

© EUROSIS-ETI

TEACHING INTELLIGENT VIRTUAL AGENTS PROGRAMMING THROUGH
SIMULATED CHILDREN'S GAMES

Jakub Gemrot, Martin Černý, Cyril Brom

Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranské náměstí 25, 118 00, Prague 1,
Czech Republic

E-mail: gemrot@ksvi.mff.cuni.cz, cernym@gmail.com, brom@ksvi.mff.cuni.cz

KEYWORDS
Educational Games, AI Education, Game AI.

ABSTRACT

Developing intelligent virtual agents (IVAs) is a great
challenge for computer programmers. Lifelike virtual
environments present various obstacles, especially on the
lower AI level. Navigating through 3D worlds is notoriously
difficult to handle properly as well as quick and appropriate
reactions to rapid changes of the environment. When
teaching basics of IVA development at our university, we
noticed that students find the complexity of virtual
environments intimidating. Although lectures on AI theory
help, a substantial amount of hands-on experience is
indispensable to gain proficiency. We thus searched for ways
to start with very simple tasks and at the same time keep the
students engaged and motivate them to experiment with AI
development at home. In this paper we report on two 3D
virtual environments we developed on top of Unreal
Tournament 2004 for the introductory classes of our course.
The environments are inspired by children's games and are
focused primarily on combining simple high-level decisions
with navigation. Tournaments of bots were held for both
environments to conclude parts of the course. Evaluation
over two years of the course shows that the environments
helped students to focus on subparts of the IVA development
and that the tournaments motivated the students to
experiment with IVA behaviors outside the borders of the
course.

INTRODUCTION

As the virtual entertainment industry grows, there is an
increasing demand for education in game development and
related fields. One of the very interesting areas in game
development is AI and development of intelligent virtual
agents (IVAs) in particular. In this context we run an IVA
development course at our university since 2005 for a mix of
undergraduate and postgraduate students. The course focuses
on the modeling of IVA behaviors in complex 3D
environments (partially observable, dynamic, continuous,
non-deterministic, multi-agent) from both theoretical and
practical perspective. The focus of the course is not on
classical symbolic AI (A*, planning, etc.) as this is covered
by prerequisite AI courses, but rather on reactive reasoning
and "intelligence without representation". The theoretical
part covers a broad range of topics from neuroscience and

psychological background to reactive planning
methodologies. In the practical part of the course, students
develop bots for deathmatch mode of Unreal Tournament
2004 (Epic Games Inc. 2004).
While the course was relatively successful, we noticed that
the practical part of the course was overly challenging for the
students who often felt lost and frustrated. One of the most
problematic areas was navigation through the 3D
environment and other low-level tasks related to geometry of
the environment. This was intentional in a way, because our
experience indicates that it is those difficulties involved in
the 3D worlds that make game AI both hard and unsuitable
for classical AI approaches. But we recognized the need for
environments that would retain the delicate intricacies of 3D
but would accept simple scenarios and require less
sophisticated higher level reasoning. Such environments will
let the students progress with smaller but quicker steps and
experience a sense of success and reward more often.
Furthermore, we knew that as in other areas of software
development, practical experience  a lot of practical
experience  is indispensable. Even more so for virtual
environments, where even things that seem very easy at first
sight (e.g. navigating correctly in the environment) often
introduce unexpected difficulties and the actual
implementation is at least as important as the general idea for
the overall success of the behavior. We thus wanted to
motivate students to experiment with the AI at home, as the
time allocated for classes was far from sufficient to gain
proficiency.
To summarize, we wanted to follow the long-known
pedagogical principles: start with the simple; learning should
be fun; practical experience promotes learning (Comenius
1648).
We sought inspiration in the way humans learn to navigate
seamlessly in the real world. We realized that children master
movement in the real world by playing simple games where
fast movement in the environment is vital for victory. We
found those games to be a great source of inspiration. They
have simple rules and most of the students already know the
rules, simple behavior is sufficient to achieve reasonable
results and still there are plenty of possibilities to improve
over the simple approach.
In this paper we report on our use of virtual counterparts of
children games to teach navigation and basics of reactive
decision making. We chose two children games: Tag! and
Hide & Seek. We implemented the games in UT 2004 and
used them as test environments during the introductory part
of our course. To further motivate students to play with the

© EUROSIS-ETI

AI at home, we introduced non-obligatory tournaments of
bots in both games. We report on feedback from the students
and the implications of using similar games in course
curriculum.
The rest of the paper is organized as follows: First, we
discuss related work on teaching AI and programming in
general, than we briefly detail the curriculum of our course
and motivate our use of UT2004 in the classroom followed
by the discussion of requirements we imposed on the
environments and details of the individual environments.
Finally, we report on the evaluation of the games during two
years of the course.

RELATED WORK

Multiple approaches were tried to increase engagement in
general computer science/programming courses. Insights
from general pedagogic research are transferred to computer
science education e.g., (Lockwood and Esselstein 2013,
Porter and Simon 2013, Kafai et al. 2013). These efforts are
orthogonal to our research as our educational games can be
incorporated in virtually all teaching methodologies.
Gamification of the course was proposed (Decker and
Lawley 2013)  similarly to this approach, we have
implemented a flexible grading system that allows students to
score points for various activities. Developing games as part
of a class has also been suggested (Bayzick et al. 2013).
Bayliss (2009) shows that games have been be successful in
both attracting, motivating and retaining students of
computer science. It is noted that correctly chosen open-
ended assignments stimulate creativity and let students
"play" with the task. She also reports on caveats of the
approach, including the high requirements on the teacher side
and possible technical problems with game technology.
In the context of AI, educational scenarios based on Pac-Man
and other simple game environments (DeNero and Klein
2010, McGovern et al. 2011, Bezakova et al. 2013) have
been proposed. Those are, however not applicable to our
case as they focus on classical AI techniques and do not
involve an environment comparable in complexity to 3D
computer games.

COURSE CLASS DETAILS

The course lectures cover various topics related to IVA
development: reactive planning, subsumption architecture
(Brooks 1991) , behavior oriented design (Bryson 2001),
steering, evolutionary algorithms, neural networks,
background in ethology, neuroscience, psychology and
psychophysics; belief-desire-intention architecture (Georgeff
et al. 1999) and multiagent systems. We have reported on the
curriculum of the course lectures in more detail in (Brom
2009). In the following text, we focus on the practical classes
we have developed and evaluated since.
To provide students with hands on experience in IVA
development we have created Pogamut (Gemrot et al. 2009)
 a platform for prototyping of bots' behaviors for Unreal
Tournament 2004 (UT2004) (Epic Games Inc. 2004) in the
Java programming language. UT2004 is first-person shooter
(FPS) that was very popular in the 2000s. Even though an
older game today, the graphics of UT2004 still appeal to

students and the game complexity does not differ from its
sequel Unreal Tournament 3 (Epic Games Inc. 2007) or
other recent FPS games.
During the practical classes, students are taught how to
hierarchically decompose behaviors using behavior oriented
design (BOD) in a top-down manner and then implement the
behavior on top of Pogamut platform using a bottom-up
approach.
Respective practical classes are focusing on different
technical aspects of the Pogamut platform, teaching students
only a limited set of behavior primitives (sensors and
effectors) available to bots every class, allowing students to
gradually explore different aspects of UT2004 bot behaviors.
The task of the students is to implement simple behaviors
using the newly learnt primitives and to incorporate them in a
bot they incrementally create. As the set of behavior
primitives grows, students are able to construct more
complex behaviors, starting with a simple follow-me-bot to a
bot covering all the aspects of a deathmatch game.
Practical classes cover the following behavior aspects: low-
level movement, environmental reasoning, navigation, item
collection, combat and team work.
The ultimate objective of the practical classes is to teach
students how to structure IVA behaviors for game-like tasks
within UT2004 environment. The final proof of their ability
to do so is a successful implementation of a death-match
(DM) bot that is able to beat less-skilled human players.
Students are graded based on points they can get for multiple
types of activities. Those include: attendance, homeworks,
quick tests in class and several optional tournaments of bots
throughout the semester.

REQUIREMENTS AND ANALYSIS

The initial course runs comprised of classes that focused on
the DM mode too much. We were teaching students how to
incrementally build their bots by introducing new behavior
aspects that students were adding into an existing one. Even
though we tried to mask as much complexity as we could in
the Pogamut platform, AI for UT2004 simply needs to
handle too many issues. There are numerous relevant sensory
data messages UT2004 exports (21 messages, 189 attributes)
that the bot has to handle as well as command messages the
bot needs to use correctly (13 commands, 34 attributes). The
bot has to reason about 10 weapon types and 17 item types
that are available within the game.
Due to the high complexity, students could not create bots
that would cope with at least the most important game
aspects until late in the semester which was not very
rewarding and it did not motivate students well for two
reasons. Firstly, knowing that creation of DM behavior does
not fit into single class and single homework, students were
not experimenting with the behavior at home; they rather
waited before we explained them all behavior aspects
required to create DM bot and then experimented with the
DM bot only once. Secondly, students had become easily
bored as the ultimate task was the same for every class even
though details differed. Therefore, we decided to restructure
the classes and devise new sets of tasks that are assigned to
students.

© EUROSIS-ETI

From the teaching point of view, a task is characterized with
knowledge (K) that is needed to solve the task and needs to
be taught beforehand and with the logic (L) that the student
should discover himself while solving the task. The
knowledge can be further divided into three parts:

K1) the environmental mechanics involved in the task,
K2) set of behavior primitives (e.g. move, shoot, see-player)

and/or higher-level actions provided by the platform
(e.g. navigation) required by the solution and how to
use them,

K3) reasoning techniques (e.g., non-trivial use of A*)
required to solve the task.

To create the behavioral logic, a student should undergo
following three steps:

L1) analyze the task,
L2) design the behavior structure,
L3) implement the behavior using the platform.

The (complicated) structure of knowledge and logic required
for a deathmatch bot is shown in Fig. 1.

Figure 1: Structure of knowledge (full lines) and behavioral
logic (dashed lines, italics) required for DM bot and their

classroom dependencies.

The challenge is to choose the proper set of tasks. The tasks
should be of increasing complexity and connected with each
other so that students can consolidate their knowledge and
skills by reusing them in portions of the more complex tasks.
The task also needs to allow for incremental buildup of the
necessary knowledge and that lets the students to complete
all logic development steps in reasonable time so that they
stay focused and motivated. The knowledge and logic design
for a task should be dealt with in the same class or in close
succession: Separating the knowledge from its use in agent
logic leads to poor learning performance as the theory is no
longer supported by practice and separating the individual

logic development steps prevents the student from getting
immediate feedback on the quality of his design (e.g. wrong
analysis may not be spotted until the student fails at
implementing it).
We noted that the students struggled the most with the very
introduction to the platform and with navigation and
movement. Moreover, once classes on those topics were
over, only few steps remained to their first attempts at DM
bot  although there was still a lot of knowledge to master,
students were already familiar with the overall design and
philosophy of the Pogamut platform and thus progressed
faster.
To conclude, we needed to devise tasks that would cover the
basics of Pogamut and navigation and would need no other
knowledge.

THE ENVIRONMENTS

Based on the requirements identified in the previous section,
we have designed two environments inspired by children's
games. Both environments were run in UT 2004 and the
game logic was implemented as an extension to the Pogamut
platform.

Tag! Game

Tag! is inspired by classical children game, where one player
is the "chaser" and tries to catch other players (labeled here
as "evaders") by touching them. Once a player is caught, the
chaser role is passed to the caught player. The former chaser
becomes an evader, but a "no-tags-back" rule is enforced: the
former chaser is immune (cannot become chaser again) until
the role is passed to yet another player.

Figure 2: Structure of knowledge (full lines) and behavioral
logic (dashed lines, italics) required for Tag! bot and their

classroom dependencies.

The game has many interesting properties. A) The simplest
strategy for chaser resp. evader is to run directly to chosen
evader resp. run directly away from the chaser, therefore
students can create simple Tag! bots very quickly. B) The
game works well with a very simple environment (e.g. flat
square or rectangle), therefore students do not need to be
taught about environment representation and navigation. C)
Having move, dodge and jump commands is enough to
create different chasing and evading strategies (even in the
simple environments), thus it provides room for students'

© EUROSIS-ETI

creativity. D) The Tag! Game can be scored (how many
times a bot has become the chaser, how fast a bot can pass
the chaser role on) and therefore it is possible to conduct
tournaments between student bots.
For reasons above, the Tag! Game makes a good candidate
for the first real task for students. Technicalities required to
solve the task (K1-3) can be explained quickly (45 minutes)
along with coding the simplest Tag! bot implementation (L1-
L3) together with students (45 minutes).
We played Tag! with four bots --- this is the minimum to
allow for complex strategies to be taken: the chaser always
has two possible targets (the last evader is immune to him).
Since all bots move at the same speed, "tactical movement"
(computing move vectors based on positions of other bots
and other context) is vital factor of success. The classroom
dependencies of Tag! bot are shown in Fig. 2.
The students are shown basic vector math hints and asked to
create "tactical movement" separately for the chaser and
evader roles. Even though a simple game, students are very
creative at this part. Interestingly, the move, dodge and jump
commands create a very large space of strategies and
counter-strategies. One of the keys to success is the ability to
predict future positions of the other bots, which is especially
beneficial to the chaser who may "cut corners" to catch the
evader more quickly. On the other hand a bot may decide to
exploit the opponent's prediction mechanism and gain
advantage by behaving unpredictably.
For instance, the bot can speed its running using dodges and
jumps. However, it cannot jump too frequently as the bot
cannot control its movement while in the air, therefore the
opponent can reliably predict the bots position as soon as it
notices that the bot is in the air. While evading, the evader
can try to run smoothly in circles, which creates an endless
evading behavior a simple "direct running chaser" cannot
beat. It is also beneficial to implement timeouts to chasing
behavior or chase only those bots one has successfully tagged
before.
The bots are not aware of other bots that they do not see
directly  they only know the location where they were seen
for the last time  so improvements can be made by
controlling the direction of bot's gaze to maximize the
amount of information available for decision making. Tag!
also serves as a good exercise of basic vector math, which is
necessary for many more complex decisions in 3D
environments.

Hide & Seek Game

Another classical children game is Hide & Seek, where one
player is the seeker and tries to seek out others that are
hiding within the environment (labeled here as hiders). We
have implemented the variant played most commonly in
Czech Republic: All players start at a designated base. The
hiders are given a short time to hide, while the seeker is
blindfolded (does not receive vision data and cannot issue
commands). To score a point, seeker needs to find another
player (see him) and then return to base to "ground" him.
However, if a hider manages to reach the base before he is
grounded, he scores a point and cannot be grounded
anymore. The game ends once all hiders are grounded or
have reached the base.

Whereas Tag! focuses on low-level movement, Hide & Seek
focuses on the environment representation and reasoning
(path-finding and line-of-sight) and navigation (path-
following). Even though the game is more complex, it still
retains interesting properties. A) The simplest strategy for a
seeker is to run randomly around the environment until it
spots a hider, then return to the base. Analogically, for a
hider, the simplest strategy is to hide at a random place and
try to reach the base as soon as hider finish counting. B) The
environment reasoning complexity can be lowered by, again,
designing a simple environment (e.g. grid-based 2D maze
without rooms). C) The Hide & Seek Game can be scored
(according to the number of found hiders or the number of
escapes).
One of the maps we used is shown in Fig. 3.

Figure 3: A sample map for Hide & Seek. The base is at the

crossroads in the center of the map.

Figure 4: Structure of knowledge (full lines) and behavioral

logic (dashed lines, italics) required for Hide & Seek bot and
their classroom dependencies.

© EUROSIS-ETI

It is more time demanding to teach technicalities that are
required to solve the task. Firstly, the navigation along with
environment representation and simple path-finding needs to
be taught and practiced (90 minutes). Then, the class
detailing A* implementation in Pogamut and options for its
adaption is required in order to provide students with tools
for obtaining multiple paths towards target or searching for
paths that lead through places not visible to the seeker (90
minutes).
The classroom dependencies of Hide & Seek are shown in
Fig. 4. Note that low-level movement was already taught in
the Tag! scenario and that after students have understood the
necessary prerequisites of Tag! and Hide & Seek bots, only
item and weapon management and shooting need to be
explained before they can start working on a death match bot
(see Fig. 1).
Hide & Seek also provides a rich strategy space. In order to
gain information about positions of other players, the seeker
needs to roam away from the base, making it possible that a
hider reaches the base safely. Hiders on the other hand may
try to spot the seeker without being spotted and have to
decide when there is a reasonable chance they will make it to
the base. Thus in both roles, the bot needs to balance the
risks and gains of its behavior.

EVALUATION

The Tag! and Hide & Seek Games were introduced to the
course curriculum in 2013 and received positive feedback.
Therefore, the course ran during 2014 without changes. Here
we present data from these two years from the total of 27
students (26 males, 1 female, Czechs) out of which 7 were
undergraduate and 20 were postgraduate students.
Importantly, the overall performance of students during the
classes and the final exam improved significantly. The final
exam was almost the same for the last three runs of the
course and involved coding of two complex behaviors in a
lab. In 2012, the average time to complete the first behavior
was 2 hours, 50 minutes (sd: 30 minutes) and only two
students completed the second behavior. In 2013 and 2014,
the average for first task dropped to 1 hour, 29 minutes (sd:
31 minutes). All students also finished the second behavior,

on average in 3 hours, 15 minutes (sd: 47 minutes). Although
multiple factors may be involved (most notably innovations
to Pogamut platform and prior knowledge of the tasks gained
from students from previous year), the results are
encouraging.
Data about tournaments was gathered through questionnaires
that were part of the final exam of the course.
Students were asked three quantitative questions related to
the tournaments held throughout the course1:

1. Did you find tournaments (organized during the practice

lessons) interesting? (11-Likert like scale, 0 - not at all, 5
- somewhat interesting, 10 - very interesting). The
average score was 8.5 (sd: 1.69).

2. Did you put extra effort into homeworks that were used
for tournaments? (11-Likert like scale, 0 - not at all, 5 -
some effort, 10 - I have tried my best) The average score
was 6.5 (sd: 1.6).

3. How many extra hours have you invested into doing your
homework for a single tournament (at average)? The
average was 4.25 hours (sd: 1.51).

Qualitative feedback ("Give any comments on the
tournaments") answers could have been clustered to
categories displayed in Table 1. The qualitative answers were
very positive, with only one student that explicitly stated that
he was not motivated by tournaments and over 60% of
students explicitly expressing positive impacts on motivation.

CONCLUSIONS

We have presented two educational games suitable for
teaching basics of IVA development. We have shown that
tournaments in both games helped to motivate students to
spend extra hours (over 4 on average) working on the
assignment. The games themselves were instrumental in
keeping students' attention and helped them learn how to

1 Tournament results including all compiled bots, UT2004
replays as well as some videos can be downloaded from:
pogamut.cuni.cz/pogamut-devel/doku.php?id=human-
like_artifical_agents_2013-14_summer_semester

Table 1: Categories of qualitative feedback on tournaments held during the course and count of answers that belong to the category.

Category & Sample Answers Count
Good motivation for the homework
The tournaments motivated me to try inventing unusual solutions to the problems.

6

Creates competitive environment (in a good sense of the word)
It was nice to see some results of my work on bots and have some comparison with other students.
It was an excellent idea to compare the bots. Everyone could see, what all can be achieved.
Some of the resulting videos were funny.

6

Spice the course up
Spiced the course up, nice to do a homework that is somewhat more practical.

5

Interesting, but no time to compete
Tournaments were interesting, but due to my other activities, I did not have a time to compete truly.

4

Interesting, but not motivating
Tournaments were interesting, but they did not motivate me really.

1

Other
Comments about possible improvements of tournaments.

5

© EUROSIS-ETI

navigate agents in virtual environments, reason about the
environment and use vector math to calculate trajectories.
As a future work we intend to further ease development of
bots for both games and start tournaments for high school
student interested in game AI.

ACKNOWLEDGEMENTS

Human data were collected with APA principles in mind.
This research is supported by the Czech Science Foundation
under the contract P103/10/1287 (GACR), by student grants
GA UK No. 655012/2012/A-INF/MFF and 559813/2013/A-
INF/MFF. This research is partially supported by SVV
project number 267 314.

REFERENCES

Bayliss J.D., 2009. "Using Games in Introductory Courses:

Tips from the Trenches". In Proceedings of the 40th
ACM Technical Symposium on Computer Science
Education. ACM, New York, NY, USA, SIGCSE '09,
337-341.

Bayzick J.; Askins B.; Kalafut S.; and Spear M., 2013.
"Reading Mobile Games Throughout the Curriculum". In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. ACM, New York, NY,
USA, SIGCSE '13, 209-214.

Bezakova I.; Heliotis J.E.; and Strout S.P., 2013. "Board
Game Strategies in Introductory Computer Science". In
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. ACM, New York, NY,
USA, SIGCSE '13, 17-22.

Brom C., 2009. "Curricula of the course on modelling
behaviour of human and animal-like agents". In
Proceedings of the Frontiers in Science Education
Research Conference. 71-79.

Brooks R.A., 1991. "Intelligence Without Representation".
Artificial Intelligence, 47, 139-159.

Bryson J.J., 2001. Intelligence by design: Principles of
Modularity and Coordination for Engineering Complex
Adaptive Agent. Ph.D. thesis, MIT, Department of EECS,
Cambridge, MA.

Comenius J.A., 1648. Novissima Linguarum Methodus.
Publisher unknown, Leszno, Poland, chap. Methodi
linguarum novissimae fundamentum, Ars Didactica.

Decker A. and Lawley E.L., 2013. "Life's a Game and the
Game of Life: How Making a Game out of It Can Change
Student Behavior". In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education.
ACM, New York, NY, USA, SIGCSE '13, 233-238.

DeNero J. and Klein D., 2010. "Teaching introductory
artificial intelligence with pac-man". In Proceedings of
the Symposium on Educational Advances in Artificial
Intelligence.

Gemrot J.; Kadlec R.; Bída M.; Burkert O.; Píbil R.;
Havlíček J.; Zemčák L.; Šimlovič J.; Vansa R.; Štolba
M.; Plch T.; and Brom C., 2009. "Pogamut 3 Can Assist
Developers in Building AI (Not Only) for Their
Videogame Agents". In F. Dignum; J. Bradshaw; B.
Silverman; and W. Doesburg (Eds.), Agents for Games
and Simulations, Springer-Verlag, LNCS 5920. 1-15

Georgeff M.; Pell B.; Pollack M.; Tambe M.; and
Wooldridge M., 1999. "The belief-desire-intention model
of agency". In Intelligent Agents V: Agents Theories,
Architectures, and Languages, Springer. 1-10.

Kafai Y.; Griffin J.; Burke Q.; Slattery M.; Fields D.; Powell
R.; Grab M.; Davidson S.; and Sun J., 2013.
"A Cascading Mentoring Pedagogy in a CS Service
Learning Course to Broaden Participation and
Perceptions". In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education. ACM, New
York, NY, USA, SIGCSE '13, 101-106.

Lockwood K. and Esselstein R., 2013. "The Inverted
Classroom and the CS Curriculum". In Proceeding of the
44th ACM Technical Symposium on Computer Science
Education. ACM, New York, NY, USA, SIGCSE '13,
113-118.

McGovern A.; Tidwell Z.; and Rushing D., 2011. "Teaching
introductory artificial intelligence through java-based
games". In AAAI Symposium on Educational Advances in
Artificial Intelligence, North America.

Porter L. and Simon B., 2013. "Retaining Nearly One-third
More Majors with a Trio of Instructional Best Practices
in CS1". In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education. ACM, New
York, NY, USA, SIGCSE '13, 165-170.

WEB REFERENCES

Epic Games Inc., 2004. "Unreal Tournament 2004".

www.unrealtournament.com. Last checked: 2014-05-25.
Epic Games Inc., 2007. "Unreal Tournament 3".

www.unrealtournament.com. Last checked: 2014-05-25.

JAKUB GEMROT was born in Havířov, Czech Republic
and went to the Charles University in Prague where we
studied artificial intelligence and graduated in 2009. After
the study he participated in several game development
projects as an AI consultant, the most notably in the
upcoming RPG Kingdom Come: Deliverence. He is one of
the main authors of the Pogamut framework, which he
actively maintains, and is currently finishing his doctoral
thesis on controlling of intelligent virtual agents.

	TEACHING INTELLIGENT VIRTUAL AGENTS PROGRAMMING THROUGH SIMULATED CHILDREN'S GAMES
	Jakub Gemrot, Martin Černý, Cyril Brom
	KEYWORDS
	Educational Games, AI Education, Game AI.
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	COURSE CLASS DETAILS
	REQUIREMENTS AND ANALYSIS

