
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Does high-level behavior specification tool make
production of virtual agent behaviors better?

Jakub Gemrot, Zdeněk Hlávka, Cyril Brom

Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic
jakub.gemrot@gmail.com, hlavka@karlin.mff.cuni.cz,

brom@ksvi.mff.cuni.cz

Abstract. Reactive or dynamic planning is currently the dominant paradigm for
controlling virtual agents in 3D videogames. Various reactive planning tech-
niques are employed in the videogame industry while many reactive planning
systems and languages are being developed in the academia. Claims about ben-
efits of different approaches are supported by the experience of videogame pro-
grammers and the arguments of researchers, but rigorous empirical data corrob-
orating alleged advantages of different methods are lacking. Here, we present
results of a pilot study in which we compare the usability of an academic tech-
nique designed for programming intelligent agents’ behavior with the usability
of an unaltered classical programming language. Our study seeks to replicate
the situation of professional game programmers considering using an unfamiliar
academic system for programming in-game agents. We engaged 30 computer
science students attending a university course on virtual agents in two pro-
gramming assignments. For each, the students had to code high-level behavior
of a 3D virtual agent solving a game-like task in the Unreal Tournament 2004
environment. Each student had to use Java for one task and the POSH reactive
planner with a graphical editor for the other. We collected quantitative and
qualitative usability data. The results indicate that POSH outperforms Java in
terms of usability for one of the assigned tasks but not the other. This implies
that the suitability of an AI systems-engineering approach is task sensitive. We
also discuss lessons learnt about the evaluation process itself, proposing possi-
ble improvements in the experimental design. We conclude that comparative
studies are a useful method for analyzing benefits of different approaches to
controlling virtual agents.

Keywords: Virtual agents, Agent development techniques, Empirical studies

1 Introduction

Reactive planning is currently the dominant paradigm for controlling virtual agents in
3D videogames and simulations. Prominent reactive planning techniques used in the
industry are derivations of finite state machines (FSMs) [1] and behavior trees [2].
Technically, these are implemented in a scripting language, such as general-purpose
Lua [3] or special-purpose UnrealScript [4], or they are hard-coded in a game’s native

language, typically C++ [5]. Advantages and drawbacks of different industry ap-
proaches have been commented on widely [6, 7, 8]. The general agreement in the
academia is that scripting languages do not provide enough expressivity for creating
complex human-like agents, or it is cumbersome to use them for this task, and that
there should be a better way for creating virtual agents behaviors.
At the same time, academia is producing action selection (AS) systems that seek to
improve cognitive performance of agents. These include the decision making modules
of cognitive architectures, e.g. Soar and ACT-R [9, 10], stand-alone BDI-based lan-
guages, e.g. GOAL [11], and reactive planners such as POSH [12]. It has been
demonstrated that some of these systems, e.g. Soar [9], POSH [13], GOAL [11] and
Jazzyk [14], can be used for controlling virtual agents acting in game-like environ-
ments. However, cognitive performance of an agent is not the only concern of the
game industry. Ease of use, code readability and re-usability (of parts of code) play an
important role in eagerness of adoption of new systems. In fact, these features may be
more important than the agent’s cognitive performance as the industry will be unlike-
ly to adopt systems that are hard to use or produce code incomprehensible to anybody
except the author.

Academic approaches often use custom behavioral languages to disguise underly-
ing low-level code (in Lua, C++ etc.) forcing the programmer to think in high-level
behavioral constructs, such as mental states, goals, action competences or triggers.
These constructs are also defined explicitly as language primitives to be organized by
programmers into behavioral plans that are interpreted by an AS system. Still, these
AS systems are tied with the disguised low-level code for the purpose of communica-
tion with the environment, including information gathering and processing, and action
executions and monitoring the course of the execution. The high-level languages typi-
cally lack synchronization or generic while statements to deal with application proto-
cols gracefully, therefore AS systems must also define interfaces between these two
levels. This two-layer architecture is thought to have several positive outcomes: 1) the
low-level agent “periphery” should be reusable by different high-level plans, 2) well
structured low-level code should improve comprehensibility, 3) correctly-separated
high-level constructs should be easier to understand and extend, 4) a high-level plan is
thought to be easily grasped by non-programmers, such as game designers, as it is
more intuitive. Essentially, the high-level plan is to the low-level code what SQL is to
Cobol.

Technically, one does not need an academic AS system featuring a high-level be-
havioral language to create complex behaviors. An option exists to hard-code every-
thing inside the low-level code as we witness in many computer games. Which ap-
proach is better?

Two particular scenarios are encountered in game companies often and it is worth
investigating this question in the context of these situations. First, when an AI devel-
oper leaves a company, somebody needs to continue his or her work. It is desirable
that a developer’s code is as comprehensible as possible (even without documenta-
tions and code commenting), so that it is easy to extend. Second, if a company creates
a sequel to its game, it might be desirable that some existing code for the agents’ be-
haviors is reused. Thus, it should be easy to augment or refactor existing behaviors.

The goal of this paper is to present results of a quasi-experimental, comparative
study with both quantitative and qualitative measures modeling the abovementioned
situations of AI developers, a method adopted from psychology and social sciences.
The study’s goal was to investigate whether an academic approach that combines both
the lower and the higher level behavior description outperforms an industry approach
employing only the lower level in the situations in question and at the same time, gain
insight into the utilization of high-level constructs. We adopt Java as the industry
approach and POSH reactive planner [12] as the academic approach. Java is at least as
good as C++ for programming complex agent’s behavior, but it is not a typical game
industry language. We use it for two reasons. First, all our subjects, [22] university
computer science students, know Java acceptably well, which models a situation in a
company where programmers known their programming language. Second, POSH’s
lower level uses Java. We use POSH because it has been already demonstrated for
controlling virtual agents [13]. It also benefits from a graphical tool developed for
visualizing an agent’s behavior plan using high-level constructs only [17]. POSH can
be thought of as typical of a broad class of academic solutions such as a BDI-based
systems, that include planning and primitive layers.

All our subjects attended a course on programming virtual agents for games where
they learned POSH. Their situation corresponded to situation of game programmers
considering using an academic system after experimenting with it for about three
person-days. Our subjects were divided into two groups. Both groups worked on the
same tasks from a first-person shooter domain using Unreal Tournament 2004 envi-
ronment (UT04), but the first used Java only and the second used POSH to model
higher level control. Our hypotheses were:

1. POSH outperforms Java in terms of subjectively-perceived usability and objective
quality of the resulting agents.

2. POSH outperforms Java when the task is to catch up upon the work of someone
else.

3. POSH outperforms Java when the task is to extend one’s own code (three
months later).

Fig. 1. Relation between high-level POSH plan and low-level Java code presenting separa-
tion of high-level behavioral code from the low-level code of sensors and actions.

If these had been confirmed, there would have been an empirical argument for maturi-
ty of at least one particular academic solution. In fact, no hypothesis was supported by
the data. This means that it is important to isolate the most beneficial and problematic
features of POSH to suggest possible improvements. Features shared with different
academic systems are the most important.

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 introduces POSH [12] explaining its roots, architecture and Behavior Oriented
Design [15] methodology for the design of virtual agent behaviors. Section 4 de-
scribes the experiment setup and following section 5 presents its results. Section 6
discusses results and presents ideas for general improvements to AS systems, which
concludes the paper.

2 Related work

Empirical studies of academic AS systems are scarce. In our previous comparative
study [28], we demonstrated that POSH, enhanced with a GUI, is at least as good as
Java, but in that study, subjects programmed the high-level code only and for relative-
ly simple tasks, which is a study’s limitation. Doubts about using only the high-level
constructs for programming complex agents behavior stem from the work of Píbil et
al. 16, who reports on experiences from the creation of a team of agents solving a
MAS game-like scenario inside a grid world using vanilla Jason [22] implementation,
that is, using the Jason’s high-level constructs only without modifying the low-level
Java code. They report on hard Jason’s corners and the inevitable implementation of
complex behavior primitives in underlying Java language.

Hindriks et al. [19] conducted a qualitative analysis of the code of 60 first year
computer science students developing (in teams) three Capture The Flag agents for
UT04 using GOAL agent programming language. That work aimed at “providing
insight into more practical aspects of agent development” and “better understanding

Fig. 2. The course of the experiment.

problems that programmers face when using (an agent programming) language” and
identified a number of structural code patterns, information useful for improvements
to the language. However, that study was not comparative and did not report the pro-
grammers’ feedback.

The fact that an AS system’s usability is also closely linked to the quality of de-
velopers’ tools and their ability to visualize complex behaviors in an intuitive way
was recognized by Heckel et al. [20] in their work on BehaviorShop. A usability
study of BehaviorShop demonstrated a well-thought GUI for editing high-level be-
havioral plans is easily graspable by non-programmers. However, their study was not
comparative and they did not allow subjects to work with low-level code, which is
arguably required for larger behavior modifications as argued by [15, 16].

The industry’s interest in simple and intuitive tools is exemplified in Desai’s work
on ScriptEase [24]. ScriptEase is a graphical authoring tool of the BioWare’s
NeverWinter Nights game allowing non-programmers to create new game modules.
She shows that her simplification of the GUI is welcomed by both programmers and
designers.

3 POSH

POSH action selection was originally developed in the late 1990s in response to criti-
cism of what was then an extremely popular agent design approach (at least in aca-
demia): Subsumption Architecture (SA) [23]. SA was used to produce considerable
advances in real-time intelligent agents, particularly robotics. It consists primarily of
two components: a highly modular architecture where every action is coded with the
perception it needs to operate; and a complex, highly distributed form of action selec-
tion to arbitrate between the actions that would be produced by the various modules.
Although well-known and heavily cited, the SA was seldom really used outside of its
developers. Bryson hypothesized that the emphasis on modular intelligence was actu-
ally the core contribution of SA, but that the complexity of action selection, while
successfully enforcing a reactive approach, confused most programmers who were not
used to thinking about concurrent systems.

POSH was developed to simplify the construction of action selection for modular
AI. A programmer used to thinking about conventional sequential programs is asked
to first consider a worst-case scenario for their agent, then to break each step of the
plan to resolve that scenario into a part of a reactive plan. Succeeding at a goal is the
agent’s highest priority, the thing the agent does if it can. The programmer must
therefore describe for the agent how to perceive that its goal can be met. Then for
each step leading up to the goal the same process is followed: a perceptual condition
is defined allowing the agent to recognize if it can take the action leading most direct-
ly to its goal [12]. The actions are each small chunks of code that control the agent
briefly, so-called behavior primitives (see Fig. 1).

After a period of experimenting with the system, Bryson embedded POSH in a
more formal development methodology called Behavior Oriented Design (BOD) 18.
BOD emphasizes the above development process, and also the use of behavior mod-

ules written in ordinary object-oriented languages (low-level code) to encode the ma-
jority of the agent’s intelligence, including its memory. These modules provide the
high-level behavior and sensory primitives; methods calls are the interface between a
high-level POSH plan and the low-level code of the behavior modules (see Fig. 1).
BOD includes a set of heuristics for recognizing when intelligence should be refac-
tored either from a plan to a behavior module or to decompose a complex module
using a plan.

Recently, a graphical editor for POSH plans has been developed. Its new version
was used in the present study (Fig. 1).

4 Method

4.1 Experiment design

The study compared the usability of an academic AS system, POSH, enhanced with a
graphical tool for the creation of high- level behavioral plan, and an unenhanced clas-
sical programming language, Java. The context of the comparison was two particular
situations mentioned in Sec. 1 common in the game company. The study was divided
into three tasks. Each task was to create a behavior for an agent that had to fulfill a
game-like goal. Subjects using Java had a complete freedom in the way of coding the
behavior. Subjects using POSH were constrained by the requirement to separate low-
level Java code into behavior and sensory primitives, specific constructs, which were
then used inside high-level POSH behavioral plan (see Fig. 1).

The study was set in an AI course for computer science students in REMOVED.
Subjects were given a pretest (3 hours) after the course to ensure that they had ac-
quired elementary skills for solving sub-problems from the final exam. Only subjects
that had passed the pretest were admitted to the final exam.
The final exam was organized to obtain comparative data on Java and POSH usability
and provide data for the first game company scenario (see Sec. 1). The final exam
consisted of two tasks, the Guide Task (3.5 hours) and the Guard Task (3.5 hours), see
Sec. 4.3. Subjects were split into two groups, the Java group and the POSH group. In
the first task, subjects were to create the whole Guide behavior from scratch. In the
second task, each subject received a code from a randomly selected colleague from
the same group and was asked to extend it into Guard behavior. There was a 30
minutes long break between the first and the second task. Finally, three months later,
some subjects participated in the final task, in which every subject was given his code
from the first task and was asked to extend it into MultiGuide behavior (3.5 hours).
The follow-up provided data for the second game company scenario.

Subjects were given 4 questionnaires in total during the final exam (15 minutes
each) and 2 questionnaires during the follow-up. Subjects solving the follow-up also
underwent a structured interview that was meant to provide more accurate qualitative
data as the number of subjects was rather small for quantitative data analysis. The
course of the experiment is summarized in Fig. 2. Subjects were always informed how
long the task will take in advance, but the structure and the exact content were re-

vealed only during the study. The assignments were given immediately prior to each
task.

The whole package featuring Pogamut platform used, task texts given and ques-
tionnaires used can be downloaded from [29].

4.2 Participants

For the initial study, we recruited 22 students out of 33 attendants of the AI course.
The study was the course’s final exam and students were given their final grade based
on performance of their agents in the Guide task. Students had the option of with-
drawing from the study if they preferred a different kind of final exam.

We excluded 2 students from the analysis due to data incompleteness. In total, we
analyzed data from 20 students. Students were randomly divided into two groups. The
random assignment was stratified by year of study in order to guarantee that both
groups contained similar number of students in each year of study.

For the follow-up task, we succeeded in recruiting 8 subjects (5 from the Java
group and 3 from the POSH group) from the original 22. They participated for reward
30 USD. The number of follow-up participants was too small for statistical analysis,
but provided qualitative data.

4.3 Materials

The Course. The students attended an introductory course on the control of virtual
characters. The course is intended for students without previous AI or 3D graphics
knowledge but with previous programming experience. Only students from the se-
cond or a higher year of study could attend. The course comprises of 12 theoretical
lectures (90 minutes each) and 6 practical lessons at computers (90 minutes each).
The theoretical classes are detailed in [21]. In practical lessons, the students are taught
how to work with virtual agent’s library (2 lessons) and develop behavior of virtual
agents using both Java (2 lessons) and POSH (2 lessons).

Pretest. The general aim of the Pretest was to rule out subjects that were not suffi-
ciently prepared for the final exam. Unprepared subjects would bias the data as they
would likely fail during the final exam which would influence their answers in ques-
tionnaires.

The Pretest task was to create an agent capable of exploring the environment of
UT04 game and collect items of a specific type. The agent had no adversaries in this
task. Implementation language was assigned to subjects at random.

Three programmers skilled in VR technology solved the pretest task in advance to
calibrate the difficulty of the test. The time allotment (2 hours) was at least three
times longer than average time needed by these programmers to finish the task. Sub-
jects had 3 attempts to pass the Pretest. Most passed on their first attempt.

Experimental task.

Guide. The Guide Task was to create an agent capable of finding a lost Civilian agent
and leading it home. At the beginning, Civilian agent was standing still at random
position broadcasting its position with a “mobile phone.” The Guide agent must
communicate with the Civilian agent if it wants the Civilian agent to follow its lead.
The communication had a fixed and rather simplistic protocol described in the as-
signment.

Communication was reliable but Civilian was willing to reply to Guide over the
mobile only if Guide was not too far away. Apart from finding Civilian, there were
two obstacles that Guide had to overcome in order to successfully lead Civilian home.
First, Civilian was willing to start following Guide only if Civilian can see Guide.
Second, if Civilian lost Guide from sight, it stopped walking. Thus, the challenge was
not only to find Civilian and persuade it to follow Guide home, but also to constantly
observe whether Civilian is doing so. Once Civilian was home, it restarted itself in
another location in the map. Guide’s goal was to rescue Civilian as many times as
possible within 5 minutes.

Guard. The Guard Task was an extension of the Guide Task. Again, the task of the
Guard agent was to find and guide the lost Civilian agent home. However, there was
also an adversary Alien agent in the environment created to hunt down both Guard
and Civilian. Thus resulting Guard behavior must have correctly prioritized the fol-
lowing intentions: 1) finding a weapon, 2) finding and leading Civilian home, 3) re-
sponding to Alien. For instance, the Guard agent should have stopped leading Civilian
when Alien was spotted and started attacking Alien.

MultiGuide (follow-up). The MultiGuide Task was also an extension of the Guide
Task. This time, there were two Civilian agents in the environment and the
MultiGuide agent had to get them together first and then lead both home.

Organization. For all tasks, subjects were told to code both low-level behavior primi-
tives as well as high-level plans. Concerning the lower level, both groups used Java.
For the higher level, i.e., organizing complex motor primitives based on already pro-
cessed sensory information, Java group subjects hard-coded their own if-then rules or
finite state machines (simple switch statements), whereas POSH group subjects had to
use the POSH graphical editor for specification of a high-level POSH plan. POSH
group was also encouraged to use the BOD design methodology. Tasks were solved
by two skilled programmers in advance and their feedback was used to adjust the
tasks difficulty.

Subjects received the assignment written on the paper prior to every task and they
were provided with sufficient time (30 minutes) to read it and ask questions to clarify
ambiguities.

Groups were working in parallel in two different rooms. Subjects were not al-
lowed to cooperate on the solution but they were allowed to utilize any documentation
about used virtual agent’s library available on the Internet.

Questionnaires. Every subject received 4 questionnaires during the initial study and
participants of the follow-up received an additional 2.

Questionnaires contained both quantitative (11 level Likert items; 10 maximum, 0
minimum) and qualitative questions. Questions were designed to 1) control for influ-
ences (comprehensibility of the assignment, task difficulty, whether the course has
prepared subjects well, etc.), 2) investigate how appropriate was a language for a
particular task, 3) report on language preferences, 4) report on how easy/hard was to
extend the received code, 5) identify hard corners of Java/POSH behavior develop-
ment. Follow-up subjects also undergone a structured interview.

4.4 Data analysis

All quantitative answers from the questionnaires were analyzed. Quantitative answers
from the Guide task and Guard task post-questionnaires were compared. Answers
from Java and POSH groups were also compared. We have used paired and two-
sample t-tests with Welch approximation to compare the means in the two groups.
Having discrete data, it would seem natural to look for methods using contingency
tables (chi-square test of independence) or rank-based tests (Wilcoxon test, sign test
or two-sample Kolmogorov-Smirnov test). However, using contingency tables here
would suffer from low number of observations in cells while rank-based tests would
suffer from lots of ties in our data. Moreover, the reasons for rejecting the null hy-
pothesis may not be clear in some situations. Therefore, we have decided to compare
the means observed in the two groups by applying paired and two-sample t-tests.
Assuming that two-sided two-sample t-test is used to compare two groups of size 11
(see Sec. 5) and that the standard deviation is 2, the test detects difference 2 with
probability approx. 60% and difference 3 with probability more than 90%. Notice that
Central Limit Theorem guarantees that t-test may be used in this setup because the
observed means are approximately normally distributed, see also [26, 27] for a more
detailed justification of this approach. For other data from contingency tables, we
have used χ2 tests of independence with p-values obtained by Monte Carlo simulation
in contingency tables. Additionally, agents from the Guide task were tested for quali-
ty. We executed the corresponding task scenario 10 times for each agent (Civilian’s
random position sequence has been fixed) and checked how many Civilians the agent
saved in 5 minutes. The agent’s score was computed as the average of all runs. Guard-
task agents were not evaluated as most subjects solved this assignment only partially
due to insufficient time and increasing fatigue (the study lasted 8 hours). Statistical
tests were not run for the follow-up questionnaires and the follow-up agents were not
tested due to the small number of participants.

5 Results

Results can be divided into objective performance of created agents and subjective
assessment of the used tool. We will show quantitative data first and discuss qualita-
tive data later. Only the most important data are reported due to space limitations.

5.1 Quantitative data

Quantitative data reports on:

A. how well the subjects understood the assignment; analyzing answers to the ques-
tion “Have you understood the assignment?”;

B. how well the subjects were prepared for solving the task; analyzing answers to the
question “Did practice lessons prepare you well for solving this kind of task?”;

C. how satisfied they were with the behavior they had created; analyzing answers to
the question “How do you feel about the behavior you have produced? Is it ok?”;

D. the agent’s objective performance, in the case of Task 1;
E. how appropriate the tool the subjects were using was for solving the task; analyz-

ing answers to the Guide Task’s question “Do you find Java to be the appropriate
for the assignment?”;

F. satisfaction with comprehensibility of received code, in case of Task 2.

5.1.1. Task 1 - Guide Agent.
Ad A. Subjects in both groups understood the assignment very well and there were no
between-group differences (mean for Java group = 9.36±0.77; mean for POSH group
= 9.36±0.98).
Ad B. Subjects in both groups were equally prepared for the Task 1 (mean for Java
group = 8.91±1.81; mean for POSH group = 8.5±1.9; p-value = 0.621).
Ad C. Subjects in POSH group were slightly less satisfied with their agents (mean for
Java group = 7.64±0.67; mean for POSH group = 5.82±2.75; p-value = 0.056). The
observed difference is not quite statistically significant, but given the low N we report
the trend.
Ad D. Agents’ objective performances (Table 1) did not statistically differ between
the groups (p-value = 0.722).
Ad E. Satisfaction of subjects with their programming tool in the Guide Task (Fig. 3,
4) was slightly higher in Java group but the difference was not significant (mean for
Java group = 8.09±1.81; mean for POSH group = 7.09±3.51; p-value = 0.414).

Table 1. Task 1 agents’ performances.

Perf. / Group Weak Moderate Good Total

Java 3 4 4 11

POSH 1 4 4 9

Total 4 8 8 20

5.1.2. Task 2 - Guard Agent.
Ad A. Subjects in both groups understood the assignment very well and there were no
between-group differences (mean for Java group = 9.46±0.99; mean for POSH group
= 9.73±0.62).

Ad B. Subjects in POSH were prepared slightly better for this task (mean for Java
group 6.67±3, mean for POSH group 8.8±1.3; p-value = 0.075). Again we report the
trend due to the low N and weak power of the test.
Ad C. Subjects in both groups were similarly unsatisfied with their agents (mean for
Java group = 3.82±2.09; mean for POSH group = 3.36±2.46; p-value = 0.646).
There was also highly significant shift of satisfaction visible when answers from both
groups combined from Task 2 were compared to combined answers from the Task 1
(mean for Task 1 = 6.73±2.16; mean for Task 2 = 3.59±2.24; p-value of paired t-test <
0.001).
Ad E. Subjects’ satisfaction with their tool did not differ between groups (Fig. 5, 6,
mean for Java group = 6.67±2.06; mean for POSH group = 6.64±3.04; p-value =
0.979).
Ad F. We also have asked subjects whether they find the received code comprehensi-
ble. The result showed no between-group differences (mean for Java group = 5.8±3.6;
mean for POSH group = 6.27±2.97; p-value = 0.747).

Fig. 3. Java group satisfaction with their tool (Task 1).

Fig. 4. POSH group satisfaction with their tool (Task 1).

5.1.3. Task 3 - MultiGuide Agent. All subjects reported that they understood the
assignment perfectly (mean for both groups = 10±0). All subjects were able to extend
their old code and create the MultiGuide agent. Interviews did not bring any dramatic
comments on comprehensibility of code written in Java vs. POSH. Subjects from both
group reported that reading through the code took around 10 minutes for both groups.
Opinions regarding Java/POSH preference are included below.

Fig. 5. Java group satisfaction with their tool (Task 2).

Fig. 6. POSH group satisfaction with their tool (Task 2).

5.2 Qualitative data

Quantitative results present an overall view on how subjects were satisfied with
POSH or Java in the situations we modeled. These results have not revealed substan-
tial differences between POSH and Java, suggesting that more fine-grained, qualita-
tive approach is needed. Our qualitative data came from answers to “Explain” ques-
tions to abovementioned questions from questionnaires and from the interviews.
Answers can be divided into two categories: conceptual, pointing out strong and weak
points of behavior design using POSH, and technical, such as wrong POSH engine
settings. We will discuss mainly the former category as technical points might be
eliminated easily by tweaking our POSH implementation.

Recall that POSH strictly separates behavior into a high-level plan, which uses
behavior modules that define low-level code of behavior and sensory primitives (see
Sec. 3). A well thought out POSH plan depicts how the agent will respond to the envi-
ronment without revealing any technical details of the low-level code. When summa-
rized, the qualitative data revealed rather strong, and opposite, opinions regarding this
ability of POSH and its graphical editor: this feature was praised but also hated.

Many subjects found the separate thinking about the high-level behavior plan to be
positive.

“I think it is pretty easy to make the idea in POSH and then just write few simple
methods.”
“The plan helps you to keep track of the important stuff that your agent does and
reminds you to keep the behavioral triggers simple.”
“In POSH, I can clearly distinguish states.”
“Behavior states written in Java are harder to debug.”

“POSH enforces good behavior architecture.”

However, some found that unsuitable to their style of work.

“The lack of variables at the level of POSH plans that would visualize flow of low-
level data from senses to actions seems limiting.” [POSH does not have variables at
the high-level]
“POSH limits you when you’re coding the behavior.”
“You still need to write Java code.” [note this is intentional in POSH/BOD approach,
and cf. this with [16], who find it difficult to use vanilla Jason without underlying
Java]
“Switching between POSH GUI and Java IDE was confusing me.” [refers to the ne-
cessity of switching between two modes of programming; the low-level and the high-
level]

The last opinion contrasts with:

“POSH is a convenient way to clearly write agent decision logic and underlying Java
is powerful enough to code all details.”
Some users failed to see any advantages in POSH at all or at least in having a sepa-
rate graphical program and action-selection mechanism to run it.
“I can simply write POSH decision tree in Java.”

We noticed that POSH subjects cannot program the required behavior exclusively
inside the high-level plan. The subjects always coded also their own low-level POSH
primitives or made changes to primitives of other subjects (Task 2) or their own
(Task 3).

POSH was frequently criticized with technical comments. Students usually dis-
liked writing names of actions and senses twice, first in POSH and then in Java. But
there were a few comments that revealed some conceptual flaws of POSH behavioral
language as well.

“POSH has fixed order of action priorities; this becomes too limiting for complex
behaviors.” [that points to POSH’s (intentionally) simple conflict resolution mecha-
nism]
“POSH does not provide any mechanisms for action-switching, it is hard to track that
for yourself.” [like in many other agent-based systems, support for transition behav-
iors, including action-in and action-out constructs, is limited or none, see also [25]]
“POSH does not support parallel behaviors; parallel behavior is especially hard to
manage.” [original POSH used on robots allowed for parallel behaviors, but this is
more difficult in the present VR incarnation due to the game engine]

Qualitative data provide interesting points for further discussion. Some points can be
generalized to other agent-based languages.

6 Discussion and conclusion

This study has compared the usability of the academic AS system POSH empowered
with a graphical editor to that of a common programming language Java in two situa-
tions common in a game company: a) catching up upon the work of a colleague, and
b) extending one’s own work from several months ago.

Unfortunately quantitative results could only be gathered on two of the three tasks
we assigned. Here we showed no difference between Java and POSH groups in sub-
jectively reported readiness for utilization of the tool in Task 1 (see Sec. 5.1.1.B).
Subjects from POSH group reported they were prepared slightly better for Task 2,
which could be to POSH’s advantage, but the effect was rather small (see Sec.
5.1.2.B). The qualitative data seem to argue that we prepared the students well for the
tasks no matter the technique; the groups were not biased. Because there are no dif-
ferences in objective agents’ qualities (see Sec. 5.1.1.D), the first hypothesis that
POSH is better in terms of usability and efficiency of resulting behavior is not sup-
ported.

The second hypothesis also has not been supported by the quantitative data from
the first condition, as subjects did not report improvements to the code’s readability
due to POSH’s visible organization of the sensory and behavior primitives into a
high-level plan (see Sec. 5.1.2.F). However, verbal comments are interesting. Where-
as complete freedom of coding high-level behavior in Java was praised by some Java
group subjects, it was a source of confusion for others. For POSH, negative comments
were focused only on complexity of behavior primitives in low-level code, constraints
of the high-level language, but never on the problems with the high-level plan com-
prehensibility (see Sec. 5.2 and below).

“Single routine from hell.” [a Java subject referring to a single Java method that exe-
cuted the whole behavior]
“The logic method was a long list of ifs that were kinda obscure and it was unclear to
me which part was taking care of which part of the behavior.” [a Java subject refer-
ring to overly complex if-then rules in Java, which were mixing high-level behavioral
code with low-level code]

That contrasts with negative comments of POSH subjects related to the low-level
code written by a different subject:
“Senses and actions were quite complex.”
“Some of the primitives were unfamiliar; there was some extra stuff I did not under-
stand.”
“The naming was good, but there were about 5 senses/actions that didn´t do any-
thing.”

Finally, the third hypothesis also has not been supported (see Sec. 5.1.3). Subjects
from both groups did not report any problems with reading own code that they had
created 3 months ago, even if they had not been interacting with the code all over the
period.

This last may indicate that Task 1 and 3 were too simple to get much advantage
from a programming tool, at least for the 8 programmers who had completed Task 2
and were willing to come to their code again. This is particularly true since the basic
structure of POSH could be indeed replicated with Java conditional statements if the
hierarchy or plan was not too complex. Had we been able to complete the full course
of the study with all programmers, we may have found subjects that the POSH struc-
ture assisted.

6.1 Main interpretation

It is useful to conceive the results from the standpoint of the metaphor separating
behavioral code into the “low-level” and “high-level”. When adopting this perspec-
tive, the results argue that tasks of a medium complexity (compared to common tasks
of an industry programmer) already imply programming at both levels, and conse-
quently, switching the programmer’s attention between the levels. Note that
POSH/BOD already recognizes that and the study of Píbil et al. [16] also supports this
interpretation. However, this cast doubts on the idea that non-programmers, such as
game designer, could ever use “intuitive high-level languages” only, except for the
simplest tasks.

An interesting point is that majority of subjects seem to praise the separation of
high-level behavior plan from the low-level code, which is a general finding, but they
were not satisfied with concrete limitations that POSH enforces on the architecture of
behavior primitives. Still, some subjects seem not to have internalized their thinking
in terms of this two-level architecture at all and to have problems with switching be-
tween levels of abstraction.

What we still do not know is whether the explicit materialization of the low-level /
high-level separation realized in POSH/BOD and agent-based languages in general,
would eventually turn out to be more of an advantage than a burden. The fact that
students think the former does not necessarily mean it really is. Some qualitative data
concerning Guard task and one quantitative outcome (see Sec. 5.1.2.B) suggest that at
least when one has to read the code of some else, the explicit materialization of high-
level constructs is an advantage. At the same time, however, as said above, some
qualitative data suggest that some students may have problems when the interface
between two levels is explicit. This might be similar to object-oriented programming;
one has to undergo a long journey to fully appreciate the concept, and perhaps some
programmers are always happier in assembly. Future research is needed to elucidate
what exactly is a POSH’s and its GUI’s technical limitation and what is a deeper con-
ceptual issue.

6.2 Generalization

Many comments on Java vs. POSH can be transposed to other academic AS systems
due to general approach they all share with POSH. All of them try to separate behav-
ioral code out of low-level code. We will now summarize the study’s results into the

list of guidelines that should be considered when assessing AS systems for the pur-
pose of authoring behaviors for virtual agents.

1. The study’s result supported the idea that low-level code should be used for coding
behavior primitives. A high-level AS system should not try to supply processing of
sensory information or attempt to supply logic of low-level actions directly. An AS
system should understand that behavior primitives always need to be created in
low-level code forming the agent periphery and provide appropriate support for or-
ganizing it.

2. The interface of an AS system with low-level code should be simple and interface
requirements should be assessed as they will indicate design patterns a programmer
will need to follow. If those design patterns are complex or over-constraining, as is
the case of parameter-less sensor and action methods in POSH, it may lead to time
consuming implementation of agents’ peripheries.

3. An AS system should be prepared for the execution of transition behaviors. When-
ever an AS system decides it is time to switch from one action to another, it should
also notify low-level code it is doing so, i.e., it should be part of AS interface to the
low-level code.

From the methodological perspective, the lessons learnt from this study are that both
quantitative and qualitative data are useful for assessing engineer performance.

7 Acknowledgements

Research is supported by the Czech Science Foundation under the contract
P103/10/1287 (GACR), by student grant GA UK No. 0449/2010/A-INF/MFF, by
student grant GA UK No. 655012/2012/A-INF/MFF and by SVV project number 263
314. Human data were collected respecting APA ethical guidelines. We kindly thank
Joanna Bryson, University of Bath, UK, for her consultations regarding design of the
experment and data analysis.

8 References

1. Fu, D., Houlette, R., “The Ultimate Guide to FSMs in Games,” AI Game Pro-
gramming Wisdom II, Charles River Media (2004): pp. 283-302.

2. Champandard, A. J.: Behavior Trees for Next-Gen Game AI. Internet presenta-
tion. URL: http://aigamedev.com/insider/presentations/behavior-trees
(11.10.2011)

3. Schuytema, P.: Game Development with Lua. Charles River Media (2005)
4. UnrealScript programming language. URL:

http://udn.epicgames.com/Two/UnrealScriptReference.html (11.10.2011)
5. Schwab, B.: AI Game Engine Programming. 2nd edition. Charles River Media.

(2008)
6. AiGameDev community. URL: http://aigamedev.com/ (11.10.2011)

7. Rabin S.: AI Game Programming Wisdom series. URL:
http://www.aiwisdom.com/ (11.10.2011)

8. Gamasutra webpage. URL: http://www.gamasutra.com/ (11.10.2011)
9. Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., Stokes, D.: AI Characters and

Directors for Interactive Computer Games, Proceedings of the 2004 Innovative
Applications of Artificial Intelligence Conference, San Jose, CA, July 2004.
AAAI Press (2004)

10. Best, B. J. & Lebiere, C.: Cognitive agents interacting in real and virtual worlds.
In: Sun, R. (Ed) Cognition and Multi-Agent Interaction: From Cognitive Model-
ing to Social Simulation. NY, NY: Cambridge University Press. (2006)4

11. Hindriks, K. V., van Riemsdijk, M. B., Behrens, T., Korstanje, R.,Kraaijenbrink,
N., Pasman, W., de Rijk, L.: Unreal GOAL Bots: Conceptual Design of a Reusa-
ble Interface. In: Agents for games and simulations II, LNAI 6525, pp. 1-18.
(2010)

12. Bryson, J.J.: Intelligence by design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agent. PhD Thesis, MIT, Department of EECS,
Cambridge, MA. (2001)

13. Partington, S.J., Bryson, J.J.: The Behavior Oriented Design of an Unreal Tour-
nament Character. In: Proceedings of IVA’05, LNAI 3661, Springer-Verlag
(2005)

14. Köster, M., Novák, P., Mainzer D., Fuhrmann, B.: Two Case Studies for Jazzyk
BSM. In: Proceedings of Agents for Games and Simulations: Trends in Tech-
niques, Concepts and Design, F. Dignum, J. Bradshaw, B. Silverman and W. van
Doesburg (ed.), AGS 2009, LNAI 5920 (2009)

15. Bryson, J. J.: Behavior-Oriented Design of Modular Agent Intelligence. In: Agent
Technologies, Infrastructures, Tools, and Applications for e-Services, R.
Kowalszyk, J. P. Müller, H. Tianfield and R. Unland, eds., pp. 61-76, Springer.
(2003)

16. Píbil, R., Novák, P., Brom, C., Gemrot, J.: Notes on pragmatic agent-
programming with Jason. In: Proceedings of Programming Multi-Agent Systems,
AAMAS workshop, Taipei, Taiwan, pp 55-70. (2011)

17. Gemrot, J., Brom, C., Kadlec, R., Bída, M., Burkert, O., Zemčák, M., Píbil, R.,
Plch, T. Pogamut 3 – Virtual Humans Made Simple. In: Advances in Cognitive
Science, Gray, J. eds, The Institution Of Engineering And Technology (2010) pp.
211-243

18. Bryson, J. J.: Action Selection and Individuation in Agent Based Modelling. In:
Proceedings of Agent 2003: Challenges of Social Simulation, Argonne National
Laboratory (2003) pp. 317-330

19. Hindriks, V. K., van Riemsdijk, M., Jonker, B., C. M., 2011, An Empirical Study
of Patterns in Agent Programs: An Unreal Tournament Case Study in GOAL,
PRIMA 2010.

20. Heckel, F. W. P, Youngblood, M., Hale, D. H.: Behavior Shop: An Intuitive Inter-
face for Interactive Character Design. In: Proceedings of the Fifth Artificial Intel-
ligence and Interactive Digital Entertainment Conference, AIIDE 2009, October
14-16, 2009, Stanford, California, USA. The AAAI Press (2009)

21. Brom, C.: Curricula of the course on modelling behaviour of human and animal-
like agents. In: Proceedings of the Frontiers in Science Education Research Con-
ference, Famaguta, North Cyprus. 2009, pp. 71 - 79

22. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak Using Jason. John Wiley & Sons, Ltd. (2007)

23. Brooks, R.A: Intelligence Without Representation, Artificial Intelligence 47 (1-3)
(1991) pp. 139-159.

24. Desai, N.: Using Describers To Simplify ScriptEase. In: Master Thesis. Depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta, Canada.
(2009)

25. Plch, T.: Towards Believable Intelligent Virtual Agents with StateFull Hierar-
chical Reactive Planning Action Selection, In: Proceedings of Week of Doctoral
Students, Charles U in Prauge(2011), in press.

26. Rasch, Teuscher, Guiard, How robust are tests for two independent samples?,
Journal of Statistical Planning and Inference, Volume 137, Issue 8, pp. 2706-
2720.

27. Heeren T, D'Agostino R. Robustness of the two independent samples t-test when
applied to ordinal scaled data. Stat Med. 1987 Jan-Feb;6(1): pp 79-90.

28. Gemrot, J., Brom, C., Bryson, J., Bída, M.: How to compare usability of tech-
niques for the specification of virtual agents' behavior? An experimental pilot
study with human subjects. In: Proceedings of Agents for Games and Simulations,
AAMAS workshop, Taipei, Taiwan. (2011) pp. 33-57

29. Experiment reusable packages: http://pogamut.cuni.cz/pogamut-
devel/doku.php?id=human-like_artifical_agents_2010-
11_summer_semester_exam_info (9.4.2012)

