
FAST CONFIGURABLE TILE-BASED DUNGEON LEVEL GENERATOR

Ondřej Nepožitek, Jakub Gemrot
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00, Prague 1, Czech Republic
E-mail: ondra@nepozitek.cz, gemrot@gamedev.cuni.cz

KEYWORDS
Procedural content generation, Dungeon levels, Stochas-
tic method, Simulated Annealing

ABSTRACT

Procedural generation of levels is being used in many
video games to increase their replayability. But gener-
ated levels may often feel too random, unbalanced and
lacking an overall structure. Ma et al. (2014) proposed
an algorithm to solve this problem; their method takes
a set of user-defined building blocks as an input and
produces layouts that all follow the structure of a spec-
ified level connectivity graph. In this paper, we present
an implementation of this method in a context of 2D
tile-based maps. We enhance the algorithm with sev-
eral new features and propose speed improvements. We
also show that the algorithm is able to produce diverse
layouts. Benchmarks show that it can achieve up to two
orders of magnitude speedup compared to the original
method. As the result, it is suitable to be used during
game runtime.

INTRODUCTION

Procedural content generation (PCG) is a method
of creating content algorithmically rather than by hand
(Togelius et al. 2010). In video games, it is often used
to increase game’s replayability. The classic example
is the game Rogue that contains procedurally generated
dungeon levels, treasures and monster encounters, which
lead to unique experience on every playthrough. Proce-
dural techniques are also used in newer games including
Borderlands, Diablo or Minecraft.

In this paper, we focus on PCG of game levels. One
approach to this problem is to use binary space parti-
tioning (Shaker et al. 2016); they start with a rectangu-
lar area and recursively split it until there are enough
subareas. Some subareas are then chosen to represent
rooms and these are then connected by corridors. An-
other possible approach is so-called agent-based dun-
geon growing (Shaker et al. 2016); they start with an
area that is completely filled with wall cells and an agent
is spawned at a specified location. The agent is con-
trolled by a predefined AI and moves through the area,
digging corridors and placing rooms.

The problem with these algorithms is that a game
designer often loses control over the flow of gameplay,

and generated layouts may feel too random and lack-
ing an overall structure (Dormans and Bakkes 2011, Ma
et al. 2014). Although this approach may be appro-
priate in some genres, Dormans & Sanders (Dormans
and Bakkes 2011) note that it is not suitable for action-
adventure games and propose to generate both missions
and spaces of a game using generative grammars. Ma et
al. (Ma et al. 2014) propose a different approach. Their
method takes a set of room shapes and the level connec-
tivity graph as an input and produces layouts that all
follow the defined structure; a game designer thus have
complete control over the high-level structure of a level,
for example, a control over possible sequences a player
can visit respective rooms (graph nodes). In this paper,
we describe conceptual and technical improvements to
the procedural generation algorithm for dungeon levels
developed by Ma et al.

The rest of the paper is structured as follows. We first
describe the algorithm in detail, then we show our new
features and speed improvements. Finally, we evaluate
algorithm’s performance and conclude the paper.

ALGORITHM

To produce a dungeon level, the algorithm (Ma et al.
2014) takes a set of polygonal building blocks (referred
to as room shapes) and a planar level connectivity graph
(the level topology) as an input. Nodes in the graph rep-
resent rooms, and edges define connectivities between
them. The goal of the algorithm is to assign a room
shape and a position to each node in the graph so no
two room shapes intersect and each pair of neighbouring
room shapes share a common boundary segment (Fig-
ure 1).

3 

0 

2 

1 

4 

5 

7 

8 

6 

(a) Input graph (b) Building blocks

0
1

2

3
4

5

6
7

8

(c) Output

Figure 1: Example output of the algorithm.

Instead of searching through all possible positions
and room shape assignments of graph’s nodes, the al-
gorithm uses configuration spaces to define valid rela-
tive positions of individual room shape pairs. However,



(a) (b)

Figure 2: Configuration spaces. (a) the configuration
space (red lines) of the free square with respect to the
fixed l-shaped polygon. (b) the intersection (yellow
dots) of configuration spaces of the moving square with
respect to the two fixed rectangles.

formulating the whole problem as a configuration space
computation was shown to be PSPACE-hard (Hopcroft
et al. 1984). Therefore, a probabilistic optimization
technique is used to efficiently explore the search space.
To further speed up the optimization, the input problem
is broken down to smaller and easier subproblems. This
is done by decomposing the graph into smaller parts
(called chains) and laying them out one at a time.

Configuration spaces

For a pair of polygons, one fixed and one free, a con-
figuration space is a set of such positions of the free
polygon that the two polygons do not overlap and share
common segment(s). With polygons, a configuration
space can be represented by a (possibly empty) set of
lines (Figure 2).

Because the block geometry is fixed during optimiza-
tion phase, configuration spaces of all pairs of block
shapes are precomputed to speed up the process.

Incremental layout

Algorithm 1 assigns positions and room shapes to
graph nodes incrementally; in each step it lays out one
chain. A chain is a sub-graph where each node has at
most two neighbours. Chains have an advantage that
they are relatively easy to lay out. The next chain to
connect is always one that is connected to already laid
out nodes.

1 Input: planar graph G, building blocks B, layout stack S
2 procedure IncrementalLayout(c,s)
3 Push empty layout into S
4

5 repeat
6 s ← S.pop()
7 Get the next chain c to add to s
8 AddChain(c, s) // extend the layout to contain c
9

10 if extended partial layouts were generated then
11 Push new partial layouts into S
12 end if
13 until target # of full layouts is generated or S is empty
14 end procedure

Algorithm 1: Incremental layout.

In each iteration, we take the last layout from the
stack and try to add the next chain, generating multiple
extended layouts and storing them. If this step fails,
no new partial layouts are added to the stack and the
algorithm has to continue with the last stored partial

layout (referred to as backtracking). It is usually needed
when there is not enough space to connect additional
chains to already laid out nodes. The process terminates
when enough number of full layouts are generated or if
no more distinct layouts can be computed.

To decompose a graph into chains, we first compute
a planar embedding of the graph (Chrobak and Payne
1989). The first chain is then formed by the smallest
face of the embedding and following faces are added in
a breadth-first order. If there are more faces to choose
from, we first lay out the smallest one. When there are
no faces (no cycles) left, remaining acyclical components
are added.

Favoring cycles is quite important as we have empiri-
cally confirmed them to be harder to layout and causing
the algorithm to backtrack unnecessarily (as the original
paper states).

Simulated annealing

The authors of the original algorithm chose simulated
annealing (SA) framework to explore the space of pos-
sible layouts for individual chains. The reason is that it
produces multiple partial layouts in a single run, which
is useful in two situations. First, it allows us to back-
track if we are unable to lay out a chain. Second, we are
able to quickly generate subsequent full layouts. Instead
of starting the generation process all over again from an
empty layout, we start with an already computed partial
layout that was produced by SA previously.

1 Input: chain c, initial layout s
2 procedure AddChain(c,s)
3 generatedLayouts ← Empty collection of generated layouts
4 t ← t0 // Initial temperature
5

6 for i ← 1,n do // n: # of cycles in total
7 for j ← 1,m do // m: # of trials per cycle
8 s’ ← PerturbLayout(s, c)
9

10 if s’ is valid then
11

12 if s’ ∪ c is full layout then output it
13 else if s’ passes variability test
14

15 Add s’ into generatedLayouts
16 Return generatedLayouts if enough extended layouts computed
17 end if
18 end if
19

20 if ∆E < 0 then // ∆E = E(s’) - E(s)
21 s ← s’

22 else if rand() < e−∆E/(k∗t) then
23 s ← s’
24 else
25 Discard s’
26 end if
27 end for
28

29 t ← t ∗ ratio // Cool down temperature
30 end for
31 end procedure

Algorithm 2: Simulated annealing. This pseudocode
uses n = 50, m = 500, t0 = 0.6 and k is computed
using ∆E averaging (Hedengren 2013).

SA operates by iteratively considering local perturba-
tions to the current configuration, or layout. The energy



function is constructed in a way that it heavily penalizes
nodes that intersect and neighbouring nodes that do not
touch.

To speed up the process, they try to find an initial
configuration with a low energy. To do that, a breadth-
first search ordering of nodes from the current chain is
constructed, starting from the ones that are adjacent to
already laid out nodes. Ordered nodes are placed one at
a time, sampling the configuration space with respect to
already laid out neighbours, choosing the configuration
with the lowest energy.

Tile-based output

We provide an implementation of the algorithm in a
context of tile-based maps. Therefore we changed the
representation of shape coordinates from original floats
to integers and we use only rectilinear polygons instead
of arbitrary polygons for room shapes.

NEW FEATURES

Corridors between rooms

In the original paper, it is shown that the method
can be used to generate layouts with rooms connected by
corridors. To achieve that, a new node is added between
every two neighbouring nodes into the input graph and
these new nodes get assigned a set of room shapes that
was made for corridors.

The problem of this approach is, that we now have
almost twice as many nodes than before, which slows
the generation down.

In our approach, we use two different instances of
configuration spaces. The first is the standard one, in
which a position of two rooms is valid when both rooms
touch and do not overlap. The second, on the other
hand, accepts only positions where the two rooms are
exactly a specified distance away from each other (and
also do not overlap).

When we perturb a layout, we first use the second
type of configuration spaces. By doing so, we should
converge to a state where all pairs of non-corridor nodes
of the current chain have a space between them. Then
we switch to the first type of configuration spaces and
try to greedily add all corridors rooms. If we are not
able to lay out all corridor rooms this way, we abort the
current attempt, remove already added corridors and
return to SA.

Explicit door positions

In the original algorithm, it is not easy to specify door
positions within individual room shapes. But this can
be useful, for example, if we have a boss room which re-
quires the player to enter the room from a specified tile,
or if we have a room template with some tiles reserved
for furniture, chests, etc.

Therefore, we extended configuration spaces genera-
tor to work with door positions directly. It allows us
to define door positions of every room shape in a layout

explicitly. This modification has no runtime overhead as
configuration spaces are generated only once before the
algorithm starts. One must be careful though as having
too few door positions makes it significantly harder for
SA to connect neighbouring rooms and will often cause
the algorithm to need more iterations to generate a valid
layout.

Custom constraints

The original method enforces two basic constraints
on the layout - no two rooms may overlap and all neigh-
bouring rooms must be connected by doors. We decided
to make the concept of constraints more general and cus-
tomizable. We allow to define constraints over the whole
layout and constraints over individual nodes.

They can be either hard or soft. All hard con-
straints must be satisfied before a layout can be accepted
whereas soft ones are used to control the evolution by
modifying the energy.

This can be useful, for example, if we want to make
sure that the whole layout does not exceed some defined
boundaries or if we create an obstacle that the layout
must not intersect.

SPEED IMPROVEMENTS

Simulated annealing parameters

We observed that SA spends most of the time on runs
that either fail to generate anything or do not produce
enough partial layouts. Such situations happen mostly
if the current chain cannot be laid out because of an
unlucky positioning of previous chains. With this in
mind, we tried to find ways to terminate non-perspective
runs as soon as possible.

The original algorithm uses a mechanism of random
restarts. If we do not accept any state for too long, we
quit the current run of SA. The problem is that we can
accept a lot of states without producing a single valid
layout. Generating valid layouts, however, is our main
goal. We tried three different mechanisms that decide if
the current iteration of SA is successful or not:

1) is the original approach where we penalize itera-
tions that fail to accept new states; 2) penalizes itera-
tions that fail to produce valid layouts; 3) is the most
strict one and penalizes iterations that fail to produce
valid layouts that are different enough from already gen-
erated layouts.

We benchmarked all three possibilities and the most
strict came out as the best one. We also tried various
values of parameter m (trials per cycle) and decided to
set it to 100 from the original 500.

Chain decomposition

The decomposition of an input graph into chains af-
fects the overall performance of the algorithm. We ob-
served that having a lot of small chains in a decomposi-
tion leads to poor performance, especially in situations
where we have to backtrack very often. The problem



(a)

0

0

0

(b)

0

4

2

3

1 0

5

0

(c)

Figure 3: Problematic input for chain decomposition.
Blue nodes are contained in a chain with a correspond-
ing number. (a) shows the input graph. (b) shows a
partial chain decomposition after the first iteration of
the algorithm. (c) shows a complete chain decomposi-
tion of the graph (6 chains in a graph of 8 nodes).

is that a substantial amount of time is spent when ini-
tializing the process of laying out the next chain. For
example, it is quite time-consuming to find the best ini-
tial configurations for nodes in the current chain.

In Figure 3a we can see an example of a problematic
graph. Figure 3b shows how the decomposition may
look like after the first iteration of the basic decomposi-
tion algorithm. We can see that we have a lot of small
acyclic components now. The problem is that the algo-
rithm creates a new chain from every such component.
And finally, in Figure 3c, we can see that we will end up
with a lot of small chains - which is a situation we want
to avoid.

Our solution is quite simple. When we want to add a
node to a chain, we check if it does not create acyclical
components with only one node. If it does, we add all
such components to the current chain. This violates the
definition of a chain, but we found out this approach to
perform better in practice.

Lazy evaluation

Another technical problem is that the algorithm is
trying to generate multiple layouts in each run of simu-
lated annealing in case we need to backtrack later. But
what if we are lucky and do not need to backtrack? In
that case, we have wasted a lot of time by computing
something that is not needed.

The solution is to make the computation lazy. In-
stead of generating all children layouts at once, we save
the state of the current run of the algorithm and resume
it later only if it is truly required; as we are using C#,
this is easily achievable by using yield statement.

EVALUATIONS

All benchmarks presented here are obtained by run-
ning our algorithm 100 times on each input graph, with
different randomization seeds. We measure the time
that is needed to generate a layout and the number of
iterations, i.e., how many times we need to perturb a
layout to generate a full layout.

In Table 1, we can see a benchmark of our method
when used on input graphs presented in Figures 1 and
5. Our method was able to generate all layouts without
corridors in under one second. And all layouts with cor-

Time Iterations
Input

avg/med avg/med

Fig. 1 0.00s/0.00s 0.12k/0.02k
Fig. 5, top-left 0.12s/0.08s 4.15k/2.78k
Fig. 5, top-right 0.01s/0.00s 0.29k/0.17k
Fig. 5, bottom-left 0.18s/0.09s 5.50k/3.20k
Fig. 5, bottom-right 0.62s/0.36s 15.28k/10.10k

Table 1: Benchmark of our final implementation of the
algorithm. All benchmarks were done with the building
blocks from Figure 1b, on a 2.7GHz CPU (the algorithm
runs on a single core).

ridors in under two seconds. Our algorithm is therefore
quick enough to generate layouts directly in a game.

Initial SA
parameters

Chain
decomp.

Lazy
evaluation

Combined

1

10

100

1000

Figure 4: Relative speedup of our performance improve-
ments when compared to the implementation of the orig-
inal method, available at Github (Ma et al. 2014). The
chart shows how different approaches affect the total
time needed to generate a layout.

Performance comparison

In the Speed improvements section, we described our
most important performance improvements. Figure 4
shows a comparison of how these changes affect the over-
all speed of the algorithm.

The first bar shows the performance of our initial
implementation of the original method in a tile-based
context. We can see that this implementation is already
faster than the original algorithm. This is mainly caused
by the fact that with integer coordinates, we were able
to significantly speedup operations with polygons and
energy function computation.

The following three bars of the chart demonstrate
how the algorithm behaves with only one improvement
enabled. And finally, the last bar shows that with all
improvements enabled; our algorithm is over 100 times
faster than the original method.



13 

10 

3 

4 5 

0 

1  2 

11 

12 

7 

8 

9 

14 

15 16 

6 

0

1

2

3

4

5 6

7

8

9

10
11

12

13

14

15
16

0

123

4
5

6

7
8

9

10

11

12

13
14

15

16

1 

4 2 

3 

5  6 

8 7 

9 

0 

14 

16 17 21 

18 20  19 

15 

13 

10  11 

12 

0

1

2

3

4

5

6
7

8

9

10

11

12

1314

15
16

17

18

19

20

21

0

1

2
3

4

5

6

7
8

9

10

11
12

13

14

15

16

17 18
19

20

21

0 1 

2 

8 

9 

5 

3 

4 

7 6 

13  14 

10 

11 

12 

0

1

2

3
4

5

6

7

8

9

10

11

12

13

14

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

3 

6 

11  12 

14  15 

16 

7 

13 

4  8 5 

2  0 1 

9  10  14  15 

26 25 

31  32  33 

35 

40 

38 

34 

37  39 

36 

23  24  21 

30 

22 

29 28 

27 

16  17 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

2223

24

25

26

27 28

29

30
31

32

33

34

35

36

37

38

39
40

Figure 5: Layouts generated from four different input graphs, using various sets of building blocks.

CONCLUSION

We presented an algorithm for procedural generation
of tile-based maps from user-defined building blocks that
adapts and improves the previous work of Ma et al.

We proposed several new features and speed improve-
ments. Users can now easily specify door positions and
add custom constraints on the layout. We also presented
a method to quickly generate layouts with rooms con-
nected by short corridors as usually found in dungeon
levels.

We demonstrated that our method can handle various
input graphs and building blocks sets. Benchmarks of
our method showed that, on average, our algorithm is
over 100 times faster then the original one, and is able to
generate a layout in under one second for all our inputs
in the basic mode without corridors. This makes our
algorithm fast enough to be used directly in a game
during runtime or as an inspiration for game designers
during design time.

Our C# implementation of the algorithm
can be downloaded from https://github.com/

OndrejNepozitek/ProceduralLevelGenerator under
the MIT License, which allows the result to be used
in commercial games. The repository also contains an
extended version of the paper together with an example
of a practical use-case of the algorithm.

ACKNOWLEDGEMENTS

This research was funded by the Czech Science Foun-
dation (project no. 17-17125Y).

REFERENCES

Chrobak M. and Payne T., 1989. “A linear-time algo-
rithm for drawing a planar graph on a grid”. Infor-

mation Processing Letters, 54, no. 4, 241–246.

Dormans J. and Bakkes S., 2011. “Generating Missions
and Spaces for Adaptable Play Experiences”. IEEE
Transactions on Computational Intelligence and AI
in Games, 3, no. 3, 216–228.

Hedengren J., 2013. “Simmulated annealing tuto-
rial”. http://apmonitor.com/me575/index.php/

Main/SimulatedAnnealing.

Hopcroft J.; Schwartz J.; and Sharir M., 1984. “On the
Complexity of Motion Planning for Multiple Indepen-
dent Objects; PSPACE- Hardness of the ”Warehouse-
man’s Problem””. International Journal of Robotics
Research, 3, no. 4, 76–88.

Ma C.; Vining N.; Lefebvre S.; and Sheffer A., 2014.
“Game Level Layout from Design Specification”.
Computer Graphics Forum, 34, no. 2. https://

github.com/chongyangma/LevelSyn.

Shaker N.; Togelius J.; and Nelson M.J., 2016. Proce-
dural Content Generation in Games: A Textbook and
an Overview of Current Research. Springer.

Togelius J.; Yannakakis G.N.; Stanley K.O.; and
Browne C., 2010. “Search-based Procedural Con-
tent Generation”. In Proceedings of the 2010 In-
ternational Conference on Applications of Evolution-
ary Computation - Volume Part I. Springer-Verlag,
Berlin, Heidelberg, EvoApplicatons’10. ISBN 3-642-
12238-8, 978-3-642-12238-5, 141–150. doi:10.1007/
978-3-642-12239-2 15. URL http://dx.doi.org/

10.1007/978-3-642-12239-2_15.

https://github.com/OndrejNepozitek/ProceduralLevelGenerator
https://github.com/OndrejNepozitek/ProceduralLevelGenerator
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing
https://github.com/chongyangma/LevelSyn
https://github.com/chongyangma/LevelSyn
http://dx.doi.org/10.1007/978-3-642-12239-2_15
http://dx.doi.org/10.1007/978-3-642-12239-2_15

	Introduction
	Algorithm
	Configuration spaces
	Incremental layout
	Simulated annealing
	Tile-based output

	New features
	Corridors between rooms
	Explicit door positions
	Custom constraints

	Speed improvements
	Simulated annealing parameters
	Chain decomposition
	Lazy evaluation

	Evaluations
	Performance comparison

	Conclusion
	Acknowledgements

