Engaging Turn-based Combat in The Children of the Galaxy Videogame

Pavel Smejkal, Jakub Gemrot
Faculty of Mathematics and Physics, Charles University
Ke Karlovu 3
Prague 2, 121 26, Czech Republic

Abstract

In this paper we tackle a problem of tile-based combat in
the turn-based strategy (space 4X) video game Children of
the Galaxy (CotG). We propose an improved version of
Monte Carlo tree search (MCTS) called MCTS considering
hit points (MCTS_HP). We show MCTS_HP is superior to
Portfolio greedy search (PGS), MCTS and NOKAV reactive
agent in small to medium combat scenarios. MCTS_HP per-
formance is shown to be stable when compared to PGS, while
it is also more time-efficient than regular MCTS. In smaller
scenarios, the performance of MCTS_HP with 100 millisec-
ond time limit is comparable to MCTS with 2 seconds time
limit. This fact is crucial for CotG as the combat outcome as-
sessment is precursor to many strategical decisions in CotG
game. Finally, if we fix the amount of search time given to
the combat agent, we show that different techniques dominate
different scales of combat situations. As the result, if search-
based techniques are to be deployed in commercial products,
a combat agent will need to be implemented with portfolio
of techniques it can choose from given the complexity of sit-
uation it is dealing with to smooth gameplay experience for
human players.

Introduction

In the recent years we have seen the development of super-
human artificial intelligence for games such as Go (Silver
et al. 2016), and two player no-limit Texas holdem poker
(Bowling et al. 2015). The research in game Al has now
turned towards computer strategy games which pose new
greater challenges stemming from their large game spaces
like Dota 2 and StarCraft. In these games, Al agents (bots)
win against human players in small subproblems, usually
concerning reflexes and speed as shown by the OpenAl Dota
2 bot '. However, bots are mostly incompetent when play-
ing the whole game which also involves high-level deci-
sion making and planning (Yoochul and Minhyung 2017).
In this paper, we focus on the genre of turn based 4X strat-
egy games represented by the commercial game Children of
the Galaxy (CotG) developed by EmptyKeys studio 2. How-
ever, discussion and results in this paper can be transfered

Copyright (©) 2018, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.
Uhttps://blog.openai.com/dota-2/
*http://emptykeys.com/Games/Children-of-the-Galaxy

Figure 1: Galaxy view of the game. Color of the hexes indi-
cates which players region they belong to. Top right corner
shows minimap. Hexes with stars indicate solar systems.

to many games of the same genre as they share many game
environment properties.

Children of the Galaxy

CotG is fairly standard 4X game from space, featuring colo-
nization of solar systems, management of colonies, research-
ing new technologies, unit building, and tile-based space
combat involving ships of asymmetric powers. Victory can
be achieved in a few ways: eliminating all opponents in
warfare, researching an ultimate technology, which is eco-
nomically daunting, or colonizing most of the galaxy. Even
though it is clear how to win the game from the human per-
spective (eXplore, eXpand, eXploit and eXterminate), the
winner is determined by the right strategic decisions of how
many and where to send one’s ships (units in general). One
sub-problem of this high-level unit movement planning is
the fight or flee decision. Discovering an enemy army ad-
vancing to our positions, should an Al engage them with cur-
rent units at hand or flee and regroup. And if it is to flee and
regroup, how many other units should be brought or built
to answer the threat? We cannot simply withdraw all other
military units as they may have duties elsewhere. It is then
hard to determine ’what is enough to answer the threat” (or
plan an attack). As units in commercial games have asym-

Figure 2: Solar system view with a small combat scenario.
Yellow/winged ships are one army and grey/industrial ships
the other army.

metrical powers it is hard to come up with formula to assess
the strength of an army. This subproblem, assessment of an
army’s immediate strength, is (again) still complex as the
number of combat situations (the type and number of units
and the battlefield setup) is high plus it is affected by how
well each player can utilize the units strenghts and exploit
other units weaknesses in combat. Therefore, the combat
capabilities of Al greatly impacts the strength of its army,
which in turns affect its fight or flee decisions, which in the
end affect what to build or what to research. As the result,
we focus solely on solving the combat in CotG here as it
is one of the precursor to many high-level decicion-making
routines. Our chosen approach is to create a combat simula-
tor that can be used both for the artificial play and to assess
outcomes of future encounters.

Related Work

Churchill et al. (2012) try to solve combat in the RTS game
StarCraft using improved Alpha-Beta pruning called Alpha-
Beta Considering Durations (ABCD). This algorithm ad-
dresses the fact that not all units can perform actions each
turn (some actions need to cool down) and how do deal with
simultaneous actions in the search tree.

As a continuation, Churchill and Buro (2013) present two
new search algorithms. The first one is Upper confidence
bound for trees (UCT) Considering Durations (UCTCD)
which is standard UCT algorithm that considers durative and
simultaneous actions. The second algorithm is called Portfo-
lio Greedy Search (PGS). It is an iterative algorithm which
works with a portfolio of predefined behaviors (scripts).
Given a game state, it assigns the same script to all units.
Then it iteratively, for each unit changes its script, performs
a playout and if it ends better than the previous assignment
it keeps this new script; if not, the last script is used. This is
called improvement and it is done in turns for both armies
first, one army is improved and then the other one.

Further improvements to the UCT were proposed by
Justesen et al. (2014). Inspired by PGS they modify UCTCD
to search in the space of script assignments instead of action

assignments. This means that unit-actions in each player-
action are generated only using predefined scripts.

Our approach, MCTS_HP is similar to the quality-based
rewards from Pepels et al. (2014) in terms of using more in-
formation from the playout terminal state for assessing qual-
ity of MCTS states. We differ from the Pepels et al. (2014)
in that we apply MCTS_HP in the script space, where the
number of playouts made is severely limited (hundreds in
our case, vs. up-to 107 in some action spaces) due to the fact
that scripts are doing own local searches (e.g., pathfinding).

Combat Background

CotG can be played in more than two players. We, sim-
plify the combat to a two-player game as, e.g., 1vlvl sce-
narios are not frequent. Combat takes place in the solar sys-
tem view (see Figure 2) and is played in turns as well. A
player can issue attack and/or move orders to all their ships.
Ships have hit-points (HP; represents the amount of damage
a unit can take before being destroyed), strength (how much
damage it causes during the attack), shields (which reduce
incoming damage), attack range, and power that represents
movement capabilities of a unit. Attack can be issued to a
unit with positive strength, which did not attack this turn,
and has an enemy units in its attack-range. Move can be is-
sued to a unit with positive power. For each hex a unit moves
it loses one power. Power is recharged at the start of each
turn. Unit actions may interleave. Units need not to spend
all their power during one turn but it is not transfered to the
next turn. After a player ends the turn, they can not issue any
more actions until their next turn.

As the result, the branching factor of the combat is huge
and grows geometrically with the number of units (and their
powers) involved in the combat. For small combat of six
units each having the power of two (meaning one unit can
move to 18 different hexes), assuming collision-free setup
and not considering attack actions, we have the branching
factor of 34 millions.

The amount of time used by Al for one turn is in hundreds
of milliseconds rather then seconds, i.e., a human player will
not cherish the situation when they need to await on 8 Als
taking their turns for more than several seconds.

Search techniques

In this section we introduce existing search techniques and
our enhancements to these approaches.

Monte-Carlo Tree Search

MCTS tries to stochastically determine the value of nodes to
avoid building the whole minimax tree. Opposed to Alpha-
Beta pruning, search done in MCTS is not uniform but rather
guided towards the most promising nodes which allows it
to handle much bigger branching factors. MCTS algorithm
starts with the current game state as the root node. It is iter-
ative, and each iteration has four steps:

1. Selection — the game tree is traversed from the root. The
most promising child is selected recursively, until a node
which is not fully expanded (does not have all possible
children) is found.

2. Expansion — a new child node is created for the node
found in selection.

3. Simulation — a random playout from the new child node
is performed.

4. Backpropagation — the result of the playout is propagated
from the child node to the root node. Number of playouts
and wins is updated for each node along the path.

Listing 1 shows the MCTS algorithm in pseudocode.

Probably the most common variant of MCTS is called
Upper-confidence bounds for trees (UCT). It sees the child
selection as an arm selection in the n-armed bandit prob-
lem (Auer, Cesa-Bianchi, and Fischer 2002). The algorithm
selects child node which maximizes the value of upper-
confidence bounds formula:

UCBL(i) = = 4 ¢ n(ny))

Uz n;

Where i is the current node, w; is the number of wins in the
current node, n; is the number of visits of the current node,
nyp is the number of visits of the parent of the current node,
and c is a constant usually determined empirically. In this
work we use UCT and MCTS interchangeably. An extensive
survey and background of MCTS methods can be found in
(Browne et al. 2012).

Due to the immense branching factor and nature of the
game, MCTS cannot be applied directly and some more
clever approaches are necessary.

Listing 1: Regular MCTS algorithm
def MCTIS(timeLimit , currentState):
elapsed = 0.0
root = new Node(currentState)
while elapsed < timeLimit:

selected = selection(root)
newNode = expansion(selected)
value = simulation (newNode)

backpropagation (newNode, value)
elapsed += Time. GetDeltaTime ()

def selection (node):
while true:
if not node.IsFullyExpanded
or node.IsTerminal:
return node
node = SelectBestChild (node)

def expansion(node):
return node.GenerateNewChild ()

def simulation (node):
finalState = playout(node. State)
if isWinner(player_1,finalState):
return 1
else
return —1

def backpropagation(node, value):

while node != null:
node . VisitedCount++
node . Value += value
node = node.Parent

Scripts

Scripted behaviors are the simplest and most commonly
used in computer games. In this work we focus on scripts
controlling a single unit. We use scripts to express intention
and let the implementation find some execution of this in-
tention.

We define script as a function s : G x N — A where G is
a set of all possible game states and A is a set of all possible
actions; i.e., for a game state and index of a unit it returns an
action this unit should perform. Some examples of scripts
are: (Churchill, Saffidine, and Buro 2012)

e Attack-Closest — Find the closest unit and attack it. If the
closest unit is not in weapons range, go towards it.

o Attack-Value — Find unit u with the highest v(u) =

%(’f)(”) value in weapons range and attack it. If there

is none, go to the closest unit.

e No-Overkill-Attack-Value (NOKAV) — Similar to Attack-
Value but if a target unit was already assigned a lethal
damage by another unit we ignore it.

e Kiter — If there are no units in weapons range, go to the
closest unit. If there are units in weapons range, attack the
one NOKAV selects. If you attacked, move away from the
enemy.

Some sort of search or iteration is part of all the scripts
presented above. This search is, however, local and focused
—we know exactly what we are looking for and usually some
sort of heuristic function is used to try the best candidates
first.

MCTS in script space

This variant of MCTS assigns scripts rather than actions to
units. For a set of n units w1, ue, ..., 4, a node in the search
tree is a game state with these units and an edge between
two nodes is a vector of scripts (s1, s2, ..., S,,) Where script
s; returns a unit-action for unit u,;. We can easily map this
vector of scripts to player-action® by giving current game
state to each script which returns a unit-action and we can
modify this state for the next script. E.g., a unit-action for
unit w; is a; = $;(gi—1,%), where g; = a;(g;—1) and go
is the initial game state in the node. Player-action is then a
vector of unit-actions (a1, ag, ..., ay).

A playout is performed by generating player-actions from
random vectors of scripts. We first generate a vector of
scripts (s1, 82, ...,8,) where Vi € 1.n : s; € S and s;
is chosen uniformly randomly and S is a set of scripts the
MCTS uses. Then from this vector, we generate a player-
action as explained above and apply it to the game state.
Then we do the same thing for the other player and iterate
until we reach a terminal state.

*Cumulative action of all units for player in one turn.

Compared to the action space search, the branching fac-
tor is greatly limited by the number of scripts the units can
choose from. For « units and s scripts we have a branching
factor of s*.

MCTS considering HP

Given enough iterations, MCTS will find better actions us-
ing random playouts, making iteration speed crucial. In
strategy games, high iteration speeds are, however, not al-
ways achievable due to the immense complexity of the
game. For example, Justesen et al. (2014) were able to
achieve between 5 to 100 iterations during 40ms with their
UCT algorithm in simplified simulation of StarCraft. In
CotG, even with simplified game simulation and scripts we
are not able to perform thousands of iterations in a 100ms
time frame. Thus, we try to guide the search by specifying
the problem a little better and modifying MCTS accordingly.

In standard UCT algorithm, a playout returns 1 or —1 rep-
resenting which player won, making the UCT maximize the
number of wins. But it is oblivious to the way how was
the victory achieved and how does the winning state look.
That is fine for games such as Go, where win/loss is all that
matters. In many cases, however, the UCT is used only for
part of the game and win/loss is just an interpretation of the
whole game state. In strategy games, it is important to win
the combat scenario, but it usually does not mean we won
the whole game. Better definition of the problem is that we
want to maximize enemy losses while minimizing ours. To
account for this, we propose Monte-Carlo tree search con-
sidering hit points (MCTS_HP) algorithm.

MCTS_HP algorithm

The algorithm is identical to MCTS in script space, except
for the simulation and backpropagation part. From simu-
lation the MCTS_HP returns a value corresponding to the
remaining hitpoints of the winning army. During the back-
propagation, this value is normalized to a [—1, 1] interval.
This normalization is performed specifically at each node on
the path from the child to root by dividing hitpoints remain-
ing from the playout by hitpoints of the army in the given
itermediate node.

For example, in Figure 3 the simulation starts with 210
HP of units. In a few moves, this is reduced to 10 HP. Then
we perform a playout which ends with 9 HP of units remain-
ing. That outcome is normalized in the node with 10 HP to
value of 0.9 (we won while loosing only 10% of our units).
However, in the node where we had our whole army with
210 HP, the normalization yields a value of 0.04 (from that
state we lost most of our army).This reflects the fact, that the
playout went pretty well (we won while losing only 1 HP),
however, we may have done some bad choices between the
210 HP state and the 10 HP state.

Now let us look at the algorithm more formally. The parts
which are different from regular MCTS discussed earlier are
shown in Listing 2.

In MCTS_HP simulation returns:

playoutValue = hp(p:) — hp(pz) @)

Where hp(z) returns sum of HP of all units of player z.
Note that either hp(p1) or hp(ps) must be zero, otherwise
the game state would not be terminal.

During backpropagation, this value returned from playout
is in each node n on the path from leaf to root mapped to in-
terval [—1, 1] and added to the nodes current value as usual.
The mapping is performed as follows:

layoutV al
nodeV alue, (playoutValue) — LlaveutValue 4

hpn (p)
Where hp,, (p) returns sum of HP of all units of player p for
the state in node n.

_ {ph if playoutV alue > 0 @

p2, otherwise

This means that p; tries to maximize the amount of HP re-
maining for his units and minimize it for enemy units. We
can be sure that the nodeV alue is always in the [—1, 1] in-
terval because units cannot gain HP; therefore,

playoutValue < hppode (p)Vnode € path (5)

Where path contains all nodes on the path from the leaf
where the playout was performed to the root. Example of
this mapping for one node can be seen in Figure 4.

Listing 2: MCTS_HP algorithm is identical to MCTS. Only
instead of Simulation and Backpropagation we use Simula-
tion_HP and Backpropagation_HP respectively.

def simulation_HP (node):
finalState = playout(node. State)
playoutValue =
finalState .HP[player_1] —
finalState .HP[player_2]
return playoutValue

def backpropagation_HP (node, value):
while node != null
node . VisitedCount++
pl_nodeVal=value/node .HP[player_1]
p2-nodeVal=value/node .HP[player_2]
if value < 0
node . Value += p2_HP

else
node . Value += pl_HP
node = node.Parent

Now we can look at the example in Figure 3 and apply
our new terminology. Since we perform the mapping again
in each node, in different nodes the value of a playout may
mean different things. In the example we perform a playout
from node with Apjeqr(p1) = 10 and the playout ends up
having playoutV alue = 9, the mapped value in the leaf will
be nodeValue = 0.9 which looks like a very good result.
If we did not remap and just propagated this value up the
tree, all nodes on the path would increase their value by 0.9
and their chances to be selected would increase. What if,
however, having 10 HP was not very good in the first place?
It could happen so that we started in an advantage with 210
HP, then ended up with only 10 and then managed to barely

\0.04
0.05

N\
@ @
Spiayout
Y

9

Figure 3: Example of possible backpropagation and map-
ping in MCTS_HP. Numbers in the nodes are HP remain-
ing, i.e., hp,(p1). The numbers next to nodes represent
normalized values, i.e., nodeV alue of given playout with
playoutValue = 9.

Example mapping

nodeValue
- o o
= o

=3
o

-1.0
-200 -150 -100 -50 0O 50 100
playoutValue

Figure 4: Example mapping of playout value to interval
[—1, 1] for a node n with hp, (p1) = —158 and hp,,(p2) =
86.

win with 9 HP. By remapping the HP value at each node, we
can preserve this information and in the starting node with
hpstart(p1) = 210 this will be considered very weak win.

As we see in Figure 4, the mapping is linear for both
subintervals [—1,0) and [0, 1]. In case of this mapping very
weak wins and very weak loses, i.e., nodeValue in small
interval around 0, change the actual value of a node only
slightly. However, the binary result (win/loss) is still com-
pletely opposite. This may be problematic for games where
we care more about the binary result. To give more value to
the win/loss result we could push the mapping interval away
from 0 and map for example to interval [—1, —0.8] U [0.8, 1]
or we could just use different function than linear.

Application of this approach is not limited just to script
space searches. This approach would work the same in a
regular MCTS in action space and other MCTS variations.
And it is applicable to problems where the goal is not only
to win, but we also care for quality of the victory and it is
quantifiable (such as HP in our case). Values other than HP
could also be used in our case such as unit value.

Related work

Since this enhanced MCTS method proved to be very use-
ful and to our knowledge was not used in context of strategy
games we researched other areas and found a similar tech-
nique in (Tom and Miiller 2009) where the authors use en-
hanced UCT on a game called Sum of Switches (SOS). One
of the enhancements, called Score Bonus, should distinguish
between strong and weak wins by returning a value in inter-
val [0;] for losses and in [1 — ~y; 1] for wins from the play-

out. The values are scaled linearly in these intervals. Val-
ues 0.1, 0.05, and 0.02 were tried as 7, however, the Score
Bonus was unable to improve the gameplay of UCT in SOS.

The authors do not elaborate why did the Score Bonus fail
to improve performance in SOS, although they mention that
value of v = 0.02 slightly improved performance in 9x9 Go.
Results of our approach are contradictory, but our problem
and method are different as well. First, we use much wider
range of values from the whole interval [—1, 1] and more
aggressively exploit the entire range of different states. Sec-
ond, in our case the algorithm closely matches the problem.
In SOS and Go, the UCT solves the whole game whereas
in our case the UCT solves just a subproblem, the result of
which matters to the rest of the game.

Experiments

To evaluate different Al players, we performed several
round-robin tournaments with different number of units.
Battles were asymmetrical in sense of positioning. For each
army, a center point was chosen randomly and around this
point units were randomly distributed. We used two basic
types of units, both without any upgrades. Destroyer — a
unit with high damage but short range and low HP. And Bat-
tleship — a unit with medium weapon range, lower damage,
but high HP and shields. Our results present average of dif-
ferent ratios of these units to show common case scenarios,
e.g., an army in 5vs5 scenario may contain 3 battleships and
2 destroyers, or 1 battleship and 4 destroyers etc.

Because the game is turn-based and one player must go
first, we evaluate each battle scenario from both sides. First,
one player controls army 1 and the other player controls
army 2. Afterwards, we switch sides, i.e., army 1 always
goes first but once player 1 controls it and once player 2
does. We call this battle where players switch sides symmet-
ric battle and if a player manages to win both battles in a
symmetric battle we say that he achieved a sym-win where
winning each sub battle is simply called win. To bring the
scenario closer to reality of the game, we also sum HP of all
the ships of the winning player. If a symmetric battle ends
1:1 we look at how many HP did each player’s ships end
with and the one with more HP left achieves a sym-win.

Algorithms we chose for our tournament were the two
scripts, Kiter and NOKAYV, where the NOKAV script be-
haves very similarly to the current Al present in the game.
PGS with different response and iteration counts which is
encoded as PGS_I.R where I is improvement count and
R is response count. Specific configurations are PGS_1_0,
PGS_3_3, PGS_5_.5. All PGS algorithms have time limit per
Improvement set to 500 milliseconds. To be competetive to
other approaches we introduced playout caching to PGS to
improve playout evaluation counts. MCTS and MCTS_HP
with three different execution time limits were chosen. The
encoding is MCTS_TIME or MCTS_HP_TIME where TIME
stands for time in milliseconds. Times were 100ms, 500ms,
and 2000ms. All experiments were performed on Intel Core
i7 2600K @ 4.5Ghz with 16GB of DDR3 RAM, SSD, run-
ning Windows 10 Professional.

Error bounds in the graphs represent 95% confidence in-
terval. Because the MCTS algorithms are not deterministic

Round robin [5, 7, 9] vs [5, 7, 9] wins

Msymwin
win

Figure 5: Average win rates of 5vs5. 7vs7 and 9vs9 round
robin tournaments.

Round robin 16 vs 16 wins

Msymwin
Bwin

winrate
°
@
3

0.25-

0.00-

Figure 6: Win rates of 16vs16 round robin tournament.

we run each battle 5 times and consider them as separate
battles. All the algorithms, which need a portfolio of scripts,
use Kiter and NOKAV. Based on preliminary results we use
a very simple move ordering for MCTS methods where we
try the assignments involving the Kiter script first.

Results

Results of our experiments are in figures 5, 6, and 8. Exe-
cution time statistics are in figure 9. More complex MCTS
approaches work well on small to medium scale combat and
at larger sizes greedy PGS approaches prevail. MCTS_HP
proved to be equal or superior to the regular MCTS in all
scenarios. The NOKAV script, representing the Al currently

Round robin 16 vs 16 HP remaining

30843
30000-

23847
20912
20000
17293
10000~ I
0-

02 5°° o0
o~ \@e S O G,\g o . @7 e?
W \ho’\ \ho’\ ‘}(;\%/

Al

HP remaining

o N
e of ?c,e, ?Ge/

Figure 7: Summed HP remaining of ships after all battles in
the 16vs16 round robin tournament.

Round robin 32 vs 32 wins

Hsymwin
Mwin

Figure 8: Win rates of 32vs32 round robin tournament.

implemented in the game, was easily outperformed by all
other methods.

Interestingly, MCTS_HP does not achieve higher win
rates than MCTS given the same time limit. This may be be-
cause our mapping for MCTS_HP is linear and does not dis-
tinguish much between weak win and weak loss. This, how-
ever, corresponds to how combat in strategy games works.
If from a whole army of units only one remains after a com-
bat, the result is closer to a draw than to a win and it is very
similar to situation when only one enemy unit remains.

In figure 7 we see summed HP remaining after all bat-
tles in the 16vs16 tournament. This is complementary in-
formation to our sym-win metric and it shows how strong
were these symmetric victories. In the game, when an Al
engages in a series of battles, no matter how many are won
and how many are lost, if it is able to keep more units (in
the figure summed as HP) it will be in better strategic po-
sition and it will eventually prevail and win the game. In
our experiments, the sym-win rate roughly correlated with
the HP remaining. In the average 5, 7, and 9 unit tourna-
ments the graphs match almost perfectly. In the 32vs32 case,
the HP remaining graph was much less dramatic, and even
the worse performing MCTS approaches were able to score
almost as much HP remaining as the best MCTS_HP ap-
proach.

Since the authors of the PGS algorithm tried only the
PGS_1_.0 in their work, we did not know how the versions
with higher iteration counts would work. Surprisingly, in-
creasing the response and improvement counts does not re-
liably improve win rates. This stems from the nature of the
greedy approach but still, the simplest and fastest PGS_1_0
which just improves the players script assignment once
against a fixed opponent works sometimes much better than
the variations with more iterations. Especially when consid-
ering the execution times (even with our caching optimiza-
tions), the PGS_1_0 is the best PGS variation in view of per-
formance/time ratio.

Based on these results we propose to use PGS_1_0 for
large combats and when some units are destroyed we can
switch to more accurate MCTS_HP which even with a few
hundreds of milliseconds time limit outperforms all other
methods.

pgs times 16vs16

variable

M avg_max_time
M p90_max_time

Time [milliseconds]

P RS 391
100- 22

PGS_1_0 PGS_3_3 PGS_5_5
Al type

Figure 9: Statistics of execution times for all battles in
16vs16 tournament. MCTS algorithms operate on a fixed
time limit and are represented by horizontal lines in 100,
500, and 2000 milliseconds. avg_max_time represents aver-
age of maximum values. p90_max_time represents 90th per-
centile of maximum values.

Conclusion and future work

In this paper we presented extensions to the UCT algorithm
in context of unit combat in a commercial 4X game Chil-
dren of the Galaxy (CotG). Full integration of the Al system
to the game is work in progress. To evaluate different com-
bat approaches we used our custom simplified combat sim-
ulator called CotG Micro Simulator*. The first improvement
was MCTS in script space which is similar to the work of
Justesen et al. (2014) and searches in space of script assign-
ments instead of unit actions. The second improvement was
MCTS considering HitPoints (MCTS_HP) which is based
on MCTS in script space but from playout returns a real
value in interval [—1; 1] instead of a binary value represent-
ing win/loss. The real value represents HP remaining for the
winning player, i.e., the quality of the victory. This in turn al-
lows the search to be guided towards more promising states.

Results of our experiments indicated that MCTS_HP is
equal or better than a regular MCTS in script space and is
well suited for small to medium scale combat. Three Protfo-
lio greedy search (PGS) variations were also evaluated and
the simplest one proved to be a viable option for medium
to large scale combat where the MCTS methods require too
much time to operate effectively. The PGS variations with
more iteration counts proved to have questionable perfor-
mance and unreasonable execution time requirements even
with playout caching enabled. Since our MCTS algorithms
had only about a hundred iterations for more complex sce-
narios and low time limits we also shown that MCTS is vi-
able option even in these scenarios where it is not possible
to perform hundreds of thousands of playouts.

Future work would be to use our game simulation to im-
plement and benchmark more AI approaches for CotG and
turn-based games games in general. To enable faster play-
out and more iterations some pathfinding methods other than
A* could be explored. Variations of the MCTS_HP with dif-
ferent mapping function could be also tried and compared
to see the effect of giving more (or less) value to win/loss

*https://bitbucket.org/smejkapa/cog-ai

states. MCTS_HP could be modified to consider not HP but
for example value of a unit.

Our improved version of MCTS dominated the regular
MCTS approach in our tests. It would be very interesting
to see how this algorithm would perform in other games.
Our assumption is that in games such as StarCraft where
the combat is just a subproblem of the whole game and it
is very important how well or bad does it end, MCTS_HP
would improve the performance and guide the search bet-
ter. A full game playing agent with MCTS_HP algorithm for
combat should perform much better because accumulating
units over time should lead to ultimate victory.

Acknowledgments

This Research was funded by the Czech Science Foundation
(project no. 17-17125Y).

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235-256.

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit holdem poker is solved. Science
347(6218):145-149.

Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of monte
carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and Al in games 4(1):1-43.

Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in starcraft. In Com-
putational Intelligence in Games (CIG), 2013 IEEE Confer-
ence on, 1-8. IEEE.

Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for rts game combat scenarios. In AIIDE, 112—
117.

Justesen, N.; Tillman, B.; Togelius, J.; and Risi, S. 2014.
Script-and cluster-based uct for starcraft. In Computational
Intelligence and Games (CIG), 2014 IEEE Conference on,
1-8. IEEE.

Pepels, T.; Tak, M. J.; Lanctot, M.; and Winands, M. H.
2014. Quality-based rewards for monte-carlo tree search
simulations. In ECAI, 705-710.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, L;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
nature 529(7587):484—489.

Tom, D., and Miiller, M. 2009. A study of uct and its en-
hancements in an artificial game. In Advances in Computer
Games, 55—64. Springer.

Yoochul, K., and Minhyung, L. 2017. Humans
Are Still Better Than AI at StarCraftfor Now.
https://www.technologyreview.com/s/609242/humans-
are-still-better-than-ai-at-starcraftfor-now/. Accessed:
2018-06-217.

