following sections describe these components more closely. Figure 1
shows the structure of both C' and S components of our episodic
memory model.

3.2.1 Episode structures

An episode structure E is a tree-like structure consisting of episodic
nodes, objects in affordance slot and time pointers. It incorporates all
the actions performed while trying to satisfy one top-level goal. The
root of the episode structures is always an episode node representing
one top-level goal. Its children are actions that were performed in
order to satisfy it.

Episodic nodes can represent either action, sub-goal or atomic
action in the decision tree and the whole episode structure represents
action/goal traces from the top-level goal to the atomic actions
performed when trying to satisfy one top-level goal. If a node has
more than one child, an order of execution of child nodes is stored in
a time pointer.

When the agent performs an atomic action, the episode with the
root node corresponding to the current top-level goal is located
and episodic nodes reflecting the action/goal trace are added to the
episode. If the agent performs the same action several times in a

row, new nodes are stored in the memory only once. All objects used
during execution of an action are linked with appropriate affordance
slots. Instances of these object nodes are shared among all the
episodes. Note that this structure is a core of our previous models
[7, 6].

3.2.2 Chronobags

A chronobag is a structure for holding episodes experienced by the
agent in a given time period. The memory can contain any number
of chronobags, but will always contain at least one chronobag for
episodes from the current day, this chronobag is called the present
chronobag. Anytime a new episode is experienced by the agent, it
will be stored in this chronobag. In all the chronobags, there is an
ordered list of episode structures belonging to it. Moreover in the
present chronobag, there is also a separate list for episodes that are
not finished yet.

The action selection algorithm allows for temporary interruption
of the top-level goal the agent is trying to accomplish. The agent
can interrupt the current episode (i.e. performing actions satistying
the current top-level goal), experience another episode (accomplish
another top-level goal) and return to the original episode (and
original top-level goal) later. The present chronobag can therefore
contain several opened episodes. Each time the top-level goal of an
episode is successfully satisfied or the agent abandons its top-level
goal, the particular episode is marked as finished and moved from
opened episodes to finished episodes. This also happens to all opened
episodes during the agent’s sleep.

Chronobags are organized in a layered structure. In the lowest
level there are chronobags for episodes from single days, in higher
layers there are multiday chronobags that integrate episodes from
lower level chronobags. The multiday chronobags hold episodes
belonging to the period of time of its subordinate chronobags.
Currently the model divides chronobags into four different layers,
the most abstract layer incorporating episodes from 7-day period.

3.2.3 Schema bag

Specific part of our model is so called schema bag corresponding
to the gist trace from the fuzzy-trace theory. It incorporates all
the events the agent experienced during its existence and helps
to determine how often the agent performed specific actions and
how often it used specific objects. Any action, goal or atomic
action from AND-OR trees experienced by the agent will have the
associated node in the schema bag. These nodes are called schema
episode nodes. Apart from these nodes, the schema bag also keeps
separate nodes for each object the agent used during its lifetime.
These are called schema object nodes. Schema bag also includes
representatives of affordance slots and special nodes that connect
object node with affordance slot it was used in. These special nodes
are called slot content nodes.

Probably the most important component of the schema bag are
schema counters. Schema counters keep track of how many times
a set of schema nodes was executed/used by the agent. This set
can contain schema episode nodes, slot content nodes, or both
node types. The maximum set size is currently set to 3 due to
combinatorial explosion problem. Schema bag not only provides
information how often a specific node is executed or used, it also
provides conditional probabilities P(X|Y) where X and Y can be
any set of schema nodes provided the combined size of sets X and
Y is not larger than 3. Information deducible from the schema can
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be for example: the agent visited a cinema 6 times so far; when
commuting to work the agent used a bus 6 times out of 10.

Nodes in the schema bag and all the counters are updated on-line
as the agent performs atomic actions.

>

Abstraction of chronobags

Landmark chronobags

Ordinary chronobags

Current chronobag

Decision tree

Schema bag

Figure 1. Different representations used by the memory model. The set of
decision trees D represents procedural knowledge, it stores hierarchy of
goals and actions satisfying those goals together with affordance slots
(L-shaped figures) representing resources, and atomic actions (black circles)
that can be performed directly in the agent’s environment. The episode
structure E represents actual experience. It is similar to one decision tree,
but slots are already filled with object (squares). It also contains the
sequence of episode nodes performed by the agent. Chronobags C hold the
sets of episodes of similar age. As chronobags get older, details of episodes
can be forgotten. When a chronobag gets old enough it becomes a landmark
chronobag and it contains fossilized episodes that could not be forgotten.
The boundary between ordinary chronobags and landmark chronobags is
shown as a dashed line. Besides forgetting there is another process of
creating more abstract chronobags for longer time periods. Details of lower
level chronobags are merged into a higher level, more abstract chronobag
spanning longer time period. The distinct chronobag on the right is the
present chronobag used for storing current episodes. The last representation
is schema bag S - schema bag is similar to the decision tree but it is
extended with counts of how often each node was selected, how often each
object was used in all affordance slots (black squares) and also it keeps a
track of how many times different nodes and objects appeared in an episode
together (there are three aggregate counts shown on the figure).

3.2.4 Example of filling the memory

For clearer conception of how new memories are added into the
memory structures consider the following illustrative case. The agent
starts with empty memory structures and he will try to fulfill the
top-level goal dinner by performing following action eating at
restaurant. To perform this action, he will have to complete the
following subgoals: travel to a restaurant, order something to eat, eat
it, and pay for the food.

When the agent starts following a new top-level goal, a new
episode in the present chronobag will be created. The root of this
episode will be the top-level goal dinner. This node will have one
child node (eat_at_restaurant) and four grandchildren nodes (travel,
order, eat, pay). Objects used will be also part of the episode: for
example a lobster can be associated with the affordance slot food on
the eat node. Each of these goals has to be completed by performing
an action consisting of atomic actions executed by the agent in the
virtual environment.

Apart from the episode structures, the schema bag is
also being updated each time the agent performs an action.
Imagine that the agent is sitting in the restaurant. The set
of all schema nodes relevant to schema counter updating
in this scene will be S = Scpisode U Ssiot_content Where
Sepisode = {dinner,eat_at_restaurant,eat}, Ssiot_content
{lobster_in_food_slot}. Then for each X C S,|X| < 3 the value
of a schema counter will be increased by 1.

3.3 Processes maintaining the memory structure

One process behind maintenance of memory data structures deals
with the acquisition of new information and it was explained in
the previous section. Other processes described in this section are
triggered during the agent’s sleep and are more complicated. Some
of these processes still have to be calibrated.

3.3.1 Shifting of chronobags

Shifting of chronobags simulates aging and generalization of
episodic memories. There are two mechanisms working behind the
chronobag shifting process each night:

1. Forgetting — as time passes chronobags are continuously being
shifted back to the past. Age of chronobags is increased by one
day every night. The present chronobag is moved to the set of past
chronobags and new empty present chronobag is created. During
every shift, some details of the episode can be gradually forgotten,
as described later. This happens until the chronobag reaches age
tiemdmark when it becomes one of a landmark chronobags for
the [-th level of chronobags. After this point no more details are
forgotten from this specific chronobag. In literature this is referred
to as a flash bulb memory, flash bulb memories are for example
attacks from 9/11, birth of a child etc [8].

2. Episode merging — this process takes episodes from (non-

landmark) consecutive chronobags, creates a chronobag
representing union of time intervals of the chronobags being
merged and copies all the contained episodes to it. This
mechanism causes creation of several levels of abstraction of
chronobags, with the daily chronobags being the least abstract
chronobags. When the more abstract chronobag already contains
a similar episode to the one being added, details of those episodes
are merged, creating an “average” of the two. This is one of
mechanisms for induction of false memories.
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3.3.2  Deriving an episode from the schema

Existence of some nodes in the episode structure E can be deduced
from other nodes in the episode with the use of schemas. If the
conditional probability of existence of node n; given the existence
of node ns, that is P(n1|nz) is close to 1, it means node n; does not
have to be stored in episode E as long as node ng is not forgotten.

For example consider an agent that always goes to work by bus.
Then the episode of going to work by bus happens every work day
and it has the highest count among all ways of transport in the schema
bag associated with going to work. It will be easily derivable from
the schema (nodes travel and work will imply the existence of node
bus). But when the agent oversleeps, it may use its car instead of the
bus. Then this episode will not be derivable from the schema and its
details should be remembered in a particular episode structure.

This mechanism helps to reduce the memory size and it would
not cause any side effects if the derivability of nodes stayed constant
during the existence of the agent and only derivable episodes would
be forgotten. But in our model, even details that are not derivable
can be forgotten, and in reality, the derivability of nodes can also
change (because schemas are constantly updating). This process is
another mechanism capable of inducing a false memory. Consider
for example going to work episode mentioned above. If the node
car is forgotten, the model will derive the node bus instead and the
agent will not be able to distinguish this false memory from any other
stored memory.

3.3.3 Details of forgetting

The forgetting of episode nodes is performed using the node’s score.
Each node is assigned a numeric score:

score = E

aeAttributes

weight, - valueq [€))]

based on the following Attributes set: the user defined salience, the
frequency of executing the node, the ability to derive its existence
with the use of schema bag, the salience of objects attached to the
node, the number of subnodes. Generally the score is higher for
more interesting nodes: those more salient, less frequently executed
and those that cannot be derived from the schema. Weights of all
attributes will be fine-tuned during more complex testing of the
model.

An important feature of the model is that the scores do not change
in time. However, each chronobag has only limited capacity based
on its age and the saliency of nodes in it. The capacity is currently
calculated according to the formula:

. . 1
capacity = MaxCapacity - P +b 2)
where ¢ is the chronobag’s age, a; is a coefficient based on the
chronobag’s level of abstraction and b is a parameter used to increase
capacity of chronobags with many salient nodes. The node scoring
mechanism (Eq. 1) together with the limited capacity of chronobags
(Eq. 2) should result in a believable forgetting process.

4 IMPLEMENTATION

The memory model is being developed as a standalone Java library
independent of the agent’s decision making system (DMS). The
current implementation is divided into three separate projects:

e Bot — this library includes the DMS of the agent (in this case
AND-OR trees) and it controls the agent’s body through the
Pogamut platform [13]. Pogamut is a tool for programming agents
in virtual 3D environment.

e Memory <+ Pogamut interface — a lightweight layer translating
events originating in the agent’s DMS into representation used in
the episodic memory.

e Episodic memory model — a standalone library implementing the
core of the model, that is: chronobags, schema bag, the chronobag
shifting algorithm (see Section 3.3) and a GUI for exploring the
content of the memory (see Figure 2). There is a clearly defined
API used to insert information into the memory. AND-OR trees
are the default formalism used by the model but any other DMS
with hierarchical nature can be connected to the memory module
too. The model works with the notion of more and less abstract
actions (or goals), it does not matter whether those actions are
implemented in the DMS as Hierarchical Finite State Machines,
AND-OR trees etc.

This modular architecture makes it possible to connect our model to
any other source of data without much effort in the future. For new
environments, only the lightweight interface translating events to the
format expected by the core memory model has to be implemented.
The core episodic memory model can remain unchanged.

Structure
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Figure 2. The GUI of the Episodic memory module showing a content of
one chronobag. It shows two very simple episodes executed by the agent.
The GUI is able to display contents of any chronobag, decision tree or
schema structures. JUNG library [22] was used for visualization of the
graph.

5 VALIDATION OF THE MODEL

Natural question is how the model will be validated and
parameterized. Research on human memory provides only limited
data about function of memory outside psychological laboratory.
There are many experiments with memorizing lists of words, non-
sense syllables and figures, but fewer results about working of
memory in daily life on a scale of months, years or an entire life.
For purposes of episodic memory modeling it would be best to have
data with:

1. Input of the memory - e.g. all events, objects and other actors that
the subject was exposed to.
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2. Content of the memory - which of the inputs were remembered
and the depth of detail that can be recalled.

Concerning Point 1, for longer time scales there is no such data yet,
however this may change in a near future. Dawn of devices like
Microsoft SenseCam [15] can generate tons of data about inputs of
memory that we are currently lacking. Considering already existing
published data, Wagenaar’s six year diary study [27] and video based
study of real life events [11] seems to be the closest matches to our
requirements.

Concerning Point 2, the exact content of memory remains
unknown, we can study it only through recollection and recognition
experiments. Our aim is to fit data from this kind of experiments with
human subjects.

In our methodology we want to create simulation on the scale
of several months (and later a life time simulation) of our agent to
obtain inputs of the memory. In a 3D simulated world we can log
every subtle detail of the environment. After we obtain this log of
information, we will use it as an input of our memory model and try
to fit data dealing with false memories reported in [3, 16] and the
data dealing with forgetting curves and retention intervals reported
in[1, 11, 17].

We plan to perform several experiments:

1. The first is to prove that the model can recall episodes that did
not happen but are compliant with the schemas. To do this we
will perform simulation of three weeks with one set of plans the
agent will be following and then one additional week with slightly
modified plans. We expect to find reasonable parameters of our
model, where a false memories will appear. We will try to fit the
data reported in [16].

2. The second experiment should find parameters for a model that
will approximate the retention curve of remembered memories.
We will try to fit the real life data for several retention periods
going from one day to several weeks, as reported in [1, 11, 17].

3. In the next experiment we will try to find out if our memory model
is able to support a hypothesis that memory dating errors peak at
multiples of seven days, as reported in [17].

4. We also consider creating a setting for the experiment where the
agent’s recollections of different events and items will be ordered.
We want to parameterize the model so that less errors will be made
in items recollected earlier, as reported in [17].

6 CONCLUSION

We have presented our computational model of long term episodic
memory that aims to model false memory effect. The model
capitalizes on our previous work [7, 4] and extends it with a notion
of a schema bag and a chronobag shifting algorithm (Section 3.3).
The chronobag shifting algorithm combining both gradual forgetting
and episode merging was briefly described. We believe that these
two mechanisms together with node derivability (Section 3.3.2) can
result into emergence of false memory effects well known from
psychological literature. However our model is currently a work in
progress, the validation of the model against data from psychology
will be the next step.
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