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Abstrakt:

Uměĺı agenti vybaveńı epizodickou (nebo autobiografickou) pamět́ı maj́ı schop-
nost zapamatovat si a následně si i vybavit, co se jim stalo v minulosti. Stávaj́ıćı
modely epizodické paměti (EP) funguj́ı jako pouhé logy s indexy: umožňuj́ı
záznam, vyhledáváńı a mazáńı vzpomı́nek, ale jen zř́ıdka uchovávaj́ı agentovu
aktivitu v hierarchické podobě, natož aby umožňovaly automaticky abstraho-
vat pozorovanou aktivitu do obecněǰśıch epizod. V d̊usledku toho nejzaj́ımavěǰśı
rysy lidské EP, jako jsou rekonstrukce vzpomı́nek, vznik falešných vzpomı́nek,
postupné zapomı́náńı a předpov́ıdáńı překvapivých situaćı, z̊ustávaj́ı mimo jejich
dosah. V této práci představ́ıme výpočetńı model epizodické paměti pojmenovaný
DyBaNeM. DyBaNeM propojuje modelováńı EP s algoritmy pro rozpoznáváńı
aktivit v jednom výpočetńım modelu. DyBaNeM stav́ı na principech Bayesovské
statistiky a na takzvané Fuzzy-Trace teorii vycházej́ıćı z oblasti výzkumu falešných
vzpomı́nek. V práci bude představeno několik verźı modelu ByDaNeM s r̊uznými
pravděpodobnostńımi modely realizovanými pomoćı dynamických Bayesovských
śıt́ı. Následně poṕı̌seme fáze kódováńı, uložeńı a vybaveńı vzpomı́nek, tak jak jsou
implementovány v modelu DyBaNeM. Všechny tyto fáze budou demonstrovány
na jednoduché ukázkové doméně, kde také porovnáme rozd́ıly mezi jednotlivými
variantami modelu. Poté otestujeme chováńı modelu DyBaNeM na dvou real-
ističtěǰśıch doménách relevantńıch pro inteligentńı virtuálńı agenty.

Kĺıčová slova: Epizodická paměť, inteligentńı virtuálńı agenti, rozpoznáváńı ak-
tivity
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Abstract:

Artificial agents endowed with episodic (or autobiographic) memory systems have
the abilities to remember and recall what happened to them in the past. The
existing Episodic Memory (EM) models work as mere data-logs with indexes:
they enable record, retrieval and delete operations, but rarely organize events in
a hierarchical fashion, let alone abstract automatically detailed streams of “what
has just happened” to a “gist of the episode.” Consequently, the most interest-
ing features of human EM, reconstructive memory retrieval, emergence of false
memory phenomena, gradual forgetting and predicting surprising situations are
out of their reach. In this work we introduce a computational framework for
episodic memory modeling called DyBaNeM. DyBaNeM connects episodic mem-
ory abilities and activity recognition algorithms and unites these two computer
science themes in one framework. This framework can be conceived as a general
architecture of episodic memory systems, it capitalizes on Bayesian statistics and,
from the psychological standpoint, builds upon the so-called Fuzzy-Trace The-
ory (FTT) stemming from the false memory research field. Several variants of
ByDaNeM with different probabilistic models realized as Dynamic Bayesian Net-
works (DBNs) will be defined. Subsequently all stages of DyBaNeM’s encoding-
storage-retrieval cycle will be demonstrated on a simple toy domain. Differences
between DyBaNeM’s variants will be compared on this example side by side.
Then proof of concept connection of DyBaNeM to two more realistic domains
relevant to intelligent virtual agents (IVAs) will be shown.
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Chapter 1

Introduction

1.1 Motivation

The Episodic Memory (EM) (Tulving, 1972, 1983) is a memory for sequences of
personal events, it can be briefly described as a memory for sequences of “what,
where, when” events. We use EM every time we want to tell someone what we
were doing last summer.

The main goal of this thesis will be to create an EM model for intelligent
virtual agents (IVAs). The IVAs are a subtype of autonomous software agents
(Wooldridge, 2000) embodied in a virtual body acting in 2D or 3D environments.
An example of IVA can be a computer controlled character from a computer game
or a chat agent on a web page.

One of the key preconditions for EM is the ability to “make sense” of the ac-
tivity of observed agents/humans. This phase is often called activity recognition.
Activity recognition is heavily studied by the artificial intelligence (AI) commu-
nity, however, its connection to EM modeling has not been extensively studied
yet.

Artificial agents endowed with episodic (or autobiographic) memory systems
have the abilities to remember and recall what happened to them in the past. The
number of agents with EM abilities has been increasing. At the same time, the
existing models work as mere data-logs with indexes: they enable record, retrieval
and delete operations, but rarely organize events in a hierarchical fashion, let
alone abstract automatically detailed streams of “what has just happened” to a
“gist of the episode.”

Consequently, the most interesting features of human EM, reconstructive
memory retrieval, emergence of false memory phenomena, gradual forgetting and
predicting surprising situations are out of their reach. In this work we create a
computational model of episodic memory that connects episodic memory abilities
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and activity recognition algorithms and unites these two computer science themes
in one framework.

1.2 Scope

1.2.1 Taxonomy of Memory Systems

The human memory is not seen as a homogeneous system. It is believed that
there are multiple types of memory for storing different types of information.
One possible taxonomy of human memory systems is shown in Fig. 1.1. However,
the exact taxonomy of memory systems is still debated, for in depth discussion
see (Cowan, 2008).

Explicit

Implicit

Semantic

Episodic Autobiographical

ProceduralLong Term Memory

Short Term Memory
Working Memory

Memory

Figure 1.1: Possible classification of human memory systems. This taxonomy is
based on (Cohen and Squire, 1980; Conway, 2001; Cowan, 2008). For detailed
description see text.

In general the memory can be divided into a long term memory (LTM) and a
short term memory (STM) (Atkinson and Shiffrin, 1968). In the LTM memories
can be stored for up to a lifetime, even though some of them can be forgotten
throughout that time. In the STM memories last for up to 30 seconds (Atkinson
and Shiffrin, 1971) and it can hold only a limited number of items (Miller, 1956).

The LTM can be divided into an explicit and an implicit memory (Cohen and
Squire, 1980). Explicit memory stores facts that can be consciously recalled and
communicated to others. Implicit memory (Schacter, 1987) contains information
that is not accessible consciously but it influences a person’s behavior. A subtype
of implicit memory is Procedural Memory (PM). This is memory for skills that
can be performed by a person but one does not have to be able to describe the
skill in detail. An example can be riding a bike or playing a piano.

The explicit memory consists of a Semantic memory (SM) and EM (Tulving,
1972, 1983). The SM is a store for general facts about nature of the world like
“London is the capital of the UK; the Earth rotates around the Sun”. As already
discussed in the introduction, EM is memory for sequences of events. A subset
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of episodic and semantic memory that is related to the agent itself is called an
autobiographical memory (Conway, 2001).

The EM is the type of memory that will be the focus of this thesis.
Another type of memory that is often mentioned in the literature is a Working

memory (WM). The WM is the memory relevant for fulfilling tasks like summa-
tion of numbers or cooking. A detailed model of WM’s internal structure is
proposed by Baddeley (2000). The WM seems to be tightly linked with both
STM and LTM (Cowan, 2008).

1.2.2 Computational Modeling of EM

Computational modeling of EM enjoys increasing interest in neuroscience, IVA,
robotic research and E-memory communities. Now we will briefly review how
these communities study EM.

Low level neuroscience simulations are usually focused on testing hypotheses
concerning neuronal implementation of some functions of EM and sometimes
even fitting real world data for isolated memory phenomena1 (Bradski et al.,
1994; Lisman, 1999; Howard and Kahana, 2002; Lehman and Malmberg, 2009;
Reilly and Rudy, 2001).

On the other hand IVAs’ and robotic communities try to equip agents and
robots with EM to enhance their functionality, be it debriefing and summarization
of educational scenarios (Rickel and Johnson, 1999; Dias et al., 2007), social
skills (Dodd and Gutierrez, 2005; Burkert et al., 2010; Rabe and Wachsmuth,
2012; Mattar and Wachsmuth, 2012; Kasap et al., 2009; Lim et al., 2011; Kope
et al., 2013), fulfilling delayed intentions (Li and Laird, 2011) or learning (Deutsch
et al., 2008; Nuxoll and Laird, 2011; Subagdja et al., 2012) (possible uses in these
domains are reviewed in (Brom and Lukavský, 2009)).

Another source of interest in EM modeling comes from applications of the so
called E-memory revolution (Bell and Gemmell, 2009; O’Hara et al., 2006; Lazer
et al., 2009). The E-memory revolution was enabled by the fact that more and
more people are now “living in a network” (Lazer et al., 2009) meaning that
traces of their behavior are logged by various services on a web or by mobile
phones. We witness the rise of services logging events from our daily lives like
Facebook or Google+. As the amount of stored data increases so will the need
for better searching techniques over them. We can imagine feeding the data into
personalized external EM that will later act as a memory prosthetic reminding us
of similar events we have once experienced but probably forgot since then (Horvitz
et al., 2004; Kamar and Horvitz, 2011).

1Note that there are tens of various memory related phenomena (see, e.g., (Wikipedia,
2015a)) and only several of them have been computationally modeled so far. Naturally, there
are even fewer computational models accounting for several phenomena at once.
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1.2.3 Processes in EM

EM models serve a variety of functions and they are implemented in diverse
environments, however, virtually every model has to implement some common
processes. Following Nuxoll’s (Nuxoll, 2007, p. 39-41) terminology we can distin-
guish these three main processes and their subprocesses:

Encoding — what is stored and when; encoding includes: encoding initiation
(when to start storing), episode determination (what consists an episode)
and feature selection (what are the interesting features of an episode). When
we think of EM models embodied in agents then this process may overlap
with perception.

Storage — how the episodes are stored and what happens to them during stor-
age; storage includes: defining episode structure and specifying episode
dynamics like forgetting and memory consolidation. Part of this process is
also sometimes called maintenance.

Retrieval — how the episodes are retrieved; retrieval includes: retrieval initia-
tion, cue determination, best episode selection and partly missing informa-
tion reconstruction.

An example of the processes is given in Fig. 1.2.

Figure 1.2: An example of processes included in every EM system. Imagine that
Bob was once on a beach with his children. He encoded this episode and stored
it for several years. When he wanted to re-tell the whole experience to Alice he
had to retrieve the episode. This figure is based on graphics from xkcd.com.
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1.2.4 Intelligent Virtual Agents

The proposed EM model is targeted mainly on IVAs. Thus here we will briefly
define what IVAs are and what are their applications. We will define IVAs via
manifest of the Intelligent Virtual Agents conference which states that:

“Intelligent virtual agents (IVAs) are interactive characters that
exhibit human-like qualities and communicate with humans or with
each other using natural human modalities such as facial expressions,
speech and gesture. They are capable of real-time perception, cog-
nition and action that allows them to participate in dynamic social
environments.”2

Academic examples of IVAs are virtual museum guide Max (Kopp et al.,
2005), tutoring agent Steve (Rickel and Johnson, 1999), agents from a seri-
ous anti-bullying game FearNot! (Aylett et al., 2005), agents in crowd simula-
tions (Pelechano et al., 2008) or agents in a health domain (Bickmore et al.,
2013).

Industrial applications may also feature IVAs. Virtually any non player char-
acter (NPC) from a computer game can be regarded as an IVA. This includes com-
bat bots3 from first person shooter (FPS) games4 or characters inhabiting large
virtual worlds in a massive multiplayer online role playing games (MMORPGs)5.
As can be seen there is a variety of possible IVA applications, ranging from seri-
ous educational games or chat agents on web pages to purely entertaining video
games.

The central feature of IVAs is their believability (Bates, 1994). It is impor-
tant that the audience perceives the IVA’s behavior as believable, even though
the mechanism implementing the behavior might be relatively shallow. Specifi-
cally, it is not required that IVAs behave optimally in their environment, neither
do humans. However, their behavior should be human-like, meaning that they
should exhibit the same set of capabilities as humans. This includes modeling
imperfection of humans. An illustration of this in the context of EM modeling
might be that people perceive sometimes imperfect dating of memories (e.g., a
week ago) as more human-like than precise date information (e.g., 6 days and 2
hours ago) (Brom et al., 2010). The requirement on enabling a set of human-like
capabilities will shape the design of the proposed EM system.

2Quoted from description of the Intelligent Virtual Agents 2013 conference, URL: http:
//www.cstr.ed.ac.uk/iva2013/ [4.1.2014]

3Autonomous virtual agent in a computer game.
4URL: http://en.wikipedia.org/wiki/First-person_shooter [4.5.2014]
5URL: http://en.wikipedia.org/wiki/Mmorpg [4.5.2014]
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1.3 Requirements on EM in IVAs

In this section the functions of an ideal EM model designed for use in IVAs will
be specified. All these functions should be supported by the proposed EM model.

We illustrate possible use-cases that should be supported by the EM frame-
work in the following example. Imagine a MMORPG inhabited by hundreds or
even thousands of IVAs. Each IVA can be interviewed by a human player that
may ask two basic types of questions:

a) “What were you doing yesterday?”

b) “What was player X doing yesterday?”

The first question asks about the IVA’s recollection of its own actions, the
second asks about the IVA’s memory for actions of a human controlled avatar
(or a different IVA). It is clear that the IVA has to be equipped with an EM
model to answer both of these questions. However, the second question also
requires the model to be able to interpret the players’ (or IVAs’) actions and
infer his/her high level goals that are not directly observable in the environment.
In addition, the model should be generic and applicable to different IVAs with
minimal effort. Ideally there should be an out of the box algorithm for adjusting
a possible model’s parameters from logs of IVA’s activity.

Additionally the EM framework should enable the following features in the
dialog between the player and the IVA:

1. Summarization: The IVA should provide a high level summarization of
an activity. For instance, when the player (P) asks: “What were you doing
yesterday?”, the IVA (I) equipped with our model should answer: “After
getting up I went to work, in the afternoon, I visited my friends and then I
returned home.” instead of inadequately detailed “I got up, then I did my
morning hygiene. I had breakfast, I got dressed and ...”

2. Clarifying questions: The player can ask further clarifying questions.
E.g., P: “How did you get to your friends?”; I: “I walked there.”

3. Expressing a degree of certainty: The IVA should express a degree of
certainty for each recalled event. E.g., I: “Maybe I went there by car. I’m
not sure.”

4. Believable mistakes in recall: The IVA should make mistakes that are
believable given the context. E.g., I: “I went to work by public transport.”
(Even though the IVA actually used a car.)
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5. Recall interesting details first: The memory should weight interest-
ingness of the events, thus it should highlight the most unusual memories.
P: “What were you doing yesterday?”; I: “I saw a foreign army marching
through the town, the rest of the day was as usual.”

It is important to note that in order to meet all these requirements pure log
of observed events is not sufficient. We will need more complex data structures
and algorithms to address this specification.

In order to perform a conversation between the player and the IVA sketched
in the previous examples the EM model would have to be embedded in a broader
agent architecture. A schema of a hypothetical complex agent equipped with our
EM model is shown in Fig. 1.3. Even though the design and implementation of a
complete dialog system (e.g., (Nooraei et al., 2014)) is not the focus of this thesis
the proposed EM model is designed to enable all those features in a complex
agent.

Episodic Memory

NLU

NLG

What were 
you doing 
yesterday?

In the morning I 
went to the 

market. Then 
…

Agent

EM query creation

Figure 1.3: An example of a complete agent architecture that is able to answer
questions discussed in this section. This thesis is focused solely on the EM mod-
ule. The other modules like natural language understanding (NLU) or natural
language generation (NLG) are out of the scope of this thesis. This figure includes
graphics from xkcd.com.

To our knowledge none of the current EM models supports all the previously
mentioned features in one coherent computational framework (as reviewed in
Sec. 2.3).

1.4 Design Implications

In this section we provide a brief discussion of design implications for our proposed
EM model. In depth analysis of the model is in Chapter 3.

If the model should support only queries of the type “What were you doing
yesterday?”, a plain log of events would be sufficient. However, the other require-
ments make the log based approach unusable. The requirement on high level
summarization of observed events supposes the existence of a process that can
deduce the summary of an activity from low level observations. This task is often

11

xkcd.com


called activity recognition. Amongst the diverse computational frameworks that
can realize activity recognition (as reviewed in Sec. 2.5), hierarchical Bayesian
methods are the most promising ones with respect to EM modeling. Bayesian
methods can recognize hierarchical activity, which can be used to fulfill require-
ments 1 and 2. Further probabilistic representation that is natural to Bayesian
methods can be used to implement requirements 3 and 5. Believable mistakes
that are sensitive to the context of the stored episode (req. 4) can be a side
effect of the recall process. Only the events persisting in the EM would be used
to condition the probabilistic model and the forgotten events would be, possibly
imprecisely, reconstructed as a result of Bayesian inference. This process will be
called reconstructive recall.

All these features make Bayesian graphical models (Koller and Friedman,
2009) a natural choice as a computational basis of the proposed EM model. More
specifically Dynamic Bayesian Networks (DBNs) (Murphy, 2002) will be used as
the probabilistic model in our proposed EM model. DBNs are a type of Bayesian
network that use parameter tying to compactly represent dynamics of temporal
processes, such as IVA’s activity. Another advantage of using DBNs is that
there is a large body of prior work that applies these types of models to activity
recognition (as detailed later in the text in Section 2.5). Moreover, just like Prolog
programs, Bayesian computation can be used in both “directions”. DBN can both
infer high level episodes from low level observations and at the same time, generate
sequences of low level observations from high level memories. This reversibility
will be used in several stages of the proposed EM model’s computation.

Our proposed model is also inspired by two psychological theories that ac-
count for several EM related phenomena. These theories are the Fuzzy-Trace
Theory (FTT) (Brainerd and Reyna, 2005; Gallo, 2006) and the Event Segmen-
tation Theory (EST) (Zacks et al., 2007). The FTT hypothesizes two parallel
mechanisms that encode incoming information: verbatim and gist. Verbatim en-
codes the surface-form of the information in detail, gist encodes the meaning in a
coarse-grained way (Gallo, 2006). An example of verbatim might be “I went by
an unusual bus with red stripes.” and the gist of the whole experience might be
“Workday commuting.” The FTT was previously implemented in the setting of
static scenes (Hemmer and Steyvers, 2009). Present work extends FTT’s general
approach also to sequences of events. The EST assumes existence of a process
that continuously segments observed events into meaningful sequences that we
call episodes. Hierarchical organization of memories in our proposed models is
also supported by evidence that people tend to perceive episodes in a hierarchical
fashion (Zacks and Tversky, 2001; Bond, 2005).
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1.5 Goals of the Thesis and the Main Contribution

The goal of this thesis is to design an EM framework that addresses all the
requirements from Section 1.3. Further the proposed EM framework will be
implemented in a prototype and tested on datasets resembling streams of actions
generated by an IVA. The thesis is focused solely on the EM framework, creating
a full IVA equipped with the EM is out of the scope of this thesis.

The main contribution of this thesis is the introduction of a new framework for
EM modeling called DyBaNeM. DyBaNeM unites disciplines of plan recognition,
EM modeling and compression algorithms. Besides describing the theoretical
framework we will also use it to create a generic EM model for storing sequences
of events. The framework is inspired by psychological findings but does not try
to explicitly replicate in silico memory related phenomena like the neuropsycho-
logical models.

The additional contribution of this work is an in depth review of EM models
relevant to IVAs.

1.6 Structure of the Thesis

In Chapter 2 we will discuss work related to our proposed EM model. We will
focus on previous computational EM models, algorithms used for activity recogni-
tion and we will also discuss popular techniques for programming IVA’s behavior.
In Chapter 3 we will analyze how to best meet the requirements presented in the
introduction. In Chapter 4 we will thoroughly introduce our EM framework called
DyBaNeM. After that in Chapter 5 we will describe how the framework works on
a set of toy examples that are easy to interpret. In Chapter 6 the framework will
be tested on two more complex domains. Next in Chapter 7 we will provide high
level discussion of the proposed EM model. In the end we summarize possible
future directions of research connected to DyBaNeM and we finish the thesis with
conclusion.
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Chapter 2

Related Work

A major part of this chapter is dedicated to a review of current EM models. First,
we will list prior reviews that are relevant to EM modeling. Second, we introduce
a taxonomy of EM models (Sec. 2.1). Then we define features that interest us in
the reviewed models (Sec. 2.2). After that we will describe two selected groups of
models that are the most relevant for our work (Sec. 2.3 and 2.4). Then current
approaches to activity recognition will be reviewed (Sec. 2.5) since it will be an
important part of our proposed EM model. In the end we will briefly survey
popular formalism for programming IVA’s behavior (Sec. 2.6).

To our knowledge there are only several reviews focusing on EM systems in
the context of AI. For example, Wood et al. (2011) surveys both current neuro-
psychological understanding of different memory systems in humans that goes up
to the neuronal level and also computer simulations of these systems. It discusses
both WM, SM and EM. Compared to Wood et al. (2011) our review focuses only
on computational models of EM but this enables us to provide greater detail
of discussed models. Another rather limited review is given in (Nuxoll, 2007,
p. 17-22). It discusses only several models and it does not provide the same
level of insight as our review. Possible benefits of equipping IVA with EM are
discussed in (Brom and Lukavský, 2009), while (Holland and Marques, 2010)
discusses increasingly complex agent architectures and justifies the existence of
an EM from an engineering point of view. Another recent review (Lim, 2012)
discusses EM models in the context of intelligent social companions (ISCs) a
subtype of IVAs. ISCs are agents designed to be companions to humans, thus
theirs’ memory is a tool that should make the interaction as natural as possible.

Our review focuses specifically on computational models of EM independent
of their application, unlike the review of Lim (2012). We try to provide insight in
their internal working and not just describe theirs functions. We also categorize
models based on their level of description and intended use. We will focus on EM
functions connected to storing sequences of events. That is we will deliberately
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omit models inspecting other modalities of EM, for instance link of spatial and
episodic memory studied in (Byrne et al., 2007; Brom et al., 2012). The other
memory systems are discussed only when it is needed to describe some func-
tion of EM. We limit depth of neuro-psychological evidence for various concepts
connected to the EM provided in this review since there are other more com-
petent works in this field, e.g., (Burgess et al., 2002; Bird and Burgess, 2008),
and we concentrate on the computational models. For a review of computational
neuro-psychological models of EM see (Norman et al., 2008).

2.1 Episodic Memory Model Types

EM models are often described on different levels of abstraction and with differ-
ent aims in mind. To categorize these types of models we utilize Marr’s tri-level
hypothesis (Marr, 1982; Dawson, 1998). This hypothesis was originally formu-
lated in the context of visual perception research. However, it can be used for
any cognitive modeling task, hence for episodic memory as well. The hypothesis
posits that every cognitive system can be described on these three three levels of
description. These are (paraphrasing (Marr, 1982)):

Computational — this level describes what the goal of the system is, why it is
needed and what the general strategy is.

Algorithmic/representational — this level describes the algorithm realizing
functions specified on the computational level, what representations are
used for input and output data.

Implementational — this level describes how the algorithm is physically real-
ized, e.g., what is the neuronal circuit implementing it.

We can more or less identify these levels of abstraction with language that
is used for description of hypotheses and models on these levels. Models on the
computational level are usually formulated in plain text. Algorithmic level mod-
els describe the proposed function in a programming language or in a statistical
framework like graphical models (Koller and Friedman, 2009). In the implemen-
tation level researchers seek the link between programs of algorithmic level and
the biological neural networks that can exhibit the same function.

Let us now illustrate these three levels in the context of EM. Schacter’s pop-
ular book Seven sins of memory (Schacter, 2001), characterizing several memory
phenomena is an example of computational level description. Most of the agent
based models reviewed in Sec. 2.3 like (Nuxoll and Laird, 2011; Derbinsky and
Laird, 2009; Ho et al., 2008; Deutsch et al., 2008; Tecuci and Porter, 2007; Brom
et al., 2007) are focused on the algorithmic level. They often store the memory
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content in lists, trees or general graphs. These are representations that are far
from the neuronal substrate. Implementation level models of EM (Pollack, 1990;
Lisman, 1999; Shastri, 2002; O’Reilly and Rudy, 2001; Ramamaurthy et al., 2004;
Ito et al., 2013; Takac and Knott, 2013) are more focused on different architec-
tures of neural networks capable of storing sequences of symbols. Some works
do not explicitly use the neural network metaphor but the level of abstraction
and sub-symbolic representation is almost the same, e.g., (Howard and Kahana,
2002).

Orthogonal to this classification we can take into account the purpose of the
models. We use these categories:

Modeling a phenomena — these models usually try to fit some trend in em-
pirical data, e.g., Directed Forgetting Paradigm (DFP), which is consciously
initiated forgetting, is modeled by (Lehman and Malmberg, 2009); recency
and primacy effects in serial position effect, which is the tendency to bet-
ter recall items at the start and end of a remembered list, is modeled by
(Burgess and Hitch, 1999; Howard and Kahana, 2002). Not all models try
to fit the data quantitatively, some only capture the qualitative trends.
Models whose main aim is modeling these trends are reviewed in (Norman
et al., 2008), where they are labeled as biological and abstract models.

Generic models — the ambition of these models is to support multiple use-
cases that require storage of sequential data at once. Generic EM mod-
els are usually embodied in some more general cognitive architecture, e.g.,
Soar’s (Laird, 2012) EM models (Nuxoll and Laird, 2011; Derbinsky and
Laird, 2009), ACT-R’s (Anderson et al., 2004) EM model (Schultheis et al.,
2007) or LIDA’s (Baars and Franklin, 2009) model (Ramamaurthy et al.,
2004). For a review of cognitive architectures that also mentions role of
memory see (Langley et al., 2009). However, not all generic EM models are
associated to some cognitive architecture, an example of such a standalone
model could be (Tecuci and Porter, 2007). Compared to the models from
the previous category these models are usually not evaluated by modeling a
trend in empirical data. Performance of these models is more often assessed
by their contribution to some higher level task accomplished by the agent,
e.g., overall performance of a simulated tank in (Nuxoll and Laird, 2011).

Ad-hoc models — these were created with particular engineering applications
in mind such as creating more engaging dialogs and they are usually tightly
bound to it, e.g., (Liu and Maes, 2004; Dodd and Gutierrez, 2005; Kopp
et al., 2005; Dias et al., 2007; Ho et al., 2007; Lim et al., 2009; Mattar and
Wachsmuth, 2012; Rabe and Wachsmuth, 2012). They can be sometimes
generalized to other domains but this usually is not the aim of these models.

16



In the review we will focus on the latter two categories of models because
those are the most relevant to IVAs and therefore also to our proposed frame-
work (see the list of requirements on our framework from Section 1.3). That
is we will survey generic and ad-hoc models that fall almost exclusively into an
algorithmic/representational level of description. Some prominent models of the
implementational level will be described just to give the reader a sense of how
different these models are. Even though they are not in the main scope of our
review we find it important to make a link to them because a community work-
ing on ad-hoc models may not be aware of the implementational models and vice
versa.

2.2 Axes Along Which the Models Will be Organized

In the rest of the review of EM models we will use following the axes along which
the models will be described:

Aim — what the main purpose of the model is. What features it provides to
the agent or what research questions it tries to answer.

Domain — description of the domain where the model was deployed/evaluated.
What the complexity of the environment is, if it is deterministic or nonde-
terministic, etc.

Encoding-Storage-Retrieval — description of all the main memory processes,
this includes data structures and algorithms consisting the model.

Evaluation — how the model was evaluated, e.g., does it somehow enhance
agents performance or users experience when interacting with the agent?

2.3 Existing Episodic Memory Models - Algorithmic level

2.3.1 Subagdja et al. 2012

Aim. Subagdja et al. (2012) created a dual memory model that shows interplay
of episodic and semantic memory and inspects the functional role of forgetting.
The benefit of equipping an agent with EM was measured on a subproblem of
a bot’s Decision Making System (DMS) concerning picking the most efficient
weapon given a distance to the enemy.
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Domain. The model was implemented in a bot for a FPS game Unreal
Tournament 2004 (UT2004)1. This game features a rich nondeterministic 3D
environment. The bots’ main task is to kill as many opponents as possible while
surviving without being killed.

EM stores sequences containing the bot’s position, health, ammo, distance to
the enemy, weapon that was picked up, what behaviour the bot was executing,
etc.

Encoding-Storage-Retrieval. Episodes are stored in a fusion adaptive res-
onance theory (ART) network (Tan et al., 2007). The ART is a type of neural
network with two layers. The first layer serves as an input of the network and
the second layer has neurons that cluster the inputs in an unsupervised manner.
If any existing category does not describe the input well enough, the model can
dynamically add a new neuron representing this new category.

The EM model in Subagdja et al. (2012) consists of two interconnected ART
networks. The first network realizes percepts → events mapping and the second
network realizes events → episodes mapping. Thus output of the first network
is input to the second network that categorizes sequences of events into distinct
episodes. Episodic memories undergo exponential decay forgetting, the strength
of a memory is refreshed when it is accessed.

Once at a time the detailed sequential episodic memories are all retrieved and
used to derive semantic knowledge — the rules for the agent’s DMS. Semantic
memory is also implemented as the ART network. The rules learned by abstract-
ing from episodic memories and later stored in the semantic memory can be in a
form: IF distance to enemy < 299 THEN rocket launcher effectiveness is 0.972.

Evaluation. Performance of EM was measured by its contribution to the
agent’s overall performance. One subproblem of the bot’s DMS is weapon se-
lection. That is picking the right weapon given the current state of the game,
e.g. distance to opponent, type of environment etc. A bot equipped with EM
was compared to modified versions of that bot that performed 1) random weapon
selection and 2) learned the weapon selection rules directly without using the EM
as a short term buffer. Several speeds of forgetting were also evaluated.

Experiments showed that the bot with dual memory model outperformed the
competitors. It is interesting that forgetting also enhanced bots performance.
Authors hypothesize that it probably filters noise contained in the observations
that harms semantic learning.

1Epic Games, Inc.: Unreal Tournament 2004, URL: http://en.wikipedia.org/wiki/

Unreal_Tournament_2004 [28.12.2013]
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2.3.2 Deutsch et al. 2008

Aim. Deutsch et al. (2008) investigates an agent architecture that can learn
from past experience. The positive effects of learning are supported by limited
experimental evaluation.

Domain. The model was implemented in agents acting in a fungus eaters like
environment (Toda, 1982). The simple two dimensional environment contains
obstacles, several types of terrain and energy sources. The world is inhabited
by competing teams of agents, the goal is to survive as long as possible. The
important aspect is that the environment encourages cooperation of agents, e.g.,
some food sources can be consumed only when there are two or more agents at
the same time. The paper does not describe what type of information is exactly
stored by the EM.

Encoding-Storage-Retrieval. The model stores plain sequences of events.
The event consists of a triple 〈emotions, TI matches, actions〉. The TI match indi-
cates that an event matched some scenario. Scenarios are templates of sequences
of actions that have some functional meaning. Instances of templates, that is
sequences of realized actions, are called episodes. Each event has its salience that
relates to probability of recall. The initial value of salience is the weighted sum
of saliences of emotions, TI matches and actions. After the event was stored the
salience exponentially decays over time, it raises only when the event is recalled.
In retrieval each stored event is compared to the (partially specified) cue and then
the matching events are sorted according to a degree of overlap and activation.
After this the memory can be traversed forward in time from the matching event.

Deutsch’s model is an example of EM model that takes into account extended
temporal relations between events. This is enabled by a scenario matching mech-
anism. An event can have high salience when it is part of an important scenario.
Salience of the same event can be lower when it is a standalone event that does
not fit to any scenario. This can be viewed as an enhancement over the other
models reviewed in this section. The EM not only stores sensory data, but it also
enriches them with higher level information about the scenario they belong to.

In general the task of inferring higher level scenarios/activities from low level
sensory information is called an automatic activity recognition. An activity recog-
nition algorithm based on a similar idea is presented by Kerr et al. (2011). The
activity recognition layer is a key innovation compared to the previous EM mod-
els.

Retrieval is initiated by the agent by providing a partially specified event that
is used as a cue. The cue is then compared to all stored events and the best
matching event is returned.

Evaluation. The main metric in evaluation was the agent’s expected life-
time. It was shown that agents equipped with EM survived 20% longer than the
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memoryless agents. The EM was used to foresee the impact of an agent’s actions
and thus it influenced the agent’s DMS. In 83% of situations prediction from the
episodic memory was accurate, thus the agent was able to use this knowledge to
its advantage.

2.3.3 Soar 8

Aim. Nuxoll and Laird (2012) create a generic EM model for cognitive architec-
ture Soar 8. The EM model is intended to support four functions of the agent’s
DMS. These functions are: action modeling, retroactive learning, boosting other
learning mechanisms and virtual sensing.2

Domain. The model was evaluated in the Eaters and TankSoar environments
(Nuxoll and Laird, 2012). Both are distributed with Soar and they serve as
standard environments for demonstrating Soar’s capabilities. Both environments
are grid based. In Eaters each cell contains either an obstacle or a normal or a
bonus food. An agent’s goal is to eat as much food as possible. Eaters are similar
to PacMan with the exception that there are no opponents. In the Eaters domain
the eater agent has four actions for moving in all directions.

TankSoar is more complex. The agent controls a tank whose goal is to kill
the opponent by firing a missile. The total number of actions runs into the to
hundreds.

The EM model stores a limited map of an environment around the agent, an
action taken by the agent and a reward.

Encoding-Storage-Retrieval. At each time step the EM encodes a tree
graph representing a snapshot of the agent’s WM. WM contains: the agent’s
perception field (a map of its surroundings); internal state and an action taken
in the environment. Only items whose activation is over a certain threshold
are encoded (Nuxoll et al., 2004). This way the system avoids storing irrelevant
memories. During storage content of the memory may undergo forgetting (Nuxoll
and Laird, 2012). However, this is only optional. Similar to the work of Deutsch
et al. (2008) retrieval uses partial matching combined with the activation level of
the stored event. The best matching event is returned. Now we will detail how
the functions mentioned in Aim use the EM.

Action modeling refers to estimating the utility of performing an action in
some context. The agent’s DMS is realized via the following function:

DMS(c) = arg max
a∈Actions

U(a, c) (2.1)

2EM model from Soar 8 together with the model from Soar 9 presented in the next section
are probably the most developed models from all models discussed in this chapter.
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where U(a, c) denotes utility of an action a in a context c. EM is used to evaluate
U(a, c), it finds the memory entry Smatcha,c closest to the current context and possi-
ble action. Then it advances forward in time in a sequence of memories connected
to the found memory entry. After a fixed number of time steps (e.g., 10) it finds
the future state of the agent Sfuturea,c , this process is called mental simulation. In
the end utility is computed as U(a, c) = score(Sfuturea,c )− score(Smatcha,c ).

The second mechanism is retroactive learning, where the EM is used as a cache
for episodes for batch learning of Soar decision rules. This can be seen as a model
of memory consolidation that runs over night and converts episodic memories
into more generally applicable rules.

The third mechanism, referred to as boosting other learning mechanisms, con-
nects EM with Soar’s chunking mechanism. This is equivalent to memorization
of DMS(c) function instead of evaluating it each time again. This leads to faster
decisions, thus potentially enhancing the agent’s behavior in relatively stable en-
vironments where the stored values remain the true estimate of the best action
for a given situation.

Virtual sensing is the fourth mechanism that can be used to find locations of
objects not present in the current agent’s field of vision. This is similar to a type
of memory studied by Ho et al. (2008), this model is described later in the text
in Section 2.3.5.

Evaluation. In both Eaters and TankSoar domains the model was shown
to improve the agent’s performance over time as it learns important properties
of the environment. For instance, in an experiment where past experiences were
used in DMS the agent for TankSoar was able to learn certain behavior patterns
and subsequently outperformed the baseline agent (Nuxoll and Laird, 2012).

Nuxoll et al. (2010) evaluates performance of three forgetting mechanisms in a
new domain. Two other EM models discussed in this review (Tecuci and Porter,
2007; Ho et al., 2008) were also tested in this domain. It was shown that an
activation based forgetting performs the best as the number of stored memories
increases. A similar trend holds also for the other two models. To our knowledge
this is the only evaluation that compares multiple different EM models on the
same task. However, it remains unclear how performance of these models would
compare to other state of the art techniques.

2.3.4 Soar 9

Aim. EM implementation in Soar 9 (Derbinsky and Laird, 2009) drops activation
related features of the model in Soar 8 (Nuxoll and Laird, 2012) in favor of speed
enhancements. The main aim is real time applicability of the model in agents
that can run for extended time periods.

Domain. The model was applied to a diverse set of domains (Derbinsky
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et al., 2012) including a linguistic task of word sense disambiguation (WSD), 12
different planning domains (variations lead to 44 domain instances), video game
like environments TankSoar, Eaters, Infinite Mario and also a mobile robot. This
makes this model probably the most widely tested model from all the reviewed
models.

Encoding-Storage-Retrieval. The model extends the previous implemen-
tation (Nuxoll, 2007) by ability of encoding whole graphs (called working memory
graph (WMG)) instead of only trees. On the other hand it drops the activation
based features. The model uses an SQLite relational database engine for stor-
age of episodes which helps to meet the real time requirements. Besides this the
encoding-storage-retrieval cycle is the same as in the previous version of Soar’s
EM.

Evaluation. The evaluation published in (Derbinsky et al., 2012) tests real
time applicability of the model. It identifies tasks that can be computed with low
latency and also types of queries that scale linearly with time and thus they are
not suitable for agents running for extended time periods. For instance, in the
planning domains cue matching queries in 12, relatively small domain instances
were reactive. Whereas the remaining 32 domain instances were not suitable for
real time queries.

2.3.5 Ho et al. 2008

Aim. Ho et al. (Ho et al., 2008) implemented a set of agents equipped with
increasingly complex memory systems. The aim was to test enhancements in
performance enabled by these memory systems.

Domain. Agents are placed in a virtual 3D environment similar to Toda’s
fungus eater (Toda, 1982). There are multiple agents that compete for resources.
The environment also has a long term periodicity when its properties change
during simulated winter and summer.

The LTM system stores in each record season when the record was created
(winter/summer), type of the land square (e.g., desert), object sensed on the
square (cactus) and change of agent’s internal variables (e.g., ∆energy=-0.03)
possibly conditioned by usage of an object (stone).

Encoding-Storage-Retrieval. Memory is implemented as a plain log of
events experienced by the agent. Memory retrieval in the LTM model works in the
following way. The model retrieves a sequence that is the most relevant to the task
of getting from the current state to the target state. The search uses matchKey
to specify states that are similar to the current state, and searchKey for target
states. An example can be searchKey = {sensed(AppleTree)},matchKey =
{landform(Oasis)}. This corresponds to a situation when the agent is looking
for an apple tree and he is in an oasis. The retrieval algorithm looks for a set of
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target states and then tries to go forward and backward in time and find states
matching matchKey. The resulting sequence is then redone or undone by the
agent depending on its direction in time.

Evaluation. The study compares performance of a purely reactive agent, an
agent with a STM (where STM is a list of last n experienced events) that can
“undo” previous behaviour to reach the desired resource, a LTM agent that has
longer memory store and it can retrieve multiple matching records and combina-
tions of STM and LTM memory systems. A possibility of simple communication
between agents realized by exchange of memory query results is also tested.

The evaluation shows that agent architecture equipped with a combination
of LTM and STM outperforms the reactive and STM agents in expected lifespan
of the agents. The results are statistically significant. Evaluation also tests the
setup when the agents can share memories, which also leads to increased lifespan.

2.3.6 Model of FearNot!

Aim. EM model (Dias et al., 2007; Ho et al., 2007) enhances virtual agents
with the ability to remember interaction of the user’s avatar with other agents.
The memories are used in debriefing where they are post-processed by a natural
language generator in order to be presented to the end user.

Domain. The model was used in the context of the anti-bullying educational
application FearNot! (Aylett et al., 2005). FearNot! is a training environment
that lets pupils experience different situations that may involve bullying. The
pupils should learn how to behave in such situations and hopefully avoid them in
the future. The EM stores what happened to the pupils in the last session and
it is used in debriefing where pupils can assess their own behavior.

Encoding-Storage-Retrieval. The model stores experiences of agents in a
plain sequence. Each entry has the form of a triple 〈abstract summary, detailed
description, evaluation of the situation〉. The detailed description consists of
〈time, people, location, object, details, feelings〉. An emotional generator based
on the OCC theory (Ortony et al., 1990) is used to evaluate each episode and the
emotional impact is later used in retrieval. An example of the emotional generator
output might be the fact “I like agent X”. Retrieval is initiated by providing a
partially specified cue, e.g., a set of characters that should be in the episode or a
place where the episode happened. Only the most emotionally salient events can
be recalled.

Evaluation. No specific evaluation of the EM module was performed. How-
ever the FearNot! application as a whole was evaluated in a study with several
hundred pupils (Sapouna et al., 2009).
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2.3.7 Tecuci — A Generic Memory Module For Events

Aim. Tecuci and Porter (2007, 2009) try to create a standalone generic EM
model with a well defined API. It should be easy to interface the model with any
agent architecture. This should promote the use of EM like systems in a wider
range of applications.

Domain. Since the model is designed as generic it is not bound to any specific
domain. The only restriction is that the memory entries have the structure of
triples 〈context, content, outcome〉. Where context describes initial settings of
the episode, e.g., a state of the world when the episode occurred; content is a
sequence of actions; and outcome specifies how the episode ended, e.g., whether
it was successful.

Encoding-Storage-Retrieval. In storage episodes persist unchanged as
they were perceived. The only additional operation is indexing of context, con-
tent and outcome. Thus the episode can be queried by all three dimensions. In
retrieval the partially specified episode serves as a cue and graph matching algo-
rithms are used to match it against stored episodes. The index is used to speed
up the search. Tecuci’s model is inspired by document retrieval research, whereas
most of the other reviewed models are rooted in psychology.

Evaluation. Evaluation presented in (Tecuci and Porter, 2007) tests the EM
model on a corpora of artificial plans from a logistics domain generated by the
planner SHOP2. The domain described the delivery of a package between three
cities. In evaluation the memory is tested in three goals: planning — find a plan
for a given goal (e.g., find a sequence of actions that must be executed in order
to deliver a package from city A to city B); classification — answer whether the
goal is solvable (e.g., is it possible to deliver the package from A to B?); goal
recognition — infer the goal given a sequence of actions (e.g., is the package
going to be delivered to city A or B?). The EM model was compared against
the 5-nearest neighbor (5-NN) algorithm that searches through all stored entries.
Evaluation showed that EM models performed comparably well to 5-NN in terms
of accuracy. But at the same time it compared the cue against significantly fewer
stored episodes than 5-NN. This was possible because of the indexes that guided
the search.

Further evaluation in (Tecuci and Porter, 2009) tests the model on two new
domains: Monroe plan corpus (Blaylock and Allen, 2005a) and sequences of Linux
shell commands. Performance of the EM model was comparable to a model based
on Bayesian statistics (Blaylock and Allen, 2005b).
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2.3.8 Li et al. 2013

Aim. The aim of the model presented by Li et al. (2013) is to create a generic
memory system applicable to IVAs. The model should simulate forgetting and
recall of false memories (Brainerd and Reyna, 2005). The model accounts for
WM and LTM. The EM is not the main focus of the model. However, the EM
can be seen as a subset of the LTM that is modeled.

Domain. The model uses graph based representation of facts, thus no par-
ticular structure of the domain is expected. An agent equipped with the memory
model was tested in a 3D environment, where its goal was to search for previously
seen objects.

Encoding-Storage-Retrieval. Similarly to Soar the model uses graph based
representation. Nodes represent concepts (i.e., objects and theirs properties)
and directed edges represent relations between the concepts. Both nodes and
edges have associated strength, the higher the strength the more important the
node/edge.

As the first step of encoding observations enter the sensory memory which
has only a limited capacity and it can store observations only for a limited time
span. Thus only a subset of present objects receives the agent’s attention. Then
the graph representing the observations enters the working memory. Strength of
edges between nodes simultaneously present in the WM are reinforced. Finally,
the graph is stored in the LTM. During storage in LTM both the nodes and the
edges undergo exponential decay that can result in deletion of the nodes/edges
whose activation is below a forgetting threshold. In recall, the nodes/edges whose
strength is below a certain threshold can be confused with a similar concept, e.g.,
a blue color may be incorrectly recalled instead as a red one.

Evaluation. Performance of an IVA equipped with the proposed memory
model was compared to performance of humans. Both IVA and humans first
explored an unknown environment, then they were instructed to find an object
they saw previously. Various parameters of the model were estimated from the
data so that the performance of the IVA matches human level behavior in this
particular task. However, it might be the case that the same behavior might be
achieved even with a simpler model.

2.3.9 Brom et al. 2007

Aim. The aim of the work presented by Brom et al. (2007) is to create a model
capable of storing hierarchical structure of episodes. The model is designed with
IVAs’ needs in mind.

Domain. The model was tested in an agent inhabiting a simple grid world.
The agent had repeating goals (e.g., eat or sleep) and random goals (e.g., cure).
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The environment contains objects that are needed for completion of some goals.
Dynamic changes of the environment are modeled by random changes of objects’
locations. The model stores the agent’s behavior on several levels of abstraction.
The lowest level contains atomic actions. The higher levels contains episodes that
might span multiple time steps.

Encoding-Storage-Retrieval. The model does not store only plain se-
quences of observations as most of the other reviewed models but it also stores
hierarchical temporally extended episodes that include multiple observations/sub-
episodes. The agent’s DMS is encoded using AND/OR trees, thus there is in-
herently a hierarchical decomposition of the agent’s goals. Every time the agent
executes an atomic action he stores this action together with the whole path from
the leaf to the root in the AND/OR tree. Each episode is represented on different
levels of abstractions, which is consistent with findings from psychology (Zacks
and Tversky, 2001).

During storage memories undergo gradual forgetting based on emotional salience
of the remembered event, its depth in the hierarchy and time passed since its
encoding. Therefore it might happen that low level details of an episode are for-
gotten but the high level summary of the episode remains stored in the memory.
Fast retrieval in time interval queries is made possible by time indexes over the
tree like memory structure. The basic model was further extended with simple
statistical episode schemata (Čermák et al., 2011) and fuzzy time concepts (Brom
et al., 2010) (e.g.,“around noon”) implemented by a mechanism similar to a neural
network.

Evaluation. The basic model was evaluated in terms of memory size with
and without emotion based forgetting. In both cases the size of the memory grew
linearly with time. However, emotion based forgetting helped to reduce the size
of the memory. Plausibility of the fuzzy time concepts was tested in evaluation
with human subjects (Brom et al., 2010). The evaluation shows preference for
socially established time concepts (“around noon”) rather than for an exact time
specification (e.g.,“at 12:34”).

2.3.10 Ziggurat

Aim. Ziggurat (Faltersack et al., 2011) is another domain independent EM
model. The aim is to extend the EM from Soar 8 (Nuxoll and Laird, 2012) with
the ability to store hierarchical episode representation. The memory is applicable
in cases when an agent needs to reach a goal state from an initial state. Therefore,
it is a system that realizes case based planning (Cox et al., 2005).

Domain. The Ziggurat model was evaluated in two testing domains, Eaters,
known from the Soar, and a simple blind navigation domain. In the blind nav-
igation domain the agent has to navigate in a maze with a tile based map from
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origin to a target location. The main limitation is that the agent is “blind” and
it only senses the walls once it collides with them. In the presented experiments
the memory stores sequences of the robot’s actions.

Encoding-Storage-Retrieval. The term episode is used for a single 〈percep-
tion, action〉 pair recorded at one time step. Multiple consecutive episodes form
a sequence. Sequences from the lower level of the hierarchy can be episodes in
the higher level. This way a tree structure of more abstract episodes is formed.
The hierarchy of episodes is used in context based retrieval.

In the learning phase the agent explores the structure of the environment.
The agent performs sequences of random actions and records their outcome until
the target state is reached. Then a set of replacement rules is applied to remove
unnecessary actions from the sequence (e.g. replace three 90◦ turns left by one
90◦ turn right etc.). These rules have associated confidences that measure their
reliability. If application of a rule leads to wrong conclusions then its confidence
is decreased and vice versa. The learnt sequences represent plans that can be
later replayed by the agent.

After the memory has been learned it can be used in the runtime. The ap-
proach is similar to (Nuxoll and Laird, 2012), the best matching situation is found
in the memory and then the agent replays the retrieved actions. The difference is
that in (Nuxoll and Laird, 2012) the match is based on properties of a single time
step, whereas Ziggurat finds the longest matching sequence of the same states
in the memory. When a future state differs from that predicted by the memory
then a new longest match is found.

Evaluation. Even in the simplest blind navigation domain where an optimal
solution required only 3 actions the EM controlled agent used on average 24
actions. In the remaining two test cases the agent needed about four times
more actions than was the optimum. In the Eaters domain the performance was
comparable to the EM model from Soar 8 (Nuxoll and Laird, 2012).

2.3.11 Kope et al. 2013

Aim. The EM model presented by Kope et al. (2013) is another generic model
aimed at increasing believability of IVAs. It aims to mimic properties of human
memory such as false memories and associative recall.

Domain. The model was connected to a villager agent acting in a 3D game
Minecraft3. A player can ask the villager to recall memories associated with a
certain keyword. For example, the player can initiate the agent’s recall with the
keyword “wood” and the agent replies “I traded some wood to Duncan McGrath”.
However, the model is formulated in a generic way and it stores abstract graph

3Minecraft’s homepage: URL: https://minecraft.net/ [23.2.2014]
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structures.

Encoding-Storage-Retrieval. The memory is represented as a graph of
concepts and directional links between the concepts. The concepts represent
objects present in the environment and possibly also actions. Each concept has its
activation that changes in time, links between concepts have weights representing
strength of association.

During encoding the observed situation is translated into a graph of concepts
and strength of links between concepts often appearing together is increased. In
storage activation of concepts exponentially decays, resulting in deletion of con-
cepts with low activation. Additionally some concepts may be randomly altered
to a semantically related concept, this simulates false memories phenomenon.
Retrieval is implemented through a spreading activation mechanism (Anderson,
1983). A search cue is used to increase activation of related concepts and from
them the activation spreads through the memory graph. The N most active
concepts are used as a result of the query. The idea of spreading activation was
previously used in the context of IVAs by Lim et al. (2011).4

The model does not explicitly account for time. Thus sequences of events are
not directly representable in the model as presented by Kope et al. (2013). Be-
cause of this the model does not fit in the scope of our review. It is representative
of spreading activation models in the context of IVAs and as such it deserves to be
mentioned. Moreover the model can be extended to account for time by addition
of new types of links between the concepts that will represent time precedence.

Evaluation. The model was evaluated in terms of its computational require-
ments. In a limited test domain it was shown to be suitable for real time use.

2.4 Existing Episodic Memory Models - Implementational

level

This section describes models that usually use low level metaphor of rate coded
“neurons” or units with similar function. In Marr’s classification these models
fall into the implementational level. Thorough review of these models is provided
in (Norman et al., 2008). Here we will describe three representative frameworks
just to illustrate their difference from the models described above.

4This model was not included in the review since it was not described as extensively as the
other models.
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2.4.1 Temporal context model

Aim. The main aim of the model named temporal context model (TCM) pre-
sented in (Howard and Kahana, 2002) is to create a simulation that can account
for empirical data from psychological laboratory experiments concerned with re-
membering words from longer lists. Namely it models recency and contiguity
effects in free recall. Recency effect in a free recall (Murdock, 1962) is a tendency
to recall more items that appeared towards the end of a list compared to items in
the middle. Contiguity effect (Kahana, 1996) is a tendency to recall items that
were close together in the list, e.g., if one recalls the item on position i it is much
more likely that the next recalled item will be from position i + 1 rather than
from i+3. TCM models these effects with low level, neuronal-like architecture. A
review of the TCM approach and current findings from neurobiology supporting
this view is given in (Polyn and Kahana, 2008).

Domain. The original domain where the model was applied are lists of words.
However, the model can be used for any sequences of symbolic data.

Encoding-Storage-Retrieval. Instead of using pointers to the next event
as in (Nuxoll and Laird, 2012; Derbinsky and Laird, 2009; Ho et al., 2008; Brom
et al., 2007) TCM uses more low level encoding of successive events. Flow of the
time is not represented by an explicit pointer, instead there is a slowly shifting
temporal context and events are associated to this context. There is a mapping
MFT between events and a context and also an inverse mapping MTF from the
context to the events. These mappings are learned by Hebb’s rule (Hebb, 1949).
Each time an event is experienced its weight associating it with the current con-
text is strengthened. This models encoding of the event. During storage the
mapping remains intact. Although the context may change, which can lead to
degraded performance in recall. When an item is recalled the associated con-
text is also reconstructed. This context then influences recall of the following
events. Since the context of the events that happened close together is similar
the probability of recalling them is also higher.

Evaluation. It was shown that model parameters can be fitted to account
for human data for both recency and contiguity effects (Howard and Kahana,
2002).

2.4.2 Lisman 1999

Aim. Lisman (1999) hypothesized how sequences of items can be stored by
a neural network located in the brain structure called the hippocampus. He
discussed several possible schemata of connection of hetero-associative and auto-
associative neural networks that would be able to recall sequences by providing
partial clues. The proposed networks are also aligned with CA1 and CA3 regions
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of the hippocampus. The aim of this work was to provide a theoretical framework
that can represent successive items in episodic memory.

Domain. The generic framework is applicable to any sequence of items.
Encoding-Storage-Retrieval. The model proposes that the sequences can

be stored in two interconnected networks, a hetero-associative network that per-
forms mapping of successive events, and an auto-associative network that can
correct outputs of the hetero-associative network. For instance, suppose that the
hetero-associative network is presented with pattern A and it outputs B′, then B′

is passed to the auto-associative network that can correct previous inaccurate re-
call and map B′ to the true value B. Then B goes back to the hetero-associative
network that recalls C ′. Thus the sequence is stored in weights of the neural
network. This is similar to the model of Howard and Kahana (2002) where the
list is represented by many distributed weights.

Evaluation. As presented in (Lisman, 1999) the framework was not imple-
mented. Hence no empirical validation was performed.

2.4.3 LIDA

Aim. LIDA (Franklin and Patterson Jr, 2006) is a general cognitive architecture,
hence the main purpose of its EM module is to provide generic, biologically
plausible memory store. LIDA’s memory system (Anwar and Franklin, 2003;
Ramamaurthy et al., 2004; Ramamurthy et al., 2006; Snaider and Franklin, 2012)
is based on a sparse distributed memory (SDM) (Kanerva, 1988).

Domain. The research on sequential memory in LIDA (Snaider and Franklin,
2012), which is of primary interest for this review, was done only with sequences
of abstract symbols. The rest of the memory system (Anwar and Franklin, 2003)
was already implemented in a virtual secretary, CMattie, that communicates with
users in natural language through emails.

Encoding-Storage-Retrieval. SDM works as an auto-associative memory.
The memory consists of a set of sparse locations and counters. Each sparse
location is a word of length n over a binary alphabet. Additionally for every
position i inside each location there is a counter that is updated during memory
encoding. In encoding each fact to be remembered is first translated into a binary
word w of length n. Then a set of locations within some predefined distance d
from w is searched. For each location counters are updated by the following
rule: if i-th bit of w equals one then increment counter i of location l, otherwise
decrement the same counter. Thus the memory is represented by a set of locations
and associated counters.

In retrieval the memory is provided with a partially specified cue that is then
reconstructed and matched to the closest recallable fact. Retrieval can use several
iterative cycles where the recalled memory can be again used as a cue for the next
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turn of retrieval. This process “focuses” the retrieved memory. This can be useful
when the initial cue contains noise. However, the recall can end in divergence.
Therefore real world implementations must detect this divergence and end with
some kind of exception. This iterated recall can be seen in several other memory
architectures including Hopfield networks (Hopfield, 1982) or ART (Carpenter
and Grossberg, 2003). There have been several extensions to SDM in LIDA, e.g.,
handling of incomplete knowledge (Ramamaurthy et al., 2004), forgetting (Rama-
murthy et al., 2006) and recently also with representation of sequences (Snaider
and Franklin, 2012). The schema proposed in (Snaider and Franklin, 2012) is
similar to sequence encoding used in recurrent neural networks (Pollack, 1990).
Each memory location consists of 2n bits. The first n bits represent a content
of an episode for time t and the second n bits represent content for time t + 1.
Iterative retrieval of sequences works in the following way. Suppose that you
have the memory location for time t, therefore you can use the second half of
this location as a cue to retrieve location for t+ 1. Analogically you can continue
to retrieve t + 2 and so on. This schema is nearly identical to the one proposed
by Lisman (1999).

Evaluation. Properties of the memory for sequences (Snaider and Franklin,
2012) were tested on abstract sequences of words. Evaluation has shown that with
careful parameterization it is possible to store and retrieve up to 100 sequences
of 20 elements in an SDM with 200 000 locations and 2000 bits per location, thus
4 · 108 counters were needed.

2.5 Activity Recognition

Activity/plan/goal recognition5 (Schmidt et al., 1978; Kautz and Allen, 1986) can
be formulated as a general problem of labeling a stream of actions with the most
probable activity/plan/goal. This problem is jointly studied by several computer
science disciplines. There are applications of activity recognition in video process-
ing (Turaga et al., 2008; Ryoo and Matthies, 2013), cognitive assistants (Kautz
et al., 2003; Liao et al., 2007b), ubiquitous computing (Yin et al., 2004; Oliver
and Horvitz, 2005; Lu et al., 2010; Huynh et al., 2008; Stikic and Schiele, 2009;
Kadlec and Brom, 2011), virtual environments (Kerr et al., 2011; Fagan and Cun-
ningham, 2003), natural language story understanding (Charniak and Goldman,
1993) and security (Lisý et al., 2012).

Several different types of techniques were used to tackle the plan recognition
problem. The first group of algorithms is based on propositional logic represen-

5Different fields of computer science tend to use different names for this problem. Activity
recognition usually refers to recognition of low level actions like sitting or walking. Plan/goal
recognition is usually focused on higher level activities like commuting or cooking.
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tation (Kautz and Allen, 1986; Lesh and Etzioni, 1995; Sindlar, 2011; Ramirez
and Geffner, 2009). These need to have a representation of the possible executed
plans described in a formalism similar to propositional logic. For instance, Sind-
lar (2011) uses a logic-based approach called mental state abduction. Mental
state abduction tries to deduce all possible explanations that lead to an observed
behavior. In a sense, it tries to “parse” the observed events with a logic program
encoding “grammar” of all possible plans. A similar technique utilizing formal-
ism of automated planning (Ghallab et al., 2004) was proposed in (Ramirez and
Geffner, 2009). It uses the assumption that if a rational agent tries to accomplish
a goal G, then the sequence of actions observed so far should match a sequence
of actions of an optimal plan P solving G.

The second main approach uses Bayesian frameworks. Most of these algo-
rithms rely on a probabilistic model that can be represented as a DBN. Different
DBN architectures have been used through time, beginning with the most sim-
ple Hidden Markov Model (HMM) (Rabiner, 1989) used in (Oliver and Horvitz,
2005). More complex generic DBN topologies suitable for activity recognition
were proposed in subsequent work. For instance, Hierarchical Hidden Markov
Model (HHMM) (Fine et al., 1998) (later reformulated as DBN in (Murphy and
Paskin, 2002)) is a model that has several layers of interconnected HMMs. A
slightly modified version of HHMM that allows to recognize the same goals on
different levels of hierarchy was presented in (Bui et al., 2004). Other DBN
based architectures include Abstract Hidden Markov Model (AHMM) (Bui et al.,
2002), Abstract Hidden Markov Memory Model (AHMEM) (Bui, 2003), Cascad-
ing Hidden Markov Model (CHMM) (Blaylock and Allen, 2006), Layered Hidden
Markov Model (LHMM) (Oliver et al., 2004), or ad-hoc network topologies as
used in (Liao et al., 2007b). There are also models that were not originally for-
mulated as a DBN but there exists DBN architecture that can recognize the same
class of plans. This it the case of Probabilistic State-Dependant Grammars (PS-
DGs) (Pynadath and Wellman, 2000) and its counterpart AHMEM formulated
as the DBN that both recognize the same set of plans. Further extensions of
DBN models make it possible to account for duration of activities. Those models
are known as Hidden Semi-Markov Models (HSMMs). A recent example of such
a model is Coxian hidden Semi Markov Model (CxHSMM) (Duong et al., 2009).

A different type of probabilistic graphical model — Condition Random Field
(CRF) (Lafferty et al., 2001), originally developed for natural language process-
ing, was used also for activity recognition (Vail et al., 2007; Liao et al., 2007a).
Dynamic CRFs (Sutton et al., 2007), the natural counterpart of DBNs, might
be interesting for applications in activity recognition as well. There are also
other probabilistic models not directly interpretable as a graphical model like
PHATT (Geib and Goldman, 2009).

Alternative approaches tried to use Partially Observable Markov Decision Pro-
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cess (POMDP) (Kaelbling et al., 1998) formalism for plan recognition (Ramirez
and Geffner, 2011). This can be viewed as an extension of the approach presented
in (Ramirez and Geffner, 2009) to nondeterministic domains.

Even though Bayesian Networks (BNs) are the dominant technique in most
applications, there are also formalisms that try to extend this basic concept.
For instance, mixed networks (MNs) (Dechter and Mateescu, 2004) extend BNs
with deterministic constraints known from constraint satisfaction programming
(CSP) (Dechter, 2003). An extension of MNs to dynamic domains can be directly
applied to activity recognition (Gogate et al., 2005).

A different extension of graphical models is made in Markov Logic Networks
(MLNs) (Richardson and Domingos, 2006). MLNs unify probabilistic reasoning
with first order logic and they were recently applied to activity recognition in
various domains (Sadilek and Kautz, 2010; Ha et al., 2011; Song et al., 2013).

Another extension of the DBN formalism are Continuous Time Bayesian Net-
works (CTBNs) (Nodelman et al., 2002; Nodelman, 2007). The distinction be-
tween DBNs and CTBNs is that DBNs compute each process/episode at granu-
larity that is given by the rate of the process that changes the fastest, which can
be associated with significant computational overhead. CTBNs overcome this
limitation and they make it possible to update each process at a different rate.

An alternative direction that recently attracted a lot of attention is to use
models based on neural network (NN). An example of advanced NN is convolu-
tional neural network (CNN) from (Simonyan and Zisserman, 2014).

2.6 Hierarchical Activity Representation of IVAs

One of the core assumptions of our proposed EM framework will be that flow
of events can be represented in a hierarchy of so called episodes. This seems to
be true both for humans (Zacks and Tversky, 2001) and for many IVAs. Many
formalisms popular for programming agents in both academia and industry use
some kind of hierarchy. Hierarchical decomposition of behavior is beneficial for
the designer since it can be more easily maintained and extended over time. The
formalisms utilizing some kind of hierarchy are, for example hierarchical finite
state machines (HFSMs) (Harel, 1987; Houlette and Fu, 2003), behavior trees
(BTs) (Colledanchise and Ogren, 2014) (represented by, e.g., POSH (Bryson,
2001; Bryson and Stein, 2001)) or hierarchical task networks (HTNs) (Ghallab
et al., 2004).

The HFSM is a Finite State Machine (FSM) with addition of so called hi-
erarchical states. The hierarchical state consists of another FSM. It is possible
to transition from state to state but also from state to hierarchical state and
vice versa. Therefore it should be easy to author a single FSM for some specific
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behavior and add it to an already existing IVA. States of the HFSM usually rep-
resent a low level behavior like walking or eating. Transitions have associated
conditions that enable/disable the possibility of transitioning from one state to
another based on the state of the agent and environment. An example condition
might be isEmpty(PLATE) : eating → walking that translates to: “Once the
plate is empty finish eating and start walking”.

BTs provide a slightly different approach to programming an IVA’s behavior.
BT is a tree that contains selectors and sequences as internal nodes and actions
and conditions as leaves. Selector nodes execute the first applicable sub-nodes
which are sorted according to their priorities. A sequence node executes all its
children in a fixed sequence. Conditions determine whether the subtree contain-
ing this node is executable. Action nodes perform actions in the environment.
Execution of every node might fail. In this case the decision logic tries to pick
the next applicable node. For instance, the IVA might fail to start the car there-
fore the whole subtree COMMUTE BY CAR fails and the decision making logic
tries to execute the next applicable behavior which is COMMUTE BY PUBLIC
TRANSPORT.

HTN extends the popular STRIPS (Nilsson and Fikes, 1971) formalism with
a notion of hierarchy. The designer can describe the hierarchical nature of the
plans by so called compound tasks. Compared to HFSMs and BTs which are
procedural techniques HTN provides a declarative approach for prescribing the
IVA’s behavior. The designer describes the structure of the task, effects and
preconditions of actions, the initial state and the desired target state and he lets
the planning algorithm find a solving plan. The disadvantage of planning is its
time complexity, for analysis see (Erol et al., 1994).

As we can see all the previously mentioned formalism provide high level ab-
stractions of the final behavior. In HFSM we can obtain the hierarchy from
hierarchical states, in BT from the selector and sequence nodes and in HTN from
the compound tasks. All of them provide summary of the underlying behavior.

2.7 Summary

This review tried to contrast different approaches used in EM modeling by al-
gorithmic level models (Section 2.3) and implementational level models (Sec-
tion 2.4). Further we reviewed probabilistic models used for activity recognition
(Section 2.5), some of them will be used in our proposed EM model. In the end
we briefly reviewed popular techniques for programming agents’ behavior. All of
these techniques use some kind of hierarchy, this observation will be used later in
our model.

The algorithmic level models often use a list of experienced events as the main
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data structure. On the other hand implementational level models model flow of
time by lower level mechanisms. For example, by associative properties of neural
networks (Lisman, 1999).

The next section will briefly summarize survey of the activity recognition
algorithms. Then we summarize the algorithmic level models since these are
more relevant for our proposed model than the implementational level models.

2.7.1 Summary of Activity Recognition

Our review of activity recognition algorithms shows that there is a wide range
of formalisms for describing structure of recognized activities, ranging from sym-
bolic representation used in logic to sub-symbolic representations like weights of
a NN. Among the presented approaches those based on DBNs are the most inter-
esting for us since they: 1) allow to use the same probabilistic model for multiple
tasks; 2) make it possible to represent hierarchical structure of IVA’s behavior
(as discussed in Section 2.6).

2.7.2 Summary of Algorithmic Level Models

This section summarizes capabilities of the reviewed algorithmic level modes and
discusses how they fulfill the requirements listed in Section 1.3.

1. Summarization and clarifying questions: The model of Brom et al.
(2007) makes it possible to summarize activity of the agent itself. The
model of Deutsch et al. (2008) has the same ability. Additionally in prin-
ciple it can summarize activity of the other agents, even though it was not
used in this way. Models presented in Subagdja et al. (2012) and Faltersack
et al. (2011) are able to construct hierarchical representation of low level
actions. However, the hierarchy is constructed in an unsupervised manner.
Therefore it is not possible to learn the model how it should interpret ob-
served actions based on a set of labeled example sequences. None of the
reviewed models uses advanced activity recognition techniques surveyed in
Section 2.5 to interpret behavior of observed agents. All models that rep-
resent episodes in a hierarchical structure make it in principle possible to
answer further clarifying questions.

2. Expressing degree of certainty: Expressing certainty of recall is made
possible by the models that encode memories in a graph of interconnected
concepts (Kope et al., 2013; Li et al., 2013). An activation associated with
concepts and possibly edges can be used as a measure of certainty. The
higher the activation the more certain is the recall.
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3. Believable mistakes in recall: Some models (Kope et al., 2013; Li et al.,
2013) simulate believable mistakes in recall by randomly altering the content
of the memory. The recalled concept is usually replaced by a similar concept
with certain probability. A different process of inducing false memories is
used by Čermák et al. (2011) which extends the model of Brom et al. (2007).
Here the false memories emerge as a result of merging similar memories that
were close in time.

4. Recall interesting details first: Several models propose to use emotional
feedback to measure how interesting the stored events are (Brom et al., 2007;
Dias et al., 2007; Deutsch et al., 2008; Gomes et al., 2011; Kope et al.,
2013). This implies that the agent has to be equipped with an emotion
evaluator module. We will cast the problem of measuring interestingness
as computation of “distance” of two probabilistic distributions.

We can see that none of the models accounts for all our requirements in a
coherent framework.

Further, based on intended use of the models we can identify at least two
model subgroups. The first group (Deutsch et al., 2008; Ho et al., 2008; Derbinsky
and Laird, 2009; Faltersack et al., 2011; Nuxoll and Laird, 2012; Subagdja et al.,
2012) uses EM as a tool that should enhance performance of an agent living in
a simulated environment. This type of agents and environments can be usually
formalized by the framework of Markov Decision Processs (MDPs) (Bellman,
1957) or POMDPs (Kaelbling et al., 1998). In this case the agent’s performance
can be exactly measured by feedback from the simulator (e.g., damage suffered
by the agent, number of collected bonus items, etc.). However, these models are
not compared against the state of the art techniques for solving MDPs and more
general POMDPs studied in the AI community. Since there are still a lot of
open issues in solving both types of problems interesting results might arise from
casting this type of EM research as a subfield of POMDP research.

The second group (Brom et al., 2007; Dias et al., 2007; Ho et al., 2007; Li
et al., 2013; Kope et al., 2013) is more focused on increasing believability of
IVAs equipped with these EM models. Therefore it is more complicated to define
performance of these agents since it depends on human assessment.

In this chapter we have shown that none of the current EM models fulfills all
our requirements. Additionally we surveyed approaches to activity recognition
and several popular techniques for programming an IVA’s behavior. Knowledge
of both these areas will inform analysis of our EM framework that follows in the
next chapter.
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Chapter 3

Problem Analysis

This chapter provides detailed analysis of our proposed EM model. First we will
introduce our notation and we will analyze all processes needed in our model
on an example scenario. Then we will analyze requirements on the probabilistic
model used in our EM. In the end we summarize the encoding-storage-retrieval
cycle of our model.

3.1 Notation

Uppercase letters will denote random variables (e.g., X, Y,O) whereas lowercase
letters will denote their values (e.g., x, y, o). Probability mass function (PMF) of
a random variable X will be denoted by P (X). When X is discrete, P (X) will
be also used to refer to a table specifying the PMF. Conditional probability mass
function (CPMF) denoted as P (X|Y ) expresses PMF of X given the true state of
Y . Domain of X will be denoted as D(X). Notation Xi:j will be a shorthand for a
sequence of variables Xi, Xi+1 . . . Xj, analogically xi:j will be a sequence of values
of those variables. When we want to stress that all variables in this sequence have
the same value we will use notation ai∼j, this will be equivalent to ∀k, i ≤ k ≤
j : xk = a (this notation is used for instance in Figure 3.1). The subscript will
usually denote time. A set of random variables will be sometimes also denoted
by bold letters, e.g., Z = {X0, X1, . . . , Xn}. A probabilistic distribution over the
set of variables Z will be defined as P (Z) = P (X0, X1, . . . , Xn).

M will be a probabilistic model and V will be a set of all random variables
in the model.
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3.2 Example Scenario

In the following example scenario we will analyze all steps of the encoding-storage-
retrieval cycle and we will discuss how the model can fulfill the requirements listed
in Section 1.3.

Suppose that Bob observes Alice and he tries to remember what she does.
Figure 3.1 shows this situation. Alice performs a sequence of atomic actions ρo:T .
Bob’s perception might be imperfect, therefore he observes a sequence o0:T . In the
following example we will assume that Bob observes only Alice’s atomic actions.
However, we can also include broader context of the situation in observations.
For instance, each observation might contain also objects possibly used by Alice
and her location. Note that Alice’s higher level goals that drive her to perform
this sequence remain hidden to Bob. The higher level goals are known to Alice,
but Bob observes them only indirectly via the sequence of atomic actions. Thus
to fulfill the requirements to support summarization (req. 1) and for further
clarifying questions (req. 2) there has to be an activity recognition component
that deduces the high level unobserved episodes (denoted as a10∼T , b

0
0∼1 and c02∼T

in Figure 3.1).

An input of the activity recognition phase is the sequence of observable actions
and an output is a segmentation of this sequence where every segment has an
associated “label”. The label gives a name to the episode represented by this
segment. Let both o0 and o1 from Figure 3.1 be atomic actions STEP and let
the episode b00∼1 be WALK. Note that in order to perform segmentation and
labeling the activity recognition component has to have a knowledge about the
usual structure of episodes. This knowledge will be called episodic schemata.
For example episodic schemata might encode the following rules: a sequence of
multiple steps is walk, walk followed by bus ride might be a trip but it might
also be commuting depending on the context. Everyone knows what it means
to commute, even though there are more possible realizations of commuting.
One might go by bus and then switch to subway or switch to another bus but
both of these episodes will be labeled as commuting. If Bob says that Alice was
commuting one gets the general idea what was going on.

Episodic schemata can be either handcrafted or learned from annotated ex-
amples of episodes. Handcrafted episodic schema can be defined by the designer
based on his experience with the domain. The second approach, that is learning
the schemata from data requires automated procedure that will extract significant
properties of the example sequences and it will adjust parameters of the proba-
bilistic model accordingly. Obtaining the schemata models procedural learning
during childhood1. Once learned, the schemata remain fixed, becoming an un-

1In the present work, procedural learning refers to the kind of learning performed in cognitive
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Figure 3.1: Perception-encoding-storage-retrieval cycle in DyBaNeM. Alice per-
forms a sequence of actions ρo . . . ρT , Bob perceives this sequence as o0 . . . oT and
he deduces Alice’s episodic hierarchy which is a10∼T , b

0
0∼1, c

0
2∼T in this case. Then

he stores the encoded representation (E0
2:T = c02∼T ;O1 = o1;O3 = o3) together

with context cues (day = 21; loc = home; . . . ) in a long term store. The notion of
verbatim and gist was already introduced in Section 1.4. In retrieval, Bob uses a
cue day = 21 to query for relevant episodes from the long term store. Since the
mem O3 = o3 was forgotten Bob retrieves only E0

2:T = c02∼T ;O1 = o1 and he uses
these mems to reconstruct the original episode and observations. Note that both
perception, encoding and reconstructive retrieval phases use episodic schemata as
their input. This is used as a parameter of the probabilistic inference that takes
place at these stages. This figure includes graphics from xkcd.com.
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derlying structure for encoding, storage and episodic retrieval, as exemplified on
Figure 3.1.

Our notion of episodic schemata is closely related to scripts or memory orga-
nization packets (MOPs) as introduced by Schank (1999). Scripts are sequences
of prototypic activities, e.g., there can be one script for commuting and another
script for cooking. MOPs are higher level activities constituting of several scripts.
Our episodic schemata extend these two structures with probabilistic representa-
tion.

The activity recognition module can be realized by a multitude of different ap-
proaches as discussed in Section 2.5. In general we need a function that computes
probability P (episodes|o0∼T , episodic schemata).

Suppose that Bob has identified the hierarchy of episodes describing Alice’s
behavior. Now we move to the next phase which is encoding. In encoding the EM
has to decide which details deserve to be remembered. One possible approach
to tackle this problem is to remember only the details that are unpredictable
given the facts that are already remembered and the schemata. We will illustrate
this on the following example. Suppose that every morning Alice commutes
by bus, however, this morning she went by car (c02∼T in Fig. 3.1). This will
be surprising for Bob since he knows Alice’s habits (encoded in the episodic
schemata). Therefore Bob will remember this detail. These remembered details
are called mems in our framework. The second next most surprising detail could
be that Alice had to clean a front window from frost (o3) because it was freezing
that morning. To enable this iterative encoding process the model has to be able
to:

1. Make predictions of a form P (episodes|mems, episodic schemata), that is
to compute probable episodes hierarchy given the episodic schemata and
mems remembered so far.

2. Measure a “difference” between a hypothetical temporary recall P (episodes|
already stored mems, episodic schemata) and a result of the activity recog-
nition which is P (episodes|o0∼T , episodic schemata). One possible strategy
is that the detail that differs the most will be remembered as a new mem.

There are many functions that quantify difference between two probabilistic
distributions. For instance, (Cha, 2007) lists 56 different measures applicable to
probabilistic distributions. We will use Kullback-Leibler (KL) divergence (Kull-
back, 1959) because it was shown that KL divergence matches the human sense
for surprise (Itti and Baldi, 2009).

architectures like Soar (Laird, 2012) and not to the meaning of this term as used in psychology
where it is connected with low-level motoric learning.
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After encoding the observed situation as a list of mems we can focus on the
next phase — storage. The mems are stored in a long term store (LTS) and they
should be indexed by a set of context cues like the day of the week, day of the
month, season, location or weather etc. These cues will be used later when Bob
tries to recall all memories associated with, e.g., “sunny weekends spent at the
cottage”. During storage, some of the details may be forgotten (such as o3 in
Figure 3.1). Thus, the list of mems might be modified.

In retrieval Bob first has to construct the query and then get the list of
associated mems from the LTS. The retrieved mems will be used (together with
the episodic schemata) to reconstruct the original episodes and observations using
the probabilistic model. This will be done by computing P (episodes|retrieved
mems, episodic schemata).

3.3 Requirements on the Probabilistic Model

In the previous analysis we have identified several requirements on the probabilis-
tic model that will have to be addressed by the proposed EM framework. Our
probabilistic model has to be able to compute these probability distributions:

1. In activity recognition — P (episodes|o0∼T , episodic schemata)

2. In encoding — P (episodes|mems, episodic schemata)

3. In reconstructive retrieval — P (episodes|retrieved mems, episodic schemata)

DBNs fit this schema particularly well since they provide a compact factor-
ized representation of the whole probabilistic distribution. The different types of
queries will be performed over the same probabilistic model using the Bayes’ rule.
The type of the DBN used determines the type of episodic schemata that can be
easily encoded in the DBN. It is desirable to find a model with a few parameters
that can express the true dynamics well enough. The more parameters the model
has, the more expressive it is. However, we should always prefer simpler models
to prevent over-fitting when we try to estimate a model’s parameters from data.
Another consideration is complexity of inference in different models.

The simplest schemata can encode rules like: “when Alice commutes and the
last action she does was exit bus she will probably transfer to subway”. We can
transcribe this as probability P (Ot+1 = transfer to subway|Ot = exit bus, E0

t =
commute) = 0.95. This type of rules can be represented by a simple HMM (Ra-
biner, 1989). However, to express more complex rules we need an advanced model.
For instance, rule: “when Alice drinks a second coffee and she has not drunk wa-
ter recently she will drink water more probably than drinking a third coffee in a
row” could not be easily expressed in the HMM.
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3.4 Summary of EM Work Cycle

Here we briefly summarize the main phases of our proposed EM framework:

1. Get episode schemata. Those can be either handcrafted or learned from
annotated examples of episodes.

2. Use the model for remembering and retrieving episodes. Remembering and
retrieving steps can be interleaved at will.

(a) Remembering episodes includes:

i. Encoding an episode instance with respect to the schemata.

ii. Storing the episode. Forgetting may take place there.

(b) Retrieve the episode by some search criteria and reconstruct the stored
representation to obtain a retrieved episode instance.
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Chapter 4

Proposed EM Framework — DyBaNeM

In this chapter we present EM framework DyBaNeM that addresses all the re-
quirements from Section 1.3. DyBaNeM unifies the FTT and probabilistic activ-
ity recognition algorithms (reviewed in Section 2.5). The framework also builds
on the fact that behavior of NPCs often has hierarchical structure (this point is
discussed in Section 2.6).

In this chapter we will first introduce prerequisites of our framework. Then
we detail all the phases of the memory’s work cycle on a rigor basis. This includes
schemata learning, encoding, storage and retrieval together with possible DBN
architectures used for probabilistic inference. We will analyze computational
complexity of the framework and we will show features enabled by DyBaNeM in
human-agent interaction. Afterwards we will discuss other possible uses of the
probabilistic activity model.

Examples of the DyBaNeM on a simple toy domain together with a step
by step walk through of the encoding process will be discussed in Chapter 5.
Experiments on data closer to real world domains are shown in Chapter 6.

4.1 Framework Parts — Prerequisites and Definitions

The core of our framework consists of the probabilistic model, in our case DBN.
The episodic schemata are represented by parameters θ̂ of the DBN. The schemata
encode statistical regularities of the observed hierarchical behavior; for instance,
frequencies of transitions between different goals, goal/subgoal relations and pos-
sibly internal progress of each goal. More complex DBN architectures can express
more of these regularities. Sequences stored in the EM are encoded as sets of facts
— called mems — that represent the sequence the best given the statistics stored
in the schemata.

In the rest of this section we will introduce formalisms and algorithms neces-
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sary to describe the DyBaNeM framework.

4.1.1 Dynamic Bayesian Network Definition

DBNs are the primary probabilistic model used in DyBaNeM. In this section we
will formally define DBN following the definition provided by Murphy (2002).

A DBN is defined by the two-slice temporal Bayes network (2TBN) B→ and an
initial network B0. Suppose that a system’s state at time t is described by a set of
random variables Zt. Then B0 defines a prior distribution P (Z0) at the beginning
of the system’s evolution. The 2TBN B→ represents temporal dynamics of the
system P (Zt|Zt−1) as follows:

P (Zt|Zt−1) =

|Zt|∏
i=1

P (Zi
t |Pa(Zi

t)) (4.1)

where Zi
t ∈ Zt is the i-th random variable at time t and Pa(Zi

t) are the parents
of Zi

t in the directed graph representing structure of the DBN (an example of such
a graph is in Fig. 4.2).

In the graphical representation, random variables are drawn as circles with a
name of the variable inside the circle. The fact that Zj

tr ∈ Pa(Zi
ts) is denoted by

a directed arc going from Zj
tr to Zi

ts . In a first order Markovian model the arcs go
either from a slice t−1 to a slice t (ts = tr+1), those represent temporal influence;
or they are within the slice t (ts = tr), those represent instantaneous effects. The
DBN can represent longer temporal dependencies as well. For instance, when an
arc goes from t − 2 to t, we call the model second order Markov model. Higher
order models better capture statistical regularities of the domain; however, they
are impractical since the number of the model’s parameters grows exponentially
with the model’s order. Thus exponentially more training data is required to
obtain accurate estimates of the parameters.

To obtain the joint probability distribution defined by the DBN for a process
running for T time steps we unroll the 2TBN and get:

P (Z1:T ) =
T∏
t=1

|Zt|∏
i=1

P (Zi
t |Pa(Zi

t)) (4.2)

One important assumption made by this definition is that the transition prob-
abilities of the DBN are the same for every time step. This type of process is
called a stationary process.

In the context of activity recognition and the DyBaNeM, B0 can represent
probability distribution over beginnings of all possible remembered “days”. For
instance, a particular agent can wake up 85% of days at home, 10% in a weekend
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cottage, 4% in a hotel on holiday and 1% is shared by all the other possibilities.
Further evolution of the day is captured in the parameters of B→. B→ con-
tains information that, for instance, after getting up, 70% of the time the agent
brushes his teeth and then has breakfast, in 30% the order is reversed. However,
not all DBN topologies can capture such dependencies, limitations of particular
topologies will be discussed later.

4.1.2 Virtual Evidence

We will often use the DBN to compute a probability distribution over a set of
nodes given some evidence. In general there are two types of evidence: hard
evidence and virtual evidence. When we are sure that a random variable X has
value a we can use hard evidence to condition the new probability distribution,
e.g., P (. . . |X = a). However, it is often the case that even our evidence is
uncertain and we have a PMF P (X) over possible values of X. In this case we
can use the virtual evidence mechanism (Pearl, 1988; Bilmes, 2004) that allows
us to use the whole P (X) as new evidence.

When using virtual evidence for X we add a new node V that has always
value 1, that is P (V = 1) = 1. Additionally we connect X and V with a CPMF
P (V = 1|X = x) = P (X = x). This way, we encode uncertainty about the true
state of X in the Bayesian network formalism.

An example of a network extended with a virtual evidence node is shown in
Figure 4.1.

X

V

Figure 4.1: An original network represented by a random variable X extended
with a virtual evidence node V that provides evidence for X.

4.1.3 Learning parameters of DBN — Learning Schemata

Episodic schemata are represented by parameters θ̂ of a DBN. In our case θ̂ will be
fully specified by a set of all CPMFs in the network, that is θ̂ = {P (Zi

t |Pa(Zi
t)}.

Expressiveness of schemata depends on the structure of a model at hand. We
will discuss this later on an example of three DBN architectures. Two of them
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will be used in our computational experiments. We will suppose that the DBN’s
topology is fixed. Thus learning schemata will reduce to well known parameter
learning methods. DBN with unobserved nodes, that is, nodes whose values are
not in the training data, can be learnt by Expectation-Maximization algorithm
(EM algorithm). Topologies without unobserved nodes are learnt by counting
the sufficient statistics (Koller and Friedman, 2009). There are also algorithms
that can adapt topology of the network, e.g., (Boyen et al., 1999; Abbeel et al.,
2006; Campos and Ji, 2011), however, we will not use them in this work. Now
we will describe the two well known parameter learning methods.

If D is a set of observations/learning examples, then learning the model is a
task of finding parameters θ̂ such that:

θ̂ = arg max
θ

P (D|θ)

That is, finding parameters that maximize the probability of observing training
data given the parametrized model. Such θ̂ is called maximum likelihood estimate
(MLE).

There are two cases of MLE learning, First, D either contains values for all
variables V contained in the probabilistic model. Second, V can be divided into a
subset of observable variables O that have values in D and hidden/unobserved/la-
tent variables H = V \ O.

In the first case, we have to find sufficient statistic for all the variables. If the
domain contains only discrete variables, which is our case, this reduces to simply
counting the conditional probability table for each Y ∈ V given its parents Pa(Y ).
The set of all these probability tables is the estimated θ̂.

In the second case, EM algorithm (Dempster et al., 1977)1 can be used. EM
algorithm runs in a sequence of alternating steps where it tries to maximize
probability of unobserved variables and unknown parameters of the model. In
the end, it outputs an estimate of θ̂.

Both types of learning will be used in our work since we will use models with
and without latent variables.

4.1.4 DBN Architectures

For computing probabilities, our framework makes it possible to use any DBN
architecture that fulfills the following two criteria: some nodes represent obser-
vations and some the hidden state of the episode. In this work we use two architec-
tures, simple CHMM (Blaylock and Allen, 2006) and more complex AHMEM (Bui,
2003). Both architectures are shown in Figure 4.2. For explanatory purposes we

1Some proofs in this paper were later corrected in (Wu, 1983)
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also describe HHMM (Fine et al., 1998; Murphy and Paskin, 2002) which is an
intermediate step between these two architectures.
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Figure 4.2: An example of a DBN’s structure together with our notation. Solid
lines show network architecture of CHMM (Blaylock and Allen, 2006). When the
dotted drawing is added we obtain network of AHMEM (Bui, 2003).

As we said, the schemata are represented by parameter θ̂, that is, by all
CPMFs of the DBN’s nodes. Expressiveness of the schemata depends on the
structure of DBN. In CHMM, episodic schemata encode probability of an episode
given previous episodes on the same level in the hierarchy and also given its parent
episode. Therefore CHMM is specified by P (Ei

t |Ei
t−1, E

i+1
t ), P (Ot|E0

t , Ot−1) and
P (Ei

0) for i ∈ {0, . . . , n}. This is one of the possible hierarchical extensions of a
well known HMM (Rabiner, 1989). The HMM is a simpler model that assumes
only one level of episodes. HMM is specified by P (Et|Et−1), P (Ot|Et) and P (E0).
When the whole episode hierarchy is known, CHMM is learnt by counting the
sufficient statistic.

We can have more detailed schema representation by employing HHMM. In
HHMM, each episode can be represented by a probabilistic finite state machine
(PFSM) where the states of the PFSM are the episode’s sub-episodes. HHMM
extends CHMM with notion of terminal states. The schema “knows” that some
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sub-episodes are the last in a sequence of sub-episodes and when they terminate,
the parent episode also ends. This is achieved by extending the model with
variables F i

t and CPMFs P (F i
t |F i−1

t , Ei
t , E

i−1
t ) and P (Ei

t |Ei
t−1, E

i+1
t , F i

t−1, F
i+1
t−1 ).

F i
t is a variable indicating that some sub-episodes of the PFSM are terminal

(D(F i
t ) = {terminal, nonterminal}). HHMM is better suited for finding borders

between episodes than CHMM.
AHMEM is an augmentation of HHMM that extends each episodic schema

with a limited internal state (memory) represented by a PFSM with terminal
states. This automaton is represented by random variables F i

t and H i
t (see

Fig. 4.2). This adds even more richness to the represented schemata. For ex-
ample, AHMEM can encode rules necessary to describe the example with two
coffees discussed in Section 3.3. H i

t represents an internal memory of the episode
(|D(H i

t)| is the number of the PFSM’s states). It tracks progress of the episode.
The internal state H i

t of the episode does not have to be observable. However,
the transitions of unobserved PFSM acting as the episode’s internal memory can
be learned by EM algorithm. This architecture makes it possible to correctly rec-
ognize behavior generated by a hierarchical PFSM. The downside of AHMEM is
that it is computationally more expensive than CHMM. Since AHMEM contains
unobservable variables H i

t , it has to be learnt by EM algorithm.

4.1.5 Formalizing the Episodic Representation, World State, and In-
puts/Outputs.

In this section we formalize what representation of episodes and world state is
assumed by the DyBaNeM framework.

Let us begin with the definition of a basic memory element called mem.

Definition 1 Mem is an assignment X i
t1:t2

= v. It says that the agent remem-
bers that v was a value of all variables Xt where t1 ≤ t ≤ t2. Xt1:t2 can represent
either some level of episode (when i > 0) or observable environment property at
a particular time (when i = 0).

An example of the mem can be E0
0:1 = WALK and O0 = STEP.

Definition 2 Episode is a sequence (possibly of length 1) of observations or
more fine-grained episodes (sub-episodes) that from a human point of view has a
clear beginning and an end.

Note that episodes may be hierarchically organized. Episode e can be a sub-
episode of a higher level episode f . At the same time, e can consist of lower level
episodes g and h.
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Definition 3 Episodic schema is a general pattern specifying how instances
of episodes of the same class look.

In DyBaNeM episodic schemata are encoded in parameters θ̂ of the Bayesian
model.

Definition 4 Episodic trace ε0:nt is a tuple 〈e0t , e1t . . . ent 〉 representing a hierar-
chy of episodes at time t; e0t is the lowest level episode at time t, e1t is its direct
parent episode and ent is the root episode in the hierarchy of depth n. Sometimes
we will omit the upper indexes, that is, εi:j ≡ ε0:ni:j .

An example of episodic traces can be ε0:11 = 〈WALK,COMMUTE〉 and
ε0:12 = 〈BUS,COMMUTE〉. The notation of episodic trace reflects the fact that
an agent’s behavior has often hierarchical nature.

Walk Bus

Commute

t

ϵ0
0:1

ϵ1
0:1

O

E1

E0

Step Sit

ρ0 ρ1

Step

ρ2

ϵ2
0:1

Figure 4.3: An example of episodic traces. The trace for t = 0 contains a low level
episode WALK and a high level episode COMMUTE. The trace in the third
time step contains a low level episode BUS and the same high level episode as
in the previous step. Observable environment properties are two atomic actions
STEP and one action SIT .

One of the key requirements is the ability to handle uncertainty. For this
reason we define probabilistic distribution over all possible episodic traces.

Definition 5 Probabilistic episodic trace E0:n
t is a tuple of random variables

〈E0
t , E

1
t . . . E

n
t 〉 corresponding to episodes at different levels of abstraction. A PMF

over E0:n
t represents an agent’s belief about what happened at time t. Analogically,

E0:n
0:t denotes probabilistic episodic trace over multiple time steps.

Probabilistic episodic trace allows us to model uncertainty in both perception
and recall. We know that there is only one objectively valid episodic trace for
every agent at each time step. However, it is often the case that there are mul-
tiple possible explanations of the observed behavior. And even when the initial
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observation was certain, recall of the event might be uncertain due to forgetting.
Therefore our proposed EM framework works mostly with probabilistic represen-
tations. For instance, the recall at t = 1 for the high level episode might be
COMMUTE with high probability, P (E1

1 = COMMUTE) ≈ 1. However, it
might be unclear whether the lower level episode was BUS or SUBWAY since
probability of both possibilities is nearly the same, e.g., P (E0

1 = BUS) = 0.4 and
P (E0

1 = SUBWAY ) = 0.38.
The following data structure represents an agent’s true perception of the en-

vironment’s state.

Definition 6 Let ρt denotes observable environmental properties at time
t.

For instance, ρt can hold atomic actions executed by an observed agent, e.g.,
ρ1 = STEP , ρ2 = SIT . An example of two episodic traces and corresponding
observable properties is depicted in Fig. 4.3.

More complex structure of the observed environment’s properties is also pos-
sible, ρt can be a tuple encoding an agent’s action together with an object that
may be a resource of the action. For instance, ρ1 = 〈SIT, seat 7〉 where seat 7
represents a particular instance of a seat. Further details can be added to ρ as
needed. For example, a different extension can be 〈SIT, seat 7, bus 22〉.

Analogically to E0:n
t and ε0:nt , Ot is a random variable representing belief about

observation ρt.

Definition 7 Probabilistic observable environment properties Ot is a
random variable representing observations at time t. A PMF over Ot repre-
sents an agent’s belief about what happened at time t. Analogically, O0:t denotes
probabilistic observable environmental properties over multiple time steps.

Figure 4.2 shows how these definitions translate to CHMM and AHMEM.

4.1.6 Quantifying Difference Between Two Distributions — KL Di-
vergence

In encoding, the framework works with quantity, measuring difference between
the expected state of a random variable given observations and its expected state
given the remembered facts. We call this quantity surprise. In Bayesian frame-
work, surprise can be defined as “difference” between prior and posterior proba-
bility distributions. We adopt the approach of (Storck et al., 1995; Itti and Baldi,
2009) who propose to use KL divergence (Kullback, 1959) to measure surprise.
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Definition 8 KL divergence of two PMFs P (X) and P (Y ) (Kullback, 1959),
where D(X) = D(Y ) is defined as:

KL(P (X)→ P (Y )) =
∑

x∈D(X)

P (X = x)ln
P (X = x)

P (Y = x)

We use notation with → to stress directionality of KL divergence; note that
it is not symmetrical. We will use KL divergence as a core tool of our framework.

4.1.7 Smoothing Probabilities

To avoid cases where probability of some outcome is zero we use convex smoothing
on all PMFs. This way even events with zero probability are not impossible, they
are only highly unlikely. We achieve this by replacing the original PMF P (X = x)
with distribution P ′ defined as:

Definition 9 Convex smoothing P ′ of a PMF P is defined as:

P ′(X = x) = Smooth(P ) = α · U|D(X)| + (1− α) · P (X = x)

where α ∈ (0, 1〉 is the smoothing parameter and U|D(X)| = 1
|D(X)| is a discrete

uniform distribution over |D(X)| elements.

Thus, the effect of smoothing is that the new PMF P ′ is closer to uniform
distribution than the original P . The amount of smoothing is controlled by α.
Note that ∀x : P ′(X = x) > 0.

4.1.8 Applying General Parameters Learning — Learning Schemata

In our case, examples of episodes that we want to use for schemata learning will
be denoted by D = {d1, d2 . . . dn}, where each di can be one day of an agent’s life,
or any other appropriate time window. di itself is a sequence of time equidistant
examples ct, that is, di = {ci0, ci1 . . . citi}. Each cit is a tuple 〈ε0:nt , ρt〉; it contains
the episodic trace and the observable state of the environment.

When we use CHMM which contains only Ei
t and Ot variables the model can

be learnt by counting the sufficient statistics since dj contains values of all the
model’s variables. For learning AHMEM we can derive value of variables F i

t

from dj, however, the state of H i
t variables tracking internal progress of episodes

is unobservable. Therefore we have to use the EM algorithm.
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4.2 Encoding

The encoding algorithm computes a list of mems on the basis of the agent’s
perception, Per0:T , of the situation to be remembered. Here we assume that the
agent observed T + 1 consecutive time steps of the situation.

Definition 10 Agent’s perception Per0:T is a set of PMFs such that Per0:T =
{fX : X ∈ Observable}, where fX is PMF for each variable X of interest.

Concerning variables that are observable for the agent, we have to distinguish
whether the agent is going to remember its own activity or activity of another
agent. This corresponds to the requirements a) and b) from Section 1.3:

1. Observable = O0:T — Bob is going to encode Alice’s activity whose εAlice,0:T
is hidden to Bob, nevertheless Bob perceives Alice’s atomic actions that are
contained in ρAlice,0:T . This is the use-case described in Figure 3.1. We
introduce an observation uncertainty by defining ∀t ∈ {0, T} : fOt(x) ≡
Smooth(1(ρAlice,t, x)), where Smooth is the function from Definition 9 and
1 is the identity function2. In this case P (Ei

t) will be deduced within the
encoding algorithm. Realization of the activity recognition phase for this
case is shown in Fig. 4.4.

2. Observable = E0:n
0:T ∪ O0:T — Bob is going to encode his own activity,

in this case the episodic trace εBob,0:T is available to Bob since he knows
what he wanted to do (Bob can introspect its his own DMS). Values of
fOt are computed as above and ∀i ∈ {0, n},∀t ∈ {0 : T} : fEi

t
(x) ≡

Smooth(1(εiBob,t, x)).

Whenever the evidence is described by a whole PMF instead of only the most
probable state, we use the virtual evidence mechanism discussed in Section 4.1.2.

Algorithm 1 is a skeleton of the encoding procedure. The input of the algo-
rithm is Per0:T , where the time window 0 : T is arbitrary. In our work we use a
time window of one day. The output is a list of mems encoding this interval with
respect to the episodic schemata.

In each cycle, the GetMemV ar function returns the variables range X i
t1:t2

that will be remembered. It is required that all variables X i
t : t1 ≤ t ≤ t2 in

this range have the same most probable value. For instance, when there are two

2 We define the identity function in a standard way, that is:

1(x, y) =

{
1 x = y

0 x 6= y
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Figure 4.4: Activity recognition/perception phase as implemented by the DBN.
This figure is a continuation of the example from Fig. 3.1. Solid circles denote
evidence variables whereas dotted circles are the query variables.

Algorithm 1 General schema of encoding algorithm

Require: Per0:T — PMFs representing the agent’s perception of the situation
(i.e. smoothed observations)

Require: M — probabilistic model representing learned schemata
1: procedure Encoding(Per0:T ,M)
2: mems← empty . List of mems is empty
3: while EncodingIsNotGoodEnough do
4: X i

t1:t2
← GetMemV ar(M, P er0:T ,mems)

5: xmax ←MLOPM(X i
t1
|mems) . Find the most probable value

6: mems.add(X i
t1:t2

= xmax) . Remember the assignment
7: end while
8: return mems
9: end procedure

consecutive time steps, where the high level episode does not change, this range
can be remembered in a single mem. As an example consider variables E0

0 and
E0

1 from Figure 4.3. They both have the same value WALK, therefore we can
remember this whole episode in a single mem E0

0:1 = WALK.
Inside our algorithms we often need to compute the most probable value of a

random variable. For this purpose we define the following standard function:

Definition 11 The MLO function (most likely outcome) is defined as:

MLOPM(X|evidence) ≡ arg max
x∈D(X)

PM(X = x|evidence) (4.3)

MLO is used in step 5 of the encoding algorithm where we get the most proba-
ble value for the previously identified candidate mem and we add this assignment
to the list of mems. In the end the procedure returns the list of mems.

We have developed two variants of the GetMemV ar function, each has its
justification. The key idea of both variants is to measure the difference between

53



the result of the activity recognition and the recall with mems computed so far. To
measure the difference for a single random variable Y , we introduce the following
auxiliary function:

DiffM(Y, Per0:T ,mems) = KL

PM(Y |Per0:T )︸ ︷︷ ︸
Activity recognition

→ PM(Y |mems)︸ ︷︷ ︸
Recall given mems

 (4.4)

where PM(Y |Per0:T ) ≡ PM(Y |X = fX : fX ∈ Per0:T ). In other words we
condition the probability on all observations via the virtual evidence mechanism.

In the first variant of the encoding algorithm, the idea is to look for a variable
whose observed PMF and PMF in the constructed memory differs the most. This
variable has the highest surprise as defined by KL divergence and hence it should
be useful to remember it. This strategy will be called retrospective maximum
surprise (RMaxS). It is retrospective since it assumes that the agent has all
observations in a short term memory store and, for instance, at the end of the
day, he retrospectively encodes the whole experience. RMaxS strategy can be
formalized as:

X ← arg max
Y ∈VOI

DiffM(Y, Per0:T ,mems) (4.5)

where VOI ⊆ V is a set of random variables of interest whose value can be
remembered by the model. There can be some variables in the DBN that we
do not want to remember since they are hardly interpretable for humans (for
instance, H i

t from AHMEM that represents internal progress of activities). In
our implementation we used VOI = E0:n

0:T ∪O0:T .
The alternative strategy called retrospective minimum overall surprise (RMi-

nOS) assumes a more sophisticated process. RMinOS picks the variable–value
pair whose knowledge minimizes sum of surprises from the original state of each
Z ∈ V to its recalled state. The following equation captures this idea:

X ← arg min
Y ∈VOI

∑
Z∈V

DiffM(Z, Per0:T ,mems ∪ 〈Y = ȳ〉︸ ︷︷ ︸
potential mem

) (4.6)

where ȳ ≡ MLOPM(Y |mems). After substituting for the Diff function the
equation translates to:

X ← arg min
Y ∈VOI

∑
Z∈V

KL (PM(Z|Per0:T )→ PM(Z|Y = ȳ, mems))

The idea is to add the most probable outcome of each variable of interest
to a list of mems and test which assignment would minimize difference on all
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other variables. A third alternative approach might be not to minimize the sum
of KL divergences but to minimize KL divergence of the full joint probability
distribution over all possible episode “trajectories”, that is, to compute KL di-
vergence from P (E0:n

0:T , O0:T |Per0:T ) to P (E0:n
0:T , O0:T |Y = ȳ, mems); however, that

would require computing the whole joint probability. Thus, we use summation
of surprise in each variable instead. The downside of our approach is that it only
approximates KL divergence of the whole joint probability.

Note that we remember only the most probable value, including the time
index, in the mems list instead of the whole distribution. For instance, mem
E0

0:1 = WALK stores information that for the first two time steps the episode
was walking. No other alternatives are explicitly stored even though the result of
activity recognition was uncertain. Storing only one possible value in each mem
helps to make mems clearly interpretable. However, full distributions can be used
in the mems as well, e.g., E0

0:1 = 〈(WALK, 0.7), (RUN, 0.2), (rest, 0.1)〉
The algorithm runs in a loop that terminates once the EncodingIsNotGoodEn-

ough function is false. There are more possible terminating conditions. For
instance, we can model limited memory capacity for each day by one of the
following rules. The first rule enforces a constant number of mems for each day,
that is:

|mems| < K (4.7)

The second rule quantifies the cumulated difference between the agent’s initial
observation and its reconstructed memory for those events. One way to formalize
this criterion can be:∑

X∈Observable

Diff(X,Per0:T ,mems) < Diffmax (4.8)

That is, the accumulated difference on all variables should be below a fixed
threshold Diffmax.

The first rule (Eq. 4.7) leads to encoding where every day is represented by
exactly the same number of mems. The second criterion allows for a variable
number of mems. If the day is close to episodic schema (an average day), remem-
bering only a few mems would be sufficient to describe it well enough. On the
other hand, unusual days will require more mems since knowledge from schemata
will be useless. In our experiments (see Chapters 5 and 6) we use the first rule
from Eq. 4.7.

4.3 Storage and Forgetting

The list of mems for a particular day is stored into the LTS and it is indexed
to facilitate subsequent retrievals. Indexes might be seen as metadata that are
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useful when searching for the right episode. An index can be the day of the week,
agents present in the scene, weather etc. The set of indexes is to be determined
by the developer and it should follow the needs of retrieval.

During storage, the mems can undergo optional time decayed forgetting. The
relation between an age of a remembered event, its initial strength and proba-
bility of its recall is often called a forgetting curve. Over time several functions
have been proposed as a mathematical model for the forgetting curve. These
include exponential, Pareto function, logarithm or power function, see (Averell
and Heathcote, 2011) for a review of these approaches and comparison of selected
functions on empirical data.

Here we will use the exponential function to model the forgetting curve as
proposed by Anderson (1983). The following equation shows a relation between
an age t of the mem mj, its initial strength S and its retention R (e is Euler’s
number):

R(mj) = e−
t
S (4.9)

We want to model so that interesting events are remembered for a longer period
than less interesting events. In order to achieve this the initial strength S of a
mem mj = 〈X i

t = xmax〉 is related to the strength of the mem in encoding. This
reflects the fact that mems deviating from an average day will have higher initial
strength than the mems that follow the average schema. Therefore the strength
of the mem is equal to the value of KL divergence in Eq. 4.5 in case of the RMaxS,
that is:

S = DiffM(X i
t , P er0:T ,memsj−1),

where memsj−1 is a set of mems stored before computation of mem mj. When
one uses the RMinOS the strength is equal to the value of the sum in Eq. 4.6,
that is:

S =
∑
Z∈V

Diff(Z, Per0:T ,memsj−1 ∪ 〈X i
t = xmax〉)

Note that more complex model should extend the initial strength with other
terms, since it is known that retention depends also on other factors. For instance,
it makes a difference when one was instructed that he will not be asked to recall
this memory in future (van Dongen et al., 2012).

Once R(mj) decreases under the threshold βforget, mj will be deleted from the
list of mems and it will not contribute to the memory recall. The shape of the
forgetting curve is shown in Fig. 4.5.

Of course, there can be alternative implementations of the forgetting mech-
anism. For instance, mems does not have to be completely deleted but their
contribution to recall can decrease with time. This can be implemented by mix-
ing the value stored in a mem with prior (possibly uniform) distribution for a
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Figure 4.5: Forgetting curves for various initial strengths of mems. Suppose that
the encoding algorithm computed a list of four mems. The smaller the strength
of a mem the steeper the curve. Thus the least interesting mem has the steepest
curve, here drawn in dotted red. When the retention of this mem decreases below
βforget between the second and the third day it will be forgotten. The other three
mems will be still available for recall. This figure is a modified version of an
image (Wikipedia, 2015b) released into the public domain.

random variable on that level. Thus the information stored in a mem will con-
tinually fade towards the prior.

4.4 Retrieval

Retrieval in DyBaNeM is a two step process of, first, querying LTS for rele-
vant mems, second, reconstructing the remembered sequence by combining the
schemata with mems. We developed Algorithm 2 which shows this straightfor-
ward process.

We simply obtain the list of mems for search cue k (which can be, e.g., a time
index day = 21, as in Fig. 3.1, or weather = sunny). For this purpose one can
use any database engine. Then we use assignments in the mems list as evidence
for the probabilistic model. The resulting PMFs for all variables of interest are
returned as a reconstructed memory for the cue k. Use of the DBN for this task
is shown in Fig. 4.6.

There are multiple options how a probabilistic model can be used to obtain
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Algorithm 2 Retrieval

Require: k — cue for obtaining the episode
1: procedure Retrieval(k,M)
2: mems← getMemsFor(k) . List of mems associated with the cue
3: return {PM(Y |mems) : Y ∈ VOI}
4: end procedure
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Figure 4.6: (colour figure) Reconstructive retrieval phase as implemented in DBN.
This is a continuation of the example from Fig. 3.1. Solid circles denote evidence
variables, those that have values from the mems, whereas dotted circles are the
query variables. In the final output blue dashed boxes represent reconstructed
episodes, whereas the yellow solid boxes are the episodes remembered in detail.

the reconstructed episodes. One way, used in Algorithm 2, is to use marginal
probabilities for every random variable representing observation or episode as
an answer. Thus the answer is a set of distributions over every variable Y from
VOI. Marginal probabilities summarize belief for a single random variable in iso-
lation. However, this only provides a compressed version of the whole information
computed by the probabilistic model.

The other option is to use full joint probabilistic distribution over multiple
time steps. However, when one takes into account multiple time steps, things
get more complex. For instance, in general P (Ot) × P (Ot+1) 6= P (Ot, Ot+1),
this would hold only if Ot and Ot+1 were conditionally independent. Thus
the most probable states of Ot and Ot+1 might be a and b respectively (a =
arg maxx∈D(Ot) P (Ot = x) and b = arg maxx∈D(Ot+1) P (Ot+1 = x)), but the most
probable tuple of states in the joint probability distribution over Ot, Ot+1, that
is c, d = arg maxx,y∈D(Ot)×D(Ot+1) P (Ot = x,Ot+1 = y), might be different. There-
fore the alternative recall procedure could return probability distribution over the

58



whole joint probability. In general this approach will be more accurate, however,
it will also require much more time and space.

Suppose that we have a sequence of N actions and at every time step there
are M possible actions. This results in MN possible sequences, thus the full joint
probability has to be defined for the whole domain of MN sequences. On the
other hand when one needs to output only marginal probabilities for each time
step then only M · N values are needed. That is, marginal probabilities can be
used to make a compressed summary of possible sequences. The downside is that
marginal probabilities may be misleading in a way that there are no guarantees on
their connection to the most probable sequences. This follows from the previously
mentioned fact that P (Ot)× P (Ot+1) 6= P (Ot, Ot+1).

Outputting the whole joint distribution whose size is exponential to the length
on the sequence is clearly impractical. One way to overcome this limitation might
be to use only the most probable sequence of states as an answer. In Bayesian
inference this is called maximum a posteriori (MAP) query. MAP is defined as:

MAP (X,E = e) = arg max
x∈

∏
Y∈X D(Y)

P (X = x,E = e) (4.10)

where X is a set of query variables, E is a set of evidence variables, x is a
vector of states for variables in X and e is the value of evidence variables.

MAP is often called a point estimate, this refers to the fact that its result is
only one individual assignment whereas bayesian queries usually output proba-
bility distribution. The disadvantage of MAP is that it does not say anything
about the probability distribution of possible sequences. It may happen that the
most probable sequence seq1 has a probability 5% and there are nine sequences
seq2, . . . , seq10 that are quite similar among themselves (they differ in only one
action) and dissimilar with seq1 but their summed probability is 30%. In this
case outputting only the most probable sequence would result in loss of important
information.

Therefore in the current version we use marginal probabilities and we leave
the other options as possible future work.

4.5 Summary of The Main Phases

Table 4.1 summarizes the main phases of DyBaNeM’s working cycle. It shows
high level perspective of episodic schemata learning, perception, encoding, storage
and retrieval as implemented in DyBaNeM.
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Phase Implementation

Schemata learn-
ing

Estimate DBN parameters θ̂ from annotated examples
of episodes via counting the sufficient statistic or using
the EM algorithm.

Activity recogni-
tion/perception

In a case when the agent observes another agent use
observed events as evidence for the DBN and perform
inference — P (episodes hierarchy|observation). This
is the activity recognition step that infers higher level
behavior unseen in the environment. When the agent
wants to remember its own actions it may use intro-
spection to obtain the episode hierarchy.

Encoding Repeatedly find the most surprising event from the
encoded sequence and remember it as a mem. The
mem is a tuple 〈time range, level of abstrac-
tion, event〉. KL divergence is used to measure
degree of surprise from P (episodes|observation) to
P (episodes|mems stored so far).

Storage Store sequence of mems into an LTS and index them by
features important for later retrieval. Optionally erase
mems based on the forgetting Equation 4.9.

Retrieval Query the mems from the LTS and use them as
evidence for the DBN. Perform inference in the
DBN and use the result as reconstructed memory —
P (episodes hierarchy|retrieved mems).

Table 4.1: Summary of the main phases of DyBaNeM’s working cycle.
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4.6 Complexity Analysis

Complexity of DyBaNeM’s phases will be inspected in this section.
DyBaNeM makes extensive use of the probabilistic model, represented here

as DBN. In general exact inference in BNs is NP-hard (Cooper, 1990). Even
approximate inference is NP-hard (Dagum and Luby, 1993). On the other hand,
inference in some special topologies can be performed in linear time (Pearl, 1986).
Also the approximate inference can be performed in polynomial time when there
are restrictions on conditional probabilities in the network (Dagum and Luby,
1997).

Schemata learning. Learning the schemata takes time linear in the number
of example sequences M (e.g., days), i.e. O(M). In the case of DBN models with
fully observable random variables, like CHMM, learnt by counting the sufficient
statistics, the complexity is O(MN) where N is length of a single sequence. More
complex models with hidden variables are learnt by EM algorithm, which involves
inference step, and is NP-hard in general case.

Encoding. Encoding involves repeated inferences over the DBN that may be
NP-hard, i.e. when an exact inference algorithm is used, the time complexity is
O(exp(N)) for one inference step. The number of inference steps is O(|mems|).

Storage. Storing mems in a database like LTS usually can be done in
O(log(K)), where K is the number of already stored memories. Logarithmical
time is needed to update database indexes.

Retrieval. Querying mems from LTS again takes O(log(K)). The recon-
structive phase involves inference over DBN unrolled to N slices, thus time com-
plexity using exact inference algorithm is O(exp(N)) for one query.

When DyBaNeM has to be used in a real time system like IVA then it might
be worth considering algorithms for real time inference (Guo, 2002). A recent
example of an anytime algorithm used in activity recognition is shown by Ka-
banza et al. (2013). In our computational experiments we use an exact inference
clustering algorithm (Huang and Darwiche, 1996).

4.7 How DyBaNeM Supports Rich Dialogs With IVAs

Now we will show how the functions listed in Section 1.3 and analyzed in Chap-
ter 3 are enabled by DyBaNeM. We will use an example dialog where a human
user interviews IVA Bob about his observation of IVA Alice.

1. High level summarization is enabled by the hierarchical nature of
DyBaNeM. The recalled sequences contain not only atomic actions but also high
level episodes that can be used as summarization of the sequence of actions. Thus
if Bob has DyBaNeM with two levels of abstraction, the values reconstructed by
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the bayesian inference on the highest level can be used to provide a summary of
the day. Fig. 4.7 shows an example of such a situation.

Bob Alice
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Figure 4.7: Summarization example. Bob is a detective who monitors Alice.
First, let Bob observe Alice’s atomic actions o0:T . Second, Bob can deduce the
higher level episodes from this observation. Third, Bob encodes the whole day
by the most salient events — these are the mems computed in the encoding algo-
rithm. Mems are marked as the shaded boxes. When Bob is asked to summarize
what Alice did yesterday he recalls the mems and reconstructs the rest with the
use of the episodic schemata. In the end he responds by episodes in the highest
level: “Morning routine, work and dinner.” This figure includes graphics from
xkcd.com.

2. Possibility of further clarifying questions is another useful feature
of the hierarchical memory organization. When the user asks for details of an
episode, Bob can reply by its sub-episodes as illustrated in Fig. 4.8a.

3. Expressing degree of certainty for recalled events is enabled by the
probabilistic nature of the framework. Each action/episode is represented by at
least one random variable in the DBN. During reconstructive recall we obtain
a probability mass function (PMF) for each variable that encodes probability
of every action/episode at this point in time. When the probability of the most
probable outcome dominates the other outcomes, we can say that the IVA is sure.
However if there are two competing alternatives, the IVA can reflect this in the
dialog. See Fig. 4.8b for an example.

4. Believable mistakes in recall can emerge as interplay of forgetting and
reconstructive retrieval. When only a few mems remain stored then during the
recall the forgotten events are reconstructed from the episodic schema. It can
happen that the schema predicts an event that did not actually happen but it fits
well to the way the episode usually unfolds. A different approach to this so called
false memories phenomenon is described in (Čermák et al., 2011). Continuing in
the example from Fig. 4.8, it may be the case that Alice used Public transport
that day, but Bob does not remember this in a mem and his schema favors other
options.
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Figure 4.8: a) When Bob is asked to say more about Alice’s dinner, he will reply:
“She left from work and went to the restaurant, she ate there and then she went
back home.” Shaded boxes represent mems, white represent reconstructed events.
b) a further question can be: “How did she get to the restaurant?” which asks
about recall of atomic actions represented by observations o6 and o7. In the case
of o6 the associated PMF computed in recall assigns similar probability to both
Walk and Car. Thus Bob is not sure and he can reflect this in his answer: “She
went by car or she just walked, I am not sure, sorry.” In the case of o7 Bob might
have much higher confidence for walking since the restaurant is in the middle of
a park and you always have to walk there.

5. Measuring interestingness of events can be achieved by comparing
the actual events to prediction from the schema. Imagine that 95 percent of days
start by a sequence: Get up, Brush teeth, Have a shower, Have breakfast. If the
schema is expressive enough to capture this sequence, those events will become
completely uninteresting. They are predictable, thus they do not distinguish one
day from other. However, meeting foreign soldiers marching through one’s home
town is much less probable. Thus it is the event that deserves more attention in
the dialog than brushing teeth every morning again and again.

4.7.1 Implementation of the Dialog Supporting Features

Now we show how DyBaNeM’s dialog supporting features can be implemented in
greater detail.

1. High level summarization and 2. Further clarifying questions are
possible because of the hierarchical structure of DBN used in both encoding and
retrieval. Values of variables En

0:T (see Fig. 4.2) can be used for summarization.
If the user asks for details of time interval 〈t1, t2〉, values of En−1

t1:t2 can be used to
construct the answer (or Ot1:t2 when n = 0).

3. Expressing degree of certainty of recall is implemented by computing
entropy of random variables corresponding to the action/episode. Entropy is
a standard measure that can quantify uncertainty over the whole probability
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distribution. Entropy H(X) of a random variable X is defined as:

H(X) = −
∑

x∈D(X)

P (x) · log|D(X)|P (x) (4.11)

The higher the entropy is, the more uniform the PMF over X is. Thus there is
more uncertainty since all outcomes of X seem similarly probable. On the other
hand when entropy is close to zero there is only a little uncertainty about X’s
value.

4. Believable mistakes in recall result from forgetting and the inference
process in retrieval. It can happen that there was an action a at time t′ and during
storage the mem for t′ was forgotten. Later in retrieval, that is when computing
PMF ft′ = PM(Ot′ |mems), the value had to be deduced from remembered mems
and the probabilistic model M that includes the episodic schemata. If action
b is more probable under this assumption (PM(Ot′ = b|mems) > PM(Ot′ =
a|mems)), b will be recalled instead of a. There is no specific process for this
feature, it is DyBaNeM’s emergent property.

5. Interestingness of events is measured by KL divergence in the same
way as it is done by the encoding algorithm. The more different a PMF predicted
by the schemata from the recalled PMF is the higher the value of KL divergence
is. The first mem picked by the encoding algorithm is the one that deviates
most from the prediction from schema. Subsequent mems contain less and less
information. Thus if an IVA wants to communicate the interesting events first
it can start with the first recalled mem (representing the most salient deviation
from the schema) followed by the second and so on. If both the IVA and the
human player have the same episodic schemata they will be able to reconstruct
the same episodes.

4.8 Other Uses of Probabilistic Model

The probabilistic modelM with parameters θ̂ captures regularities of the agent’s
behavior. Thus it can be reused also for other functions besides the EM model,
namely for:

1. estimating behavior/perceptual surprise, and

2. determining behavior/perceptual uncertainty

By behavior surprise we mean surprise of an observer over high level intentions
of the observed agent. Suppose that Bob observes Alice. Based on the observation
up to the time t− 1, he thinks that Alice will pursue a goal g1 in time t but after
observing her actions in time t it turns out that g2 is now more probable than g1.
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For related work on the topic of surprise modeling in the field of artificial
agents see (Macedo and Cardoso, 2001). Comparison of several functions com-
puting surprise and their fit to human data is presented in (Macedo et al., 2004).

These works used several probability measures but they omitted the KL di-
vergence that was shown to provide a good model for human data on a visual
attention task (Itti and Baldi, 2009). Since KL divergence fits well in our proba-
bilistic framework we decided to use it also for surprise computation.

Definition 12 We define current behavior surprise S(Xt) of a variable Xt

as a KL divergence from prior to posterior probability of P (Xt), that is:

S(Xt) = KL (P (Xt|o0:t−1)→ P (Xt|o0:t)) (4.12)

When Xt = Ei
t we measure current episode surprise on the i-th level in

time t. When Xt = Ot we measure current observation surprise associated
with the time step t.

Analogically, we can measure how sure Bob is about Alice’s current intention,
a quantity we call current behavior uncertainty. For instance, there can be two
goals that have almost the same probability, thus Bob can be confused about
Alice’s true intention. To measure a degree of uncertainty, we use an entropy.
The entropy is a natural choice for this measure. If there are more possible
explanations then the entropy will be high, whereas if only one intention seems
to be the right one, the entropy is low. The entropy H(X) of random variable X
is defined in equation 4.11.

The more uniform a distribution of X the higher the entropy; on the other
hand, H(X) = 0 if X has only one possible outcome. Thus there is no uncertainty
over its value.

Behavior uncertainty is formalized in the following definition.

Definition 13 Current behavior uncertainty U(Xt) in time t is entropy of
Xt conditioned on o0:t, that is:

U(Xt) = H (P (Xt|o0:t)) (4.13)

We will refer to U(Ei
t) as current episode uncertainty, U(Ot) will be current

observation uncertainty.

Previous definitions referred to the current time t: We measured how obser-
vation obtained at time t influences uncertainty and surprise for time t. However,
we can extend this approach and ask how observation in time t changed the ex-
pected behavior at time u where u can be either before or after t. If u < t, we
can ask how this new observation made Bob reinterpret Alice’s past intentions.
When u > t we measure how the new observation changed Bob’s prediction of
the future.
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Definition 14 We define extended behavior surprise S̄(Xu, t) as:

S̄(Xu, t) = KL (P (Xu|o0:t−1)→ P (Xu|o0:t)) (4.14)

S̄(Xu, t) measures how observation at time t influences the agent’s belief about
behavior at time u. We will refer to S̄(Ei

u, t) as extended episode surprise,
S̄(Ou, t) will be extended observation surprise.

Note that S(Xt) = S̄(Xt, t). Analogically we can define extended behavior
uncertainty.

Definition 15 We define extended behavior uncertainty Ū(Xu, t) as a mea-
sure of how observation at time t changed certainty of behavior at time u:

Ū(Xu, t) = H (P (Xu|o0:t)) (4.15)

We will refer to Ū(Ei
u, t) as extended episode uncertainty, Ū(Ou, t) will

be extended observation uncertainty.

As an example, it might be the case that all the time Bob was thinking that
Alice is an art lover, therefore she visits the museum every week. Thus up to the
time ttheft− 1 Bob would consider her visits as a leisure activity. However, when
he finds out in time ttheft that Alice has stolen a painting from that museum he
would be surprised by hearing that since he never suspected her. This means
that Bob’s S(Ei

ttheft
) will be high. At the same time Bob would reinterpret every

one of Alice’s museum visitsf to theft preparation. This will be indicated by high
values of S̄(Ei

ttheft
, u) for every u when Alice visited the museum. Similarly the

surprise might affect Bob’s thinking about the future.
We will demonstrate meaning of these definitions in an example toy domain

in Section 5.5.

4.9 Model Implementation

The models described in this thesis were implemented in Java and are freely
available for download3. For belief propagation in DBNs, SMILE4 reasoning
engine for graphical probabilistic models was used.

The implemented model covers the perception, encoding and reconstructive
retrieval phases as described in the previous sections. This includes both RMaxS

3Project is available online at https://code.google.com/p/dybanem.
4SMILE was developed by the Decision Systems Laboratory of the University of Pittsburgh

and is available at http://genie.sis.pitt.edu.
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and RMinOS memory encoding strategies and CHMM and AHMEM probabilistic
models. The storage is implemented in a most simplistic way just to support the
experiments presented in later chapters. High level description of steps describing
how to interface an NPC with DyBaNeM is provided in Section 7.1.

4.10 Summary

In this chapter we described internals of our EM model. We have specified how
DyBaNeM works during perception, encoding, storage and retrieval and how
we can create different versions of DyBaNeM based on choice of the memory
encoding strategy or the structure of the probabilistic model. The next chapter
demonstrates how DyBaNeM works on synthetic toy domains.
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Chapter 5

DyBaNeM in Example Synthetic Toy
Domain

In order to demonstrate how the DyBaNeM memory framework developed in this
thesis works we will first trace several stages of the algorithm on a synthetic toy
domain, second we show how DyBaNeM behaves on data from more realistic
domains. This chapter is concerned with the toy domain examples, more realistic
domains will be introduced in Chapter 6.

This chapter will first show how the activity recognition phase works with
different probabilistic models, namely CHMM and AHMEM on exactly the same
input. This will exemplify that some types of dependencies are not captured by
the CHMM but they can be expressed in AHMEM. After this, a few steps of
the encoding algorithm will be traced on the synthetic data which helps to build
intuitive understanding of the algorithm’s working. This time both probabilistic
models will be tested with different mem selection strategies RMaxS and RMinOS
defined in equations 4.5 and 4.6. This yields four combinations: AHMEM +
RMinOS, AHMEM +RMaxS, CHMM +RMinOS and CHMM +RMaxS.
In the end, recall of all model variants will be compared side by side. Behavior
surprise and certainty discussed in Section 4.8 will be demonstrated on the same
example. After reading this chapter the reader should have a sense of possible
difficulties in the encoding process and how more complex models can overcome
them.

5.1 Domain Description

In our toy domain we have three possible observations, ∀t : D(Ot) = {A,B,C},
and a single level of episodes E0

t with two possible values, ∀t : D(E0
t ) = {X, Y }.

The following three rules define our domain:
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Episodes Observations
XX AABAAB
XY AABAAC
XY AABAAC
YX AACAAB
YX AACAAB
YY AACAAC
YX AACAAB
YX AACAAB
YY AACAAC

Table 5.1: Training examples of the toy dataset.

1. Sequence AAB is interpreted as an episode X and AAC is Y .

2. Transition probabilities of episodes are defined as follows:

P (X starts in time 3t|X finished in time 3t− 1) = 1/3

That is, when X finishes, it will repeat with a probability 1/3 while with
probability of 2/3, the next episode will be Y . Also note that every episode
has to be exactly three time steps long. The same rule applies also for Y
(informally: P (Y |Y ) = 1/3, P (X|Y ) = 2/3).

3. At the beginning, X is twice less likely than Y .

The toy domain can be explained by a set of training examples as well. A
dataset listed in Table 5.1 contains exactly the same regularities required by rules
1, 2 and 3.

In the rest of this section both CHMM and AHMEM with three hidden states
(|D(H0

t )| = 3) will be used as the underlying probabilistic model. This will help to
illustrate the differences in predictive power of these two models, because CHMM
is quite simple and, on the other hand, AHMEM is a fairly complex one.

5.2 Activity Recognition

In this section we will demonstrate the first possible source of problems: inaccura-
cies in the activity recognition phase. When Bob misinterprets the true meaning
of Alice’s actions he tries to remember wrong facts.

In the first step, DyBaNeM performs activity recognition when it tries to
“make sense” of the observations; that is, deduce higher level episodes that prob-
ably lead to the observed activity. We know that sequence AABAAB should be

69



translated to two episodes X. Figure 5.1 shows prediction of the CHMM and
Figure 5.2 shows prediction of the AHMEM. Both models were trained on the
same set of example episodes (see Table 5.1) following the rules of the toy domain.
CHMM was trained by counting the sufficient statistics. AHMEM was trained by
the EM algorithm where H0

t was the unobserved variable without corresponding
data in the training dataset.

We can see that despite rule 1, CHMM deduces that, at time steps 0,1,3 and
4, both X and Y were possible explanations. This tendency is the strongest for
time step 0, less strong for 1 and relatively weak for 3 and 4. This is due to an
inherent limitation of the CHMM model that relies on the Markov assumption
which posits that the state in time t + 1 depends solely on the state in t. Even
though it is clear that the high level episode is X when the model observes B
in t = 2, CHMM is unable to propagate this knowledge back in time. Instead it
is influenced by the fact that Y is more probable than X initially. MAP query
would correctly answer that X was the most probable episode for all time steps;
however, marginal probabilities show that not all rules specifying our toy domain
are correctly captured by the CHMM. CHMM cannot distinguish between the
first and the second occurrence of observation A. To be more specific, CPMF of
the transition model for variable O contains the following information:

P (Ot = A|Ot−1 = A,E0
t = X) = P (Ot = B|Ot−1 = A,E0

t = X) = 1/2 (5.1)

Translated to plain English: the model states that when the last observation was
A and the episode is X then both A and B are equally likely to occur at the next
time step and their probability is 1/2 (the same applies also when we condition
the probability on Y instead of X). However, we know that the first A is always
followed by the second A that is followed by B given the episode is X. This
rule cannot be expressed in CHMM, there is no way to encode a context of the
observations (A preceded by another A is something different than A preceded
by either B or C). That is CHMM cannot distinguish between the first and the
second occurence of the observation A.

AHMEM (Fig. 5.2) performs better compared to the CHMM. AHMEM cap-
tures all the episodic schemata defined in rules 1 to 3. Posteriors clearly show
that prediction of AHMEM is accurate: X is the single possible explanation for
all time steps. This is what one would naturally expect.
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Figure 5.1: Posterior marginal probability P (E0
t |O0:5 = AABAAB) for each t

from 0 to 5 in CHMM. X-axis shows time and Y-axis shows marginal probabilities
of possible outcomes of E0

t that are {X, Y }. Probability of each outcome is
expressed by gray level. White corresponds to impossible outcome, P = 0, black
to certain outcome, P = 1. This kind of plot will be used to display evolution of
P (E0

t ) over time.
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Figure 5.2: Posterior P (E0
t |o0:5 = AABAAB) in AHMEM. Legend is the same

as in Fig. 5.1.

5.3 Encoding

In encoding, DyBaNeM performs a sequence of steps when it looks for the most
memorable mem given the list of mems remembered so far. For a detailed de-
scription, see Section 4.2. No matter whether RMinOS or RMaxS strategy is used
the first step starts with a comparison of the result of the activity recognition to
the prior prediction of the activity. That is, the algorithm compares the most
probable explanation of what has just been seen with what would be recalled if
the model does not have any specific memories of the situation, i.e., the recall
would be based solely on the episodic schemata. No mems would be used at this
time since no mems were yet computed.

The next section continues in the toy domain example and it describes the
prior predictions of both CHMM and AHMEM. The following sections discuss
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how the different encoding strategies affect created mems.

5.3.1 Prior Prediction for Episode Encoding

Now let us have a look at the prior predictions of observations, P (Ot), and prior
predictions of episodes, P (E0

t ), that are used in episode encoding algorithm. The
term prior refers to the fact that these are distributions computed by the model
before using any observations as evidence. We start with observations whose
predictions are shown in Figures 5.3 and 5.4, i.e., probability that A, B or C
happens in time step t, according to the given probabilistic model. The figures
clearly illustrate the difference in predictive power of the CHMM and AHMEM
models.

In the first time step, both CHMM and AHMEM predict an observation A,
because both episodes X and Y start with this observation and this probability
is determined by the initial time slice probability (see Sec. 4.1.1 for details of the
initial probability distribution denoted as P (Z0)). In the second time step CHMM
predicts A as the most probable outcome (P (O1 = A) = 0.5). However, we know
that this probability should be exactly one. This is a manifestation of another
limitation of the CHMM. Since the probability of observing A at time step 1 is
0.5 the CHMM also assigns some probability to the two remaining possibilities
B and C (P (O1 = B) ≈ 0.2 and P (O1 = C) ≈ 0.3).

At this point it might not be obvious how we obtain those probabilities. There-
fore we will explain the computations that lead to this result in Box 5.3.1.

Box 5.3.1 An example of marginalization.

In this box we will perform all steps necessary to compute P (O1 = B)
and P (O1 = C) in the CHMM. This computation will also demonstrate
marginalization, one of the simplest algorithms that can be used to compute
probabilities in graphical models.

We will start with computation of P (O1 = B). To compute this value we
have to marginalize out values of O0, E

0
0 and E0

1 . We do this by computing
the following equation:

P (O1) =
∑
E0

0

∑
E0

1

∑
O0

P (E0
0) · P (O0) · P (O0|E0

0) · P (E0
1 |E0

0) · P (O1|E0
1 , O0)

=
∑
E0

0

P (E0
0)
∑
E0

1

P (E0
1 |E0

0)
∑
O0

P (O0) · P (O0|E0
0) · P (O1|E0

1 , O0) (5.2)
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Now we can rewrite this equation with actual values of the random variables:

P (O1 = B) =
∑

e∈{X,Y }

P (E0
0 = e)

∑
f∈{X,Y }

P (E0
1 = f |E0

0 = e)

∑
a∈{A,B,C}

P (O0 = a)P (O0 = a|E0
0 = e)P (O1 = B|E0

1 = f,O0 = a) (5.3)

We already know that P (O0 = A) = 1 (and consequently also ∀e :
P (O0 = A|E0

0 = e) = 1) thus the previous equation simplifies to:

P (O1 = B) =∑
e∈{X,Y }

P (E0
0 = e)

∑
f∈{X,Y }

P (E0
1 = f |E0

0 = e) · P (O1 = B|E0
1 = f,O0 = A)

= P (E0
0 = X)·(

P (E0
1 = X|E0

0 = X) · P (O1 = B|E0
1 = X,O0 = A)+

P (E0
1 = Y |E0

0 = X) · P (O1 = B|E0
1 = Y,O0 = A)

)
+

P (E0
0 = Y )·(

P (E0
1 = X|E0

0 = Y ) · P (O1 = B|E0
1 = X,O0 = A)+

P (E0
1 = Y |E0

0 = Y ) · P (O1 = B|E0
1 = Y,O0 = A)

)
(5.4)

Initial probabilities P (E0
0) and P (O0) and transition probabilities P (E0

1 |E0
0)

and P (O1|E0
1 , O0) can be counted from the training data in Table 5.1. After

substituting we obtain the final probability:

P (O1 = B) =
1

3
(
17

19
· 1

2
+

2

19
· 0) +

2

3
(

2

13
· 1

2
+

11

13
· 0) ≈ 0.2 (5.5)

The value of P (O1 = C) can be computed analogically or one can use the
fact that P (O1 = C) = 1− P (O1 = A)− P (O1 = B).

Even though these probabilities are understandable given what type of regu-
larities can be captured by the CHMM, they are against the rules specifying the
structure of the toy domain. For instance, the rules state that in every position
3t and 3t + 1, we can observe only A, and in 3t + 2, we can observe either B or
C but never A. Fig. 5.3 thus illustrates deficiencies of the CHMM and also one
possible source of encoding errors — inaccurate prior prediction of the model.

Fortunately, this inaccuracy is solved by the AHMEM model. As can be seen,

73



it predicts that P (O3t = A) = P (O3t+1 = A) ≈ 1 whereas P (O3t+2 = A) ≈ 0.1

Probability of B and C is nonzero only in time 3t+2 which is true by requirement
1. P (O2 = C) ≈ 2/3 whereas P (O2 = B) ≈ 1/3 this follows from rule 3 from the
definition of the toy domain. The next time a high level episode ends, that is in
t = 5, the difference between B and C fades out. Probabilities are now P (O5 =
C) ≈ 5/9 and P (O5 = B) ≈ 4/9. This follows from the fact that uncertainty over
possible episode evolutions accumulates over time (see Fig. 5.4). We may say
that the process converges to the so called stationary distribution of a Markov
chain which would be limt→+∞ P (O3t+2 = B) = limt→+∞ P (O3t+2 = C) = 1/2 in
this case.
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T ime

A

B

C

Figure 5.3: Prior probability of P (Ot) in CHMM. Legend is the same as in Fig. 5.1.
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Figure 5.4: Prior of Ot in AHMEM. Legend is the same as in Fig. 5.1.

Analogically prior predictions P (E0
t ) for the first level of episodes can be

obtained. Fig. 5.5 shows prior probability in CHMM and Fig. 5.6 shows the same
in AHMEM.

CHMM assigns correct probabilities to X and Y in the first time step, P (E0
0 =

Y ) = 2/3 and P (E0
0 = X) = 1/3. However, it fails to capture the requirement that

1Due to smoothing used in implementation of our model the probabilities are not exactly 1
and 0, respectively, thus we use ≈ sign to stress this.
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each episode has to last for exactly three time steps. This is manifested by the
fact that P (E0

0) 6= P (E0
1) 6= P (E0

2) even though all those probabilities should be
the same.

Again, this rule can be expressed in AHMEM. Fig. 5.6 shows that probability
remains the same for three consecutive time steps. Exact values of these proba-
bilities would also show that the ratios of probabilities are correct, that is 1 : 2 for
the first three steps and 5 : 4 for the second three steps, as detailed in Box 5.3.2.

Box 5.3.2 Ratio of episode probabilities for the second three steps.

In this box we will show why the ratio of prior episode probabilities is 5 : 4
in the second three time steps. The PMF of variables E0

3 , E0
4 and E0

5 is given
by the following equation:

P (E0
t ) =

∑
E0

2

P (E0
2) · P (E0

3 |E0
2), for t ∈ {3, 4, 5} (5.6)

We know that P (E0
t = X) = 1/3 and P (E0

t = Y ) = 2/3 for t ∈ {0, 1, 2}
(rule 3). We also have the transition probabilities P (E0

3t = i|E0
3t−1 = i) = 1/3

for i ∈ {X, Y } and P (E0
3t = i|E0

3t−1 = j) = 2/3 for 〈i, j〉 ∈ {〈X, Y 〉, 〈Y,X〉}
(rule 2). When we put this together we get:

P (E0
3 = X) = P (E0

2 = X) · P (E0
3 = X|E0

2 = X)+

P (E0
2 = Y ) · P (E0

3 = X|E0
2 = Y ) =

1

3
· 1

3
+

2

3
· 2

3
=

5

9
(5.7)

Analogically we can compute that P (E0
3 = Y ) = 4/9. Therefore the final

ratio is 5 : 4.

5.3.2 Mem Creation: AHMEM and RMaxS

In the previous two sections we demonstrated both ability to perform activity
recognition and to create prior predictions based solely on the episodic schemata.
Now these two steps can be combined to compute mems, i.e., compare the result
of activity recognition and the prior prediction. We will walk through the process
of mem creation as described in Sec. 4.2 and show what will be the resulting mems
in all combinations of probabilistic models (AHMEM and CHMM) and encoding
strategies (RMaxS and RMinOS).
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Figure 5.5: Prior of E0
t in CHMM. Note that with increasing time the distribution

converges to the same probability for both outcomes X and Y . Legend is the
same as in Fig. 5.1.
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Figure 5.6: Prior of E0
t in AHMEM. Note that the probability remains the same

for three consecutive time steps. This correctly models structure of the toy do-
main. Legend is the same as in Fig. 5.1.

In this section, we will start with AHMEM with RMaxS strategy as described
in Eq. 4.5. The following three sections will show storage of the same sequence
in AHMEM with RMinOS and CHMM with RMaxS. CHMM with RMinOS
yields the same result as with RMaxS, thus it will be omitted. This step by step
walk through the encoding algorithm will help to highlight important differences
between the two probabilistic models and between the two mem picking strategies.

In all examples the goal will be to remember the sequence AABAAB already
used to demonstrate the activity recognition phase.

First mem

As already discussed, encoding in DyBaNeM works as follows: the result of activ-
ity recognition2 is compared to the recall computed with a current set of mems.

2Denoted as PM(Y |Per0:T ) in Equation 4.4.
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In the first step, no mems were computed so far, hence this degrades to com-
parison of the result of activity recognition to prior prediction from the episodic
schemata. This situation is depicted in Fig. 5.7.

RMaxS strategy basically picks the mem that has the highest amount of sur-
prise. That is, where the prior prediction differs the most from the activity
recognition in the value of KL divergence considering all the six time steps of the
sequence to be remembered. In this case the picked mem is O2 = B. All other
options had lower values of RMaxS. Note that the value of surprise associated
with O0, O1, O3 and O4 is zero. This results from the fact that a value predicted
by the schemata matches exactly the observed one, that is A. On the other hand
in O2 schemata predict C as the most probable observation with probability 2/3.
However, B that was actually observed has lower probability given the schema
(only 1/3). Thus there is discrepancy between prior prediction from schemata
and the real observation. Memorizing O2 = B will reduce mismatch between the
recalled sequence and the real observation. Besides correcting the value in O2 it
will also change values of the other variables as discussed in the next step.

Second mem

The second iteration of the encoding algorithm is shown in Fig. 5.8. When
compared to Fig. 5.7 the reader can note changes in the new prediction. In the
previous step the prior prediction from schemata assigned some probability to
both X and Y episodes in time interval 〈0, 2〉. Now when the first mem O2 = B
was created the model is certain that the only possible episode is E0

0:2 = X. This
is in accordance with the result of the activity recognition, thus in the lower
middle graph with values of RMaxS there is zero surprise for E0

0:2. Remembering
assignment for O2 together with knowledge from the episodic schemata leads to a
correct recall of E0

0:2 even though this value does not have to be stored explicitly.
It is computed by inference in the DBN. This is one example of the reconstructive
recall enabled by DyBaNeM.

Compared to the previous step we can also note that now the probability of
observing O5 = C has increased. This is because after episode X it is more likely
to encounter episode Y (Req. 2) which always ends with C. Thus observing B
instead of C is the most surprising fact and it becomes the new mem.

After adding this mem to the list of all mems the recall will be perfect, it
will exactly match the result of activity recognition, that is, Diff ≈ 0 for all
recalled variables (see Eq. 4.4). No other mems will be needed to describe the
observed sequence. Thus explicit storage of only two mems — O2 = B and O5 =
B, together with the episodic schemata can reconstruct the original sequence
AABAAB and the two high level episodes XX.
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Figure 5.7: Computation of the first mem in AHMEM with RMaxS strategy
on an input sequence AABAAB. The upper left figure depicts a prediction of
the schemata on the level of episodes, this was already shown in Fig. 5.6. The
lower left figure shows the result of the activity recognition, previously discussed
in Fig. 5.2. The upper right figure depicts the prediction from schemata for
observations (Fig. 5.4). The lower right figure shows the actual observations,
that is a sequence AABAAB that served as an input for activity recognition.
The lower middle figure shows the result of RMaxS strategy (see Eq. 4.5). The
first line of the middle graph shows RMaxS for each E0

t , the lower line shows
values for Ot. Levels of gray indicate the value of RMaxS. The darker the color
the higher the magnitude of RMaxS for a particular level and time. The scale of
gray is linearly interpolated between 0 and the maximal value of surprise achieved
at any of the Ot or E0

t variables. Note that the value of KL divergence is not
bounded. Therefore the maximum may differ from case to case. The black box
with a white cross highlights a variable with the highest value of RMaxS, this
will become a new mem.

Alternative sequence.

What would happen if the model has to store sequence AABAAC that corre-
sponds to episodes XY instead of the AABAAB sequence from the previous
example? The first mem would be the same, O2 = B, although the process of
mem creation would diverge in the second step as shown in Fig. 5.9. Here the
most probable prediction P (O5|O2 = B) would already be C which is correct.
However, there would still be some probability left for B and therefore also for
the X episode. Thus even if the second mem O5 = C would be forgotten the
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Figure 5.8: Computation of the second mem in AHMEM with RMaxS strategy on
input sequence AABAAB. The two graphs in the first line show new predictions
conditioned on the first mem that is O2 = B. The left graph shows P (E0

t |O2 =
B), the right shows P (Ot|O2 = B). The second line of graphs is the same as
in Fig. 5.7 since the result of the initial activity recognition remains unchanged
over the whole encoding process. The lower middle graph with values of RMaxS
shows that the next mem will be O5 = B. Legend is the same as in Fig. 5.7.

most probable answer of the model would still be the same and it will be correct.
But when the mem is accessible the recalled memories will be more certain.

We can illustrate this with entropy of the recalled sequences shown in Fig. 5.10.

5.3.3 Mem Creation: AHMEM and RMinOS

We will continue in the example from the previous section. The probabilistic
model, AHMEM, will remain the same as well as the remembered sequence
AABAAB. We will change only the memory creation strategy from RMaxS
to RMinOS. This will help us to illustrate the fundamental difference between
these two strategies on the familiar example.

First mem.

RMinOS as formalized in Eq. 4.6 tries to find the mem that minimizes the sum
of KL divergence on all random variables corresponding to observations and
episodes. Fig. 5.11 depicts values of the RMinOS on the AABAAB sequence.
The mem picked by the RMaxS, O2 = B, and RMinOS, E0

0:5 = X differs in this
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Figure 5.9: Computation of the second mem in AHMEM with RMaxS strategy on
input sequence AABAAC. The two graphs in the first line show new predictions
conditioned on the first mem that is O2 = B. This is the same as in Fig. 5.8.
However, the second line of graphs showing the result of the activity recognition
differs. Observations are AABAAC and the two recognized episodes are XY .
In this case the initial prediction for P (O5), P (E0

3), P (E0
4) and P (E0

5) is almost
correct in the sense that the observation/episode with the highest probability
matches the reality. The lower middle graph with values of RMaxS shows that
the next mem will be O5 = C. Remembering this mem will remove the last
uncertainty in the recall. Legend of the figure is the same as in Fig. 5.7.

case.3 RMinOS picks E0
0:5 = X because this assignment explicitly describes the

two consecutive X episodes. Moreover values of both O2 and O5 can be deduced
given the knowledge of the first mem (E0

0:5 = X). Thus RMinOS strategy out-
performs RMaxS in this case. Evaluation on more realistic datasets shows that
RMinOS is usually better than RMaxS (see Chapter 6). Perhaps the biggest
disadvantage of RMinOS is that it runs slower than RMaxS (see Table 6.2 that
empirically compares the time needed by both strategies).

3Note that in this case the mem covers two consecutive X episodes. The fact is that these two
episodes can be derived in AHMEM where variable Ft segments episodes. However, in CHMM
it is not possible to infer segmentation of two consecutive instances of the same episode. Since
not all models can correctly infer segmentation of episodes we do not require a mem to contain
exactly one episode (see Definition 1).
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Figure 5.10: This figure illustrates how entropy can be used to measure uncer-
tainty of a model’s recall. The first line shows entropy of recalled episodes, the
second line shows entropy for recalled observations in the AHMEM on the input
sequence AABAAC. The first column is the entropy of recall with no mems, the
second column is with one mem and the third is entropy of recall with two mems.
In the beginning the model is quite unsure of the episodes and observations in
t = 2 and t = 5. After remembering one mem the model is still unsure what is
the real end of the sequence, however its most probable guess would be correct.
When the second mem is taken into account there is no more uncertainty on both
recalled episodes and observations.
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Time
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Figure 5.11: Mem picked by the RMinOS in AHMEM on the sequence AABAAB.
Level of gray indicates the value of RMinOS for each particular group of variables.

5.3.4 Mem Creation: CHMM and RMaxS

Now we continue by showing how the encoding would work with CHMM, which
is a simpler probabilistic model than the previously used AHMEM.

First mem.

Fig. 5.12 depicts the process of finding the first mem. We can see that even
though the CHMM does not capture all the rules of the toy domain the picked
mem is by coincidence the same as in the model with AHMEM. All important
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differences between AHMEM and CHMM were already discussed in Section 5.3.1.
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Figure 5.12: Computation of the first mem in CHMM with RMaxS strategy on
input sequence AABAAB. This figure shows the same situation as was shown
in Fig. 5.7 with the exception that now we use CHMM instead of AHMEM. The
upper left figure shows prior prediction from the episodic schemata for episodes
(previously discussed in Fig. 5.5). The upper right figure shows the same for
observations (Fig. 5.3). The lower left figure shows recognized episodes (Fig. 5.1),
the lower right figure shows the initial observations. The lower middle figure shows
values of RMaxS, the picked mem is O2 = B. Legend is the same as in Fig. 5.7.

Second mem.

It is interesting that even the second mem computed with CHMM is the same as
with AHMEM. Fig. 5.13 shows that O5 = B will be picked in this architecture
as well. However, the inaccuracy of CHMM will affect the reconstructive recall
as we will demonstrate later.

Third mem.

Contrary to the example with AHMEM shown in the previous section two mems
are not sufficient to produce correct recall. In CHMM there is still uncertainty
about the episode in the beginning of the sequence when only two mems are used.
Thus the third mem will be E0

0 = X and it removes this uncertainty as shown in
Fig. 5.14.
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Figure 5.13: Computation of the second mem in CHMM with RMaxS strategy
on input sequence AABAAB. Note the difference between prediction for obser-
vations here (upper right) and in AHMEM (upper right in Fig 5.8). Legend is
the same as in Fig. 5.7.
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Figure 5.14: Computation of the third mem in CHMM with RMaxS strategy on
input sequence AABAAB. Legend is the same as in Fig. 5.7.

Alternative sequence

Now analogically to the AHMEM example we will discuss what would happen
when an alternative sequence AABAAC is stored. Due to the inherent limita-
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tions of CHMM the activity recognition will never be perfect. Recall that activity
recognition is the first step in the encoding process where the agent interprets be-
havior of the other agents. Activity recognition/perception takes place in the first
iteration of Algorithm 1 (the same phase is also discussed in Table 4.1). Because
mems are always created with respect to the result of the activity recognition this
will also affect accuracy of the recall.

The first mem is again O2 = B. We skip this step and show the situation
when the second mem is computed, see Fig. 5.15. The most important difference
compared to the same case in AHMEM (Fig. 5.9) is that the activity recognition
step is fairly inaccurate. Prediction of the episodes is “blurred”, i.e. in t = 3
episode X is more probable than Y , in t = 4 probabilities of X and Y are
reversed. However, we know that the right answer is E0

0:2 = X and E0
3:5 = Y ,

which is exactly the prediction of AHMEM (see Fig. 5.9). Entropy of the activity
recognition is shown in Fig. 5.16, it illustrates that the CHMM is fairly uncertain
about the episodes that generated the observations. As we can see, despite this,
the second mem will be again O5 = C. With these two mems the recall on the
level of observations will be exactly the same as in AHMEM but the recall on
the episodic level will remain inaccurate.
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Figure 5.15: Computation of the second mem in CHMM with RMaxS strategy on
input sequence AABAAC. Note the difference in activity recognition (lower left)
compared to the AABAAB sequence shown in Fig. 5.13 and more importantly
the same sequence in AHMEM in Fig. 5.9. Legend is the same as in Fig. 5.7.

84



Figure 5.16: Entropy of recall on the level of episodes in CHMM on sequence
AABAAC when two mems (O2 = B,O5 = C) are used. Compared to the same
situation in AHMEM (shown in the upper right sub-figure in Fig. 5.10) we can
see that CHMM is much more uncertain.

5.3.5 Mem Creation: CHMM and RMinOS

In CHMM the mems computed with RMinOS are exactly the same as in the
previous case with RMaxS (Section 5.3.4) although the numerical values of both
strategies differ. Therefore the graphs are omitted in this section. This shows
interplay between probabilistic models and encoding strategies since in AHMEM
both strategies resulted in different mems.

5.4 Models and Strategies Comparison

Here we will compare side by side the recall of the AABAAB sequence from all
the architectures used in the previous sections. Fig. 5.17 shows how the number
of available mems and quality of the predictive model affect the reconstructed
sequence.

It can be seen that after computing two mems AHMEM+RMaxS achieves a
perfect recall. In AHMEM+RMinOS only a single computed mem is sufficient for
flawless recall. The least powerful CHMM+RMaxS (or CHMM+RMinOS) needs
three mems for perfect recall. With only two mems there is still some uncertainty
about the beginning of the sequence on the level of episodes. The insufficient
power of CHMM to capture the basic domain regularities is demonstrated also in
the prior prediction that uses no mems. The schemata as expressed in CHMM
are not as exhaustive as the schemata in AHMEM.

85



0 1 2 3 4 5

T ime

A

B

C

E p i s odes

0 1 2 3 4 5

Time

A

B

C

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

A

B

C

AHMEM+RMaxS

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

A

B

C

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

A

B

C

0 1 2 3 4 5

Time

A

B

C

0 1 2 3 4 5

Time

X

Y

AHMEM+RMinOS

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

A

B

C

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

X

Y

0 1 2 3 4 5

Time

A

B

C

CHMM+RMaxS

N
o 

m
em

s
(s

ch
em

at
a 

on
ly

)
O

ne
 m

em
Tw

o 
m

em
s Would be the 

same as with 
one mem

Figure 5.17: Recall of the sequence AABAAB in AHMEM+RMaxS,
AHMEM+RMinOS and CHMM+RMaxS architectures which is the same as
CHMM+RMinOS. Each row shows recall from the given model when zero, one
or two mems are available for the reconstructive process. In every cell the upper
graph represents recall on the episodic level and the lower graph on the level of
observations.

5.5 Online Use of the Model for Behavior Surprise and Un-

certainty Estimation

In the previous sections we have seen how probabilistic models are used in activity
recognition, encoding and recall. Now we will briefly show a different use of the
probabilistic model. The model can be also used to compute behavior surprise
and behavior uncertainty as defined in Sec. 4.8. Now we will demonstrate these
definitions on the example from the domain used in the previous sections. In
encoding it was always the case that Bob had already all the observations in short
term memory and he retrospectively compared them against the prior prediction
from schemata. Now we will inspect the dynamics of what Bob would think
while gathering new observation of Alice’s behavior. More specifically we will
focus on measuring how sure Bob is about Alice’s current behavior and whether
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observations match his expectations. Mismatch between Bob’s expectations and
reality can be interpreted as surprise.

Both these quantities can directly influence Bob’s decision making process.
For instance, when Bob observes Alice and he is unsure about her current activity
he might ask her: ”What are you doing?”. When he was quite sure what she
was doing but then she performs an unexpected action which in turn changes his
belief about Alice’s past intention he may say: ”Oh! Now I now what you were
doing.”

Now consider the following abstract example. Bob will observe a sequence
AABAAB one symbol after another and we will inspect how new observations
influence Bobs beliefs, his extended behavior surprise (Definition 14) and ex-
tended behavior uncertainty (Definition 15). Fig. 5.18 shows these quantities on
the level of episodes, Fig. 5.19 shows the same on the level of observations. Pre-
dictions shown on those figures are made with use of the AHMEM with schemata
learnt on the dataset from Table 5.1.

Intuitively, Bob is not surprised by the first observation, he expected A, since
it is the only possible first action. However, he is not sure whether the high
level episode is X or Y . The situation remains the same even after observing
the second A. This observation cannot be used to make any novel inferences.
The situation changes with the third observation B in t = 2. First, Bob now
knows that the episode in the last three time steps was X. Thus his uncertainty
over the possible episodes in t = 0, 1, 2 decreases almost to zero4. He will be
also a bit more certain over the next episode, Y now seems more likely than X
(this follows from rule 2 of the toy domain). Second, observing B will be a bit
surprising to Bob. He knows that there are two possibilities for the third symbol:
B and C. Thus when Bob is not sure what will follow either observation will
be a bit surprising. Prior to observation in t = 2 Bob considered observation C
and thus episode Y as the more probable option. Therefore observing C would
not surprise him as much as observing B. This discrepancy between Bob’s prior
belief (C was expected) and actual observation B at time step 2 is manifested by
high surprise measured by the KL divergence.

In the next three time steps the situation is analogical to the first three steps.
The only difference is that now Bob favors episode Y . Thus he will be surprised
by observing B at t = 5 where he expected C with higher probability.

Figures 5.20 and 5.21 show the same situation when Bob is using simple
CHMM model. This illustrates important differences between AHMEM and
CHMM. In the episodic level (Fig 5.20) Bob has high uncertainty in the first
two time steps even after observing the whole sequence. Another flaw is that

4Technically there will be still a small amount of uncertainty due to smoothing. Therefore
the uncertainty will not be exactly zero.
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surprise in t = 2 and 5 does not propagate backwards but it is limited only to
the respective time steps. Considering the level of observations (Fig. 5.21) Bob
is unsure about the future almost in all cases. AHMEM performed better in this
task. There is also deficiency in surprise estimation. Compared to AHMEM Bob
is incorrectly surprised by observations in t = 1 and 3. The reason for this worse
performance was already discussed in the examples of encoding in Sec. 5.3.4.
CHMM does not correctly represent all rules of the domain thus predictions of
the model are sometimes misleading.
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Figure 5.18: Evolution of belief, extended episode uncertainty and extended be-
havior surprise in AHMEM for the sequence AABAAB. Rows show how the
previously mentioned quantities evolve as Bob gathers new observations. In t = 0
Bob has observed the first symbol, that is A. In t = 2 he has seen three symbols
AAB. Analogically in the last time step t = 5 he observed the complete sequence
AABAAB. The thick vertical line on all graphs marks the current time. Ev-
erything to the left of this line refers to the past and values for observations Ot

(where t ≤ position of the thick line) are used as evidence. Everything to the
right of the thick line is a future. In the first two steps, observing AA completely
matches Bob’s expectation. Thus Bob is not surprised (the last column), obser-
vations carried no novel unexpected information. However, he is not sure what is
the high level episode (the middle column). After observing B uncertainty over
the first two steps disappears. At the same time Bob will be surprised by what
he observed and this surprise will propagate back in time as this observation re-
vealed the true episode in the last three time steps (surprise in t = 2). Also note
that there is a small amount of surprise for the future steps (t = 3, 4, 5). This
is because now episode Y is more probable than it was in t = 0, 1. A similar
situation repeats for the next three steps.
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Figure 5.19: Evolution of belief, extended observation uncertainty and extended
observation surprise in AHMEM for the sequence AABAAB. The difference
compared to the level of episodes (Fig. 5.18) is that initially Bob is unsure only
about observations at t = 2 and 5, he knows that the rest of the observations
will be A. The same applies for surprise measure. The legend is the same as in
Fig. 5.18.
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Figure 5.20: Evolution of belief, extended episode uncertainty and extended be-
havior surprise in CHMM for the sequence AABAAB. Compared to the same
case in AHMEM shown in Fig. 5.18 it can be seen that CHMM is not able to
correctly compute certainty and surprise. Even after observing all symbols the
model is unsure what the high level episodes were. The legend is the same as in
Fig. 5.18.
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Figure 5.21: Evolution of belief, extended observation uncertainty and extended
observation surprise in CHMM for the sequence AABAAB. Compare this figure
to the same case in AHMEM shown in Fig. 5.19. The legend is the same as in
Fig. 5.18.
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5.6 Summary

In this chapter we demonstrated algorithms and definitions from Chapter 4 on
the toy domain. We showed the importance of the probabilistic models and
we highlighted important differences between the two representative examples
AHMEM and CHMM. In general AHMEM proved to be a better probabilistic
model than the simple CHMM, since it captured more regularities of the toy
domain. We have also shown that different mem picking strategies might return
different results. The next chapter will evaluate the model on more realistic
datasets.

93



Chapter 6

Experiments

The first step in evaluation of every new technology is a “proof of concept” sce-
nario that should verify its applicability. Chapter 5 has shown how DyBaNeM
works in a trivial toy domain. Its purpose was to introduce the reader to the con-
cepts defined in the previous sections through a set of examples. In this chapter
we will describe two experiments that test several variants of DyBaNeM on two
distinct more realistic domains. The first experiment tests differences between
encoding strategies and different probabilistic models on a domain generated by
an HTN planner1. The second experiment demonstrates that DyBaNeM can be
used in a domain of memory modeling for IVAs2. Behavior of the agent in the
second domain was generated by a version of a BT.

We will not try to quantitatively fit results of the experiments on human
data. That is we will not try to replicate the exact outcome of experiments
performed with human subjects. Instead of this we will try to show a qualitative
match. We consider this approach sufficient at this stage. That is we will require
that the recall “resembles” recall of humans. Nevertheless quantitative fitting
human data might be an interesting future work. Our two test corpora are
computer generated. The first corpus is generated by randomized hierarchical
planning algorithm. The second originates from a virtual agent embodied in a
3D environment. In both domains we test a scenario where one NPC observes
another NPC. This scenario will be common in computer games.

Every time one uses artificially generated corpora of human activities an im-
portant concern should be whether these datasets match the main characteris-
tics of real human activities. We investigated this question in (Kadlec et al.,
2013) where we compared several artificial and real corpora based on conditional
entropy and compressibility of action sequences. The comparison included the
corpus that we will use in an experiment from Section 6.2 and a modified version

1Preliminary version of these experiments was published in (Kadlec and Brom, 2013b).
2Preliminary version of these results was published in (Kadlec and Brom, 2013a).
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of s corpus used in Section 6.1. We found a reasonable match between these two
types of corpora. This suggests that the artificial corpora might be used as an
approximation of real corpora.

All experiments in this chapter were run on a Win7 64bit machine with 16GB
of RAM utilizing a single core of Intel Pentium i5-2520M 2.50GHz CPU. Detailed
instructions that describe how to reproduce experiments in this chapter are given
in Appendix A.

6.1 Monroe Corpus: Recall Accuracy - RMaxS and RMinOS

in CHMM and AHMEM

6.1.1 Aim

In this experiment we evaluate recall accuracy depending on:

• The probabilistic model used to represent schemata. We tested CHMM1

and AHMEM1
8 models. The upper index denotes a number of episodic

levels represented in the model, the lower index denotes a number of states
of the internal memory (|D(Hi)|) in the AHMEM. This parameter is not
applicable to the CHMM since it does not have the random variables Hi.

• The mem creation strategy, namely RMinOS and RMaxS.

• Number of mems used to aid the recall. We will use 1, 2 and 3 mems. This
will allow us to see the effect of more evidence on the quality of recall.

• Amount of data used to learn the episodic schemata.

Our initial hypotheses are that: AHMEM is better than CHMM (for reasons
explained in Section 4.1.4 and empirically demonstrated in Chapter 5); RMinOS
is better than RMaxS (since RMinOS tries to minimize surprise associated with
all random variables in the model); using more mems used as evidence for recall
leads to better accuracy and that more data used to train episodic schemata
result in better recall accuracy.

6.1.2 Dataset

We used Monroe plan corpus3 (Blaylock and Allen, 2005a) since it is similar to
real human activity corpus and it was already used by other researchers in ac-
tivity recognition and episodic memory research. Monroe corpus is an artificially

3Monroe corpus is downloadable from http://www.cs.rochester.edu/research/speech/

monroe-plan/ [23.1.2015]
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generated corpus of hierarchical activities created by a randomized HTN planner.
The domain describes rescue operations like cutting down a fallen tree to clear
a road, transporting wounded to a hospital, etc. The corpus contains up to 9
levels of episodes’ hierarchy, we shortened these episodic traces to contain only
the atomic actions and the highest level episodes. The corpus features 28 atomic
actions and 43 episodes. Only 10 episodes appear on the highest level. For a
complete list of atomic action and the highest level episodes see Appendix B.

6.1.3 Method

For the purpose of the experiment we split the stream of episodic traces into
sequences of 10. The agent that tries to remember the activity sees only 10
consecutive atomic actions of an activity that it will later try to recall. This
corresponds to a situation where Bob (the observing agent) sees only a short
sequence of Alice’s actions (the observed agent) and then he stops observing her.
This is a common situation in virtual environments where agents usually interact
only briefly. We tested accuracy of recall of atomic actions and episodes on 100
sequences that were not contained in the training set. For every probabilistic
model, encoding strategy and a number of stored mems that the models recall
is compared to the ground truth. This way we obtain accuracy on the level of
observations which is a percentage of correctly recalled atomic actions. That is:

Accuracy(otruth0:9 , orecall0:9 ) =

9∑
i=0

1(otruthi , orecalli )

10
,

where 1 is the identity function. Accuracy on the level of episodes is computed
analogically.

In experiments where we measure influence of the amount of training data
we started with just 25 training sequences and in each step we added other 25
sequences up to the total of 725 sequences.

Inference over the DBN unrolled to 10 time steps was performed by exact
clustering algorithm (Huang and Darwiche, 1996).

Steps needed to re-run these experiments are described in Appendix A.3.

6.1.4 Results

Table 6.1 summarizes recall performances of the models on the level of observation
and on the level of episodes when 725 sequences were used for training the episodic
schemata. We use a simple crude accuracy measure that measures how many
atomic actions/high level episodes were correctly recalled at the correct time.
Only the most probable action at each step was used to measure the accuracy.
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RMaxS RMinOS
PPPPPPPPParch

mems
1 2 3 1 2 3

O
CHMM1 55± 17 74± 16 87± 12 60± 15 76± 15 88± 11

AHMEM1
8 63± 18 86± 17 95± 12 64± 17 86± 14 94± 10

E0CHMM1 65± 35 79± 26 79± 27 71± 31 78± 29 80± 27

AHMEM1
8 67± 34 83± 28 85± 26 77± 27 83± 27 85± 26

Table 6.1: Results of the recall experiment for all tested models, encoding strate-
gies and the number of stored mems and level of hierarchy (observations O and
first level of episodes E0). The table reports mean recall accuracy in percentage
and its standard deviation on the 100 testing sequences when the schemata were
learnt on 725 sequences.

PPPPPPPPParch.
strat.

RMaxS RMinOS

AHMEM1
8 122± 6 551661± 136062

CHMM1 103± 89 20242± 2572

Table 6.2: Average time ± SD needed to compute one mem measured in mi-
croseconds. The average is over the time needed to compute the first, second and
third mem in 100 testing sequences.

That is we measure 1st-best accuracy. Still the model provides more information,
for instance one can measure accuracy of the second or third best hypothesis.
However, the 1st-best accuracy is of the highest interest since it measures the
accuracy of the first answer that would be recalled by the agent.

Table 6.2 shows the average time needed to compute a single mem in each
model. We can see that RMaxS has significantly lower time requirements than
RMinOS.

Effect of more mems available for recall

Now we test whether increase in recall accuracy when using more mems is statis-
tically significant. All statistical tests are performed by paired one sided t-tests
where p values were adjusted with Bonferroni correction (Bonferroni, 1935) to
compensate for family-wise error rate (p = porig · 40, since there are 40 tests in
total reported in tables 6.3, 6.4 and 6.5).

The results for all pairwise differences (two mems versus one mem, three mems
versus two mems) for all levels, encoding strategies and probabilistic models are
shown in Table 6.3. All results are statistically significant with the exception
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2 mems > 1 mem 3 mems > 2 mems
Model p Cohen’s d p Cohen’s d

CHMM1 +
RMaxS

O < .001 1.141 < .001 0.932
E1 < .001 0.462 > .1 −0.008

CHMM1 +
RMinOS

O < .001 1.099 < .001 0.906
E1 .042 0.226 > .1 0.068

AHMEM1+
RMaxS

O < .001 1.312 < .001 0.617
E1 < .001 0.500 > .1 0.075

AHMEM1+
RMinOS

O < .001 1.454 < .001 0.652
E1 .017 0.237 > .1 0.060

Table 6.3: Results of testing the hypothesis that having n mems is better than
n−1 mems. The tests were performed using paired sided t-test. The table shows
p values and effect sizes measured using Cohen’s d (Cohen, 1988). The first two
columns show results for the hypothesis that having two mems is better than
having just one mem. The second two columns show the same for comparison of
three versus two mems. The results that are not significant (α = 0.05) are high-
lighted. The table reports results from 100 testing sequences when the schemata
were learnt on 725 sequences.

of the case of three versus two mems on the level of episodes in all models and
encoding strategies. Table 6.4 shows results for a test of the hypothesis that
AHMEM1

8 is better than CHMM1. The results on the level of episodes are not
significant. On the other hand five out of six result on the level of observations
are significant. Table 6.5 shows result for test of the hypothesis that RMinOS
is better strategy than RMaxS. In this particular dataset RMinOS outperforms
RMaxS significantly only in recall on the level of episodes when one mem is used.

Effect of training data

The next series of graphs shows how the amount of training data influences recall
accuracy. Table 6.1 shows the results when all 725 sequences were used to train
the episodic schemata. The Figures 6.1 to 6.8 show how the models behave when
we use less training data.

The first two figures show performance of AHMEM1
8 with RMinOS strategy

on the level of observations (later denoted as AHMEM1
8 +RMinOS+O) (shown

in Figure 6.1) and on the level of episodes (Figure 6.2). RMaxS strategy in the
same model shows a similar trend on the level of observations, therefore we omit
this figure. However, AHMEM1

8 +RMaxS+E0 shows a different trend when the
recall with just one mem is consistently better with RMinOS, see Figure 6.3.

Now we will focus on CHMM1. Figure 6.4 shows CHMM1 + RMinOS +
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Strategy Level Mems p Cohen’s d

RMaxS

O

1 < .001 0.412
2 < .001 0.698
3 < .001 0.614

E1

1 > .1 0.063
2 > .1 0.130
3 > .1 0.218

RMinOS

O

1 > .1 0.262
2 < .001 0.700
3 < .001 0.618

E1

1 > .1 0.185
2 > .1 0.178
3 > .1 0.177

Table 6.4: Results of testing the hypothesis that AHMEM is a better probabilistic
model than CHMM. The legend is the same as in Table 6.3.

Arch. Level Mems p Cohen’s d

CHMM1

O

1 .061 0.266
2 > .1 0.129
3 > .1 0.053

E1

1 > .1 0.195
2 > .1 −0.036
3 > .1 0.041

AHMEM1

O

1 > .1 0.068
2 > .1 0.045
3 > .1 −0.019

E1

1 .012 0.315
2 > .1 0.018
3 > .1 0.004

Table 6.5: Results of testing the hypothesis that RMinOS encoding strategy is
better than RMaxS. The legend is the same as in Table 6.3.
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O, Figure 6.5 shows recall in the same model on the level of episodes (that is
CHMM1 + RMinOS + E0). As in AHMEM1

8 RMaxS strategy again shows a
similar trend and therefore we omit the related graphs.

Direct comparison of recall accuracy of AHMEM1
8+RMinOS and CHMM1+

RMinOS is shown in Figure 6.6. We can see that AHMEM1
8 performs consis-

tently better than CHMM1. The same applies also for the level of episodes
(Figure 6.7) when the models have enough training data. When the schemata
are trained on less than 100 sequences CHMM1 performs better. We omit the
same graphs with RMaxS strategy since the general trend is the same.

When comparing memory encoding strategies RMinOS is in most cases at
least as good as RMaxS. The only exception is AHMEM1

8 + O with three mems
shown in Figure 6.8.
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Figure 6.1: Influence of the amount of the training data on 1st-best recall accuracy
in AHMEM1

8 using the RMinOS strategy on the level of observations. We will
denote this combination as AHMEM1

8 + RMinOS + O. The ribbon shows a
variance of the data. Note that more mems lead to better recall. Adding more
training data helps universally when three mems are used as evidence. However,
the training data between sequences 625 and 650 seem to harm performance of
the recall with one and two mems. Also note that the variance of recall accuracy
with three mems decreases with more training data.
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Figure 6.2: Influence of the amount of the training data on 1st-best recall accuracy
in AHMEM1

8 + RMinOS + E0. Note higher variance compared to recall in the
same model on the level of observations (shown in Figure 6.1).
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Figure 6.3: Comparison of recall accuracy on the level of episodes in AHMEM1
8

when using RMinOS and RMaxS with just one mem.

6.1.5 Discussion

First of all we will summarize the most important experimental results. Then we
show how the recall is affected by a number of mems on one example day. The
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Figure 6.4: Recall in CHMM1
8 + RMinOS + O. Approximately after using 200

sequences for training the model does not improve. Compare this figure with
Figure 6.1 showing the same situation in AHMEM1

8, which can make use of more
training data.
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Figure 6.5: Recall in CHMM1
8 + RMinOS + E0. Compare this figure with Fig-

ure 6.1 showing the same situation in AHMEM1
8, which can make use of more

training data.

most important results are:
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(a) One mem
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(b) Two mems
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(c) Three mems

Figure 6.6: Comparison of recall accuracy between AHMEM1
8 and CHMM1 on

the level of observations when using RMinOS. These figures are superpositions
of the graphs from Figures 6.1 and 6.4.
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(a) One mem
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(b) Two mems
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(c) Three mems

Figure 6.7: Comparison of recall accuracy between AHMEM1
8 and CHMM1 on

the level of episodes when using RMinOS. These figures are superpositions of the
graphs from Figures 6.2 and 6.5.
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Figure 6.8: Comparison of RMinOS and RMaxS strategies on recall accuracy in
AHMEM1

8 +O when three mems are used as evidence for recall. This is the only
case where RMaxS performs better than RMinOS.

• Using more mems helps to achieve better recall accuracy.

• AHMEM1
8 is generally a better probabilistic model than CHMM1 when the

training dataset is large.

• However, when the training dataset is limited it might be better to use
CHMM since it seems to generalize better in this domain, see Figure 6.7
when using only fewer than 100 sequences for training.

• RMinOS is significantly better than RMaxS only in AHMEM on the level
of episodes when the recall uses only one mem. See Figure 6.3).

• RMaxS is much faster to compute than RMinOS. On this domain RMaxS
would be suitable for online use even with exact inference algorithm.

• Learning episodic schemata on more training examples helps more in AHMEM.
We may say that AHMEM has higher “capacity” than CHMM. Perfor-
mance of CHMM stops improving after using approximately 200 training
sequences, whereas AHMEM can make use of more training data. See
Figure 6.6.

• AHMEM is prone to over-fit to the training data. A possible example of
over-fitting is shown in Figure 6.1 where the accuracy of recall on the level
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of observations slowly degrades after once the model is learnt on more than
350 sequences. However, AHMEM is still better than CHMM in this case,
see Figure 6.6a.

Based on the results of these experiments we can suggest using AHMEM as the
primary probabilistic model of choice. RMaxS is slightly worse in recall accuracy
than RMinOS, however, it is much less computationally expensive. Therefore the
decision of which strategy to use depends on the time budget that can be spent
in the encoding phase.

However, note that these results hold only on the Monroe corpus. When ap-
plying DyBaNeM to new domain the same set of experiments should be performed
to evaluate performance of different models and memory encoding strategies.

Example of Recall

We now demonstrate how the number of stored mems affects the recalled sequence
on an example of one sequence. In an encoded example sequence only direct
observations (values of Ot) ended stored in the mems. However, this does not have
to be true in general. Fig. 6.9 shows probability distributions when considering
a different number of mems for recall of activities from the example sequence.
The mems are sorted according to the order in which they were created by the
encoding algorithm. Hence we can visualize how the forgetting would affect recall
since the third mem is the least significant one and it will be forgotten as the
first, whereas the first mem will be forgotten as the last. After forgetting all
the mems the model would return NAV IGATE V EHICLE for each time point
giving us 30% recall accuracy because this action appears three times in this
particular sequence. With one mem a remembered episodic schema is activated
and accuracy grows to 50%. The second mem further specifies the activated
schema and changes the most probable action not only in t = 9, which is the
mem itself, but also in t = 3, 5, 6 and 8, and the recall accuracy on the level
of observations rises to 100%. The third mem removes the last uncertainty at
t = 4. That is, the recall accuracy remains the same. However, calibration of
probabilities is even better than in the case with only two mems.
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Figure 6.9: Recall of observation probabilities for 10 time steps in AHMEM1
8 +

RMaxS model with an increasing number of mems used to reconstruct the se-
quence. Level of gray indicates probability of each atomic action at that time
step. The darker the color is the more probable the action is. The first fig-
ure shows P (Ot) for each time step in the remembered sequence when only
schemata are used, this is what the model would answer after forgetting all
mems; the second shows P (Ot|O0 = CLEAN HAZARD), recall with one mem;
the third P (Ot|O0 = CLEAN HAZARD,O9 = CUT TREE) and the fourth
P (Ot|O0 = CLEAN HAZARD,O9 = CUT TREE,O4 = REMOV E WIRE).
The mems are marked by circles, all the other values are derived from the schema
that is most probable given the recalled mems. Probability distribution for all
28 possible atomic actions is shown, even though some have zero probability at
every time step.
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6.2 Prototype DyBaNeM Connection to an IVA

6.2.1 Aim

In this section we demonstrate DyBaNeM’s applicability to the domain of IVAs.
We connected DyBaNeM to an IVA whose behavior resembles a background char-
acter from a MMORPG. The domain in this section is more limited than the
Monroe corpus used in the previous section. Therefore we will not perform de-
tailed tests as in the previous section. Instead we will analyze in detail how
DyBaNeM behaves in recall of one example day. We will show:

• That DyBaNeM can learn meaningful episodic schemata even in this do-
main. For instance, compared to the Monroe corpus beginnings of “days”
in this corpus are much more deterministic and episodic schemata encode
this knowledge.

• How DyBaNeM stores and recalls one day of the IVA’s activity. We will
compare differences in recall with two probabilistic models, CHMM1 and
AHMEM1

2.

• How DyBaNeM supports the dialog enhancing features discussed in Sec. 4.7.

• That the method has reasonable computational time requirements given
domains of moderate complexity, even though the problem of exact inference
in Bayesian Network is exponential in the network’s treewidth.

6.2.2 Dataset

As an input for the EM model we used corpora generated by Čermák (2013).
The corpora contains 23 “days” of simulated IVA hierarchical activity. The sim-
ulated days consist of up to 36 activities which will be used as observations in our
model. The IVA was controlled by hierarchical DMS based on AND-OR trees
formalism. An AND-OR tree describes decomposition of an IVA’s behavior into
goals and subgoals with possible alternatives of accomplishing each goal. The
IVA’s DMS also includes nondeterministic scheduling algorithm that creates a
desired schedule for each day. However, external interruptions from the 3D sim-
ulation may block completion of some goals. For instance, the IVA may miss
lunch even though he initially planned it. Therefore there are two sources of
nondeterminism, the scheduling algorithm and the 3D simulation.

The IVA is connected to a 3D virtual environment of Unreal Tournament
2004 (Epic Games, 2004). The simulation is run in a modified version of a map
DM-UnrealVille4. The agent was implemented in Java and the Pogamut plat-

4DM-UnrealVille homepage, URL: http://www.gamemaps.com/details/100 [9.5.2015]

108

http://www.gamemaps.com/details/100


Figure 6.10: Screenshot of a simulation showing the IVA performing an action
COOK in a virtual kitchen. The action is not animated in detail in our simula-
tion. The screenshot is rendered using UT2004 (Epic Games, 2004).

form (Gemrot et al., 2009) was used as a middleware for interfacing the IVA with
the environment.

Details of the IVA’s DMS are provided in (Kadlec et al., 2013) (sec 3.2) and
in (Čermák, 2013). This DMS is an extension of a work previously done by
Burkert (2009).

Every simulated day has a similar structure, the IVA gets up at home, he
brushes his teeth, washes his face, goes to the toilet; then he usually goes to work;
in the evening he may go to a theater or to a pub. He may also do the shop-
ping, clean the house and other activities resembling a normal life. In total the
simulation contains 37 different types of atomic actions and 19 types of first level
episodes (for a complete list of actions and episodes see the labels in Fig. 6.11).
This matches the daily routine of a background NPC from a MMORPG.

The generated stream of actions contains more levels of episodes but for this
evaluation we use only the first level of episodes which is sufficient for demon-
strating all the features discussed in Sec. 4.75. There are different plans for work-

5Experiments with multiple levels of episodes are described in (Kadlec and Brom, 2013b).

109



ing days and for weekends, which increases variability of the the IVA’s episodic
schemata. Not all days contained the same number of the atomic actions, the
longest one has 36 actions. To make all days equal in size we added a sufficient
number of padding actions DAY END to the end of each day. One downside of
this representation is that we lose mapping from indexes of time slices of the DBN
to real time. For instance, the 11th time slice can represent 11:30 am in one day
and 12:45 pm in another day. An advantage of this representation is that day
descriptions are more compressed, thus allowing for faster inference.

An alternative approach might be to have fixed mapping from real time to
time slices of the DBN. In this approach all days will be represented by the same
number of time steps. Therefore it will not be necessary to pad the days with
the extra symbol. Since the dataset used in this experiment does not contain
information about duration of actions measured in real time we have to adopt
the previous time representation.

Note that actions in this dataset correspond to well defined activities like
walking or washing hands. We do not use granularity of individual animations.
For instance, our action WALK might be further decomposed into a sequence of
steps interleaved by short stops. However, this would dramatically increase the
number of actions representing each day. Therefore we choose granularity that is
meaningful and still computationally inexpensive.

6.2.3 Method

Since the size of this corpora is relatively limited we use different testing schema
than in the previous experiment. Here we use all 23 days to learn the episodic
schemata. After that we encode one day of activity with respect to this schemata.
Note that the same day was already used to train the schemata (together with
another 22 days).

This setup assumes that all 23 days were stored in detail in some temporary
store. Then DyBaNeM learns the episodic schemata for all days and it computes
mems for all days with respect to these schemata. After that the temporary store
might be erased. This setup has also its justification, it might be viewed as a lossy
compression for episodes. Or in other words, we assume that the agent creates a
stand alone episodic schemata for those 23 days and he encodes the days relative
to his schemata.

We will test both CHMM1 and AHMEM1
2 on this task. However, we will

report only results with the RMaxS since it is better suited for real time use as
was demonstrated in the previous experiment. We will compute three mems for
the stored day as in the case of the Monroe experiment.

Steps needed to re-run these experiments are described in Appendix A.4.
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Figure 6.11: Recall of the stored day in AHMEM when three mems are used for
reconstruction.
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Figure 6.12: Recall of the stored day in AHMEM when two mems are used for
reconstruction.
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Figure 6.13: Recall of the stored day in AHMEM when one mem is used for
reconstruction.
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Figure 6.14: Recall of the stored day in AHMEM when no mem is used for
reconstruction.
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Figure 6.15: Ground truth of the stored day.
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Figure 6.16: Comparison of recall on the level of episodes when three mems are
used. AHMEM1

2 correctly recalls the IDuties episode whereas CHMM1 forgets
it.
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6.2.4 Results

Learning the schemata in AHMEM1
2 took around 15 seconds. Computing each of

the three mems took at most 0.1 of a second. Learning the schemata in CHMM1

took around 1 second. The time needed to compute each mem was roughly the
same as in AHMEM1

2.
On the level of observation the accuracy of both models is the same. When

using only one mem to reconstruct the whole day, 58% of atomic actions were cor-
rectly recalled, with two mems it was 69%, and with three mems 80%. However,
on the level of episodes, AHMEM1

2 performed better than CHMM, see Table 6.6.
Three mems computed by AHMEM1

2 are O15 = SEE A PLAY , O22 = WAIT ,
O5:7 = CLEAN . The mems computed in CHMM1 are O15 = SEE A PLAY ,
O10 = SEE A MOV IE, O22 = WAIT .

Figures 6.11 — 6.14 show recall on the level of episodes and observation in
AHMEM1

2 when three mems (6.11), two mems (6.12), one mem (6.13) or no mem
(6.14) were used to aid the recall. Since on the level of observations both models
perform the same we omit the same graphs for CHMM1. However, we compare
recall in AHMEM1

2 and CHMM1 in the case when three mems are used since here
the models differ on the level of episodes, see Figure 6.16. Text summary of the
recall in AHMEM1

2 is in Table 6.7.
Figure 6.15 shows ground truth of the stored day.

1 mem 2 mems 3 mems

AHMEM1
2 63.9% 66.7% 88.9%

CHMM1 58.3% 69.4% 72.2%

Table 6.6: Accuracy on the level of episodes for recall of the 23rd day in the two
compared probabilistic models.

6.2.5 Discussion

The evaluation indicates that computational cost is reasonable. Learning the
schemata is done only once off-line and time necessary for computing three mems
(0.3 s) is also acceptable. Note that this time might be decreased by using approxi-
mate inference techniques. Figures 6.11 and 6.17 illustrate how DyBaNeM fulfills
the requirements from Section 1.3 that were further discussed in Section 4.7.
These requirements are: 1 — Summarization; 2 — Clarifying questions; 3 —
Expressing degree of certainty; 4 — Believable mistakes in recall; 5 — Recall of
interesting details first.

Figure 6.11a shows all high level episodes recalled for the day of interest.
Level of gray indicates probability of each atomic action/episode at that time
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Mems Fig. Verbalized recall
3 6.11 Morning routine. Crafting. Household duties. Gallery visit.

Theater. Dinner.
2 6.12 Morning routine. Maybe crafting. After that shopping and

possibly gallery visit. Theater. Dinner.
1 6.13 Morning routine. Maybe crafting. After that shopping and

possibly gallery visit. Theater. Dinner, but I do not remember
any details about it.

0 6.14 Morning routine. Work. Some time during the day there was
lunch and dinner.

Truth 6.15 Morning routine. Crafting. Household duties. Gallery visit.
Theater. Dinner.

Table 6.7: Hypothetical verbalized recall of high level events based on Figures
6.11 – 6.14. Text in italics highlights where the recall differs from recall when
using one more mem. The list line shows ground truth that is the same as recall
with three mems. The modal verb “maybe” is used whenever there are multiple
possible episodes with high probability.
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Figure 6.17: Entropy of recall in AHMEM1
2 with three mems.
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step. The darker the color is the more probable the action/episode is. This
summarization capability fulfills requirement 1. Entropy depicted in Figure 6.17
shows how certain the IVA is about his memory for those events (requirement 3).
The more alternative recalled actions/episodes there are for each time step the
higher the entropy is. Figure 6.11b shows probability of all atomic actions. This is
the second level of hierarchy that allows for clarifying questions (requirement 2).
Requirement 4 is met, e.g., by “fuzzy” transition around time 9: the model is not
sure when exactly the switch from household duties to a gallery visit happened.
Fulfilling requirement 5 follows from the design of the encoding algorithm. It
is manifested by the fact that none of the created mems is in the beginning of
the day (recall that the three mems for this sequence computed in AHMEM1

2

are O15 = SEE A PLAY , O22 = WAIT , O5:7 = CLEAN). All mornings are
the same (brush teeth, wash face and go to the toilet). Therefore there is no
surprise associated with observing this sequence and they can be reconstructed
from episodic schemata. Now suppose that an observing agent (Bob) should recall
only the single most interesting detail about an observed agent’s day (Alice). Bob
would tell us that Alice went to see a play, which is the content of the first mem.
Details about Alice’s morning routine would not be considered interesting by
Bob. However, he would still be able to guess what Alice did in the morning.

Similarly to the experiment with the Monroe dataset we can inspect the effect
of forgetting for recall of this particular day. Figures 6.12 — 6.14 show how recall
in AHMEM1

2 degrades as fewer mems are used as evidence, Table 6.7 summarizes
the recall in text.

We can see how the details are gradually forgotten. When only two mems
are used for recall the household duties episode (IDuties) would be completely
forgotten. Instead of this the IVA would incorrectly recall the shopping episode
(similarly to CHMM1 with three mems, see Fig. 6.16).

Using only one mem results in forgetting details of the evening. Predictions
of atomic actions around t = 20 are now much more “blurred”.

When using no mems at all the model has to base its recall solely on the
episodic schemata. Since the agent which generated the dataset used to train
the schemata was going to work five days a week the schema for an average day
consists mainly of getting up, working and having lunch and dinner during the
day. In this case only the morning routine would be recalled correctly.

Note that when CHMM1 is used the IDuties episode starting at t = 4 would
not be recalled when only three mems are used for recall, see Figure 6.16. CHMM1

would incorrectly output IShop as the most probable episode, IDuties would be
the second most probable guess. AHMEM1

2 does a better job in this case, see
Fig. 6.16.
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6.3 Summary

Both the experiments presented in this chapter have proved applicability of Dy-
BaNeM framework to the domain of EM modeling in IVAs. The framework ad-
dresses the initial requirements and it has acceptable computational requirements
even in the prototype implementation that is not optimized for speed. The first
experiment thoroughly compared several DyBaNeM variants on relatively large
activity corpora. It also examined the effect of using increasingly more training
data. In the second experiment we tested applicability of DyBaNeM in a dif-
ferent domain with only a limited amount of training data. We also performed
qualitative analysis of gradual forgetting of one day.
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Chapter 7

Discussion

This chapter discusses how DyBaNeM should be used by a third party developer
willing to extend his application with EM capabilities. Further we discuss that it
is not clear whether Bayesian statistics is the right theoretical basis for explaining
human behavior. We also show how DyBaNeM can be interpreted as a lossy
compression algorithm for episodes and what class of probabilistic models can be
used in DyBaNeM instead of AHMEM and CHMM.

7.1 Third Party Developer’s Perspective of DyBaNeM

This section describes steps that have to be taken by a third party developer to
extend his application (e.g., an IVA) with DyBaNeM. It is a cookbook that can
be used by the developer without deep knowledge of DyBaNeM’s internals.

The first question is whether DyBaNeM is the right tool for the developer’s
needs. Section 2.3 lists several models that have already been applied to vir-
tual agents and they might be reasonable alternatives to DyBaNeM. DyBaNeM’s
strength is that it 1) accounts for uncertainty in observations; 2) automatically
recognizes high level behavior of the other agents; 3) reconstructively recalls the
past episodes as a mixture of exact knowledge about the past stored in mems and
a general schema of activities, thus some events may be filled from the schema and
this can create false memories (Loftus and Pickrell, 1995; Brainerd and Reyna,
2005).

Now we will sketch the steps than a developer has to take in order to connect
DyBaNeM with his own agent.

1. Decide encoding of the inputs:

(a) First, the developer has to specify what properties of the environment
will be made available for the encoding and on what granularity they
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will be sampled. Observable properties are bound to the Ot random
variables in the probabilistic model. Thus this step includes specifi-
cation of the domain for Ot. The domain can contain only actions
of an observed agent as in the experiments in Sections 6.1 and 6.2.
However, observations can have more complex internal structure. For
instance, each observation can be tuple 〈action, used object〉 and the
structure of the graphical model might be adjusted accordingly. There
might be two variables Oaction

t and Oobject
t and possibly a probabilistic

model P (Oaction
t , Oobject

t ) binding those two. Discussion relevant to this
topic is in Section 4.1.5. Note that extending the probabilistic model
might increase its computational complexity. Concerning granularity
of the represented observations the best practice is to omit the unin-
teresting details and represent only actions that might be important
for the IVA’s behavior. For instance, representing every single step as
an atomic action is probably unnecessary. The whole sequence of steps
might be replaced by a single WALK action. In general this leads to
a discussion on how to map time, which is continuous, to a set of finite
observations that are used as inputs of the probabilistic model. In the
experiment from Section 6.1 we mapped each “day” to a fixed length
sequence of observations. In the second experiment (see Section 6.2.2)
we used a different strategy where every day was represented by a
variable number of observations and the sequences were padded by a
special symbol to have the same length. Another important decision
is how many levels of episodes will be stored. A single level of episodes
is a reasonable starting point since it introduces a simple hierarchy in
behavior and the model is still relatively fast to compute.

(b) Second, decide how long the sequence of actions to be stored in the
model will be. The sequence might contain a whole day or only several
hours. The encoding algorithm uses the assumption that all observa-
tions are stored in an STM and then they are all encoded at once.
The advantage of using a longer time window (say one day) is that all
events that occurred in this day will be considered at the same time
in the encoding algorithm. It is possible that an observation made in
the morning (i.e. PHONE CALL WITH FRIEND) has an impact
on events in the evening (CINEMA V ISIT ). Even though captur-
ing these long term dependencies in the probabilistic model might be
difficult it is still possible (AHMEM can in principle express this de-
pendency). When one uses the whole day as a time window then both
the encoding and retrieval processes can take advantage of this depen-
dency. However, if the dependent events fall into two different time
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windows this ability disappears. The disadvantage of using a longer
time window is that exact Bayesian inference over longer sequences
quickly becomes intractable. Sometimes several observations can be
grouped together thus effectively shortening the sequence. Still the de-
veloper has to weigh the pros and cons of these conflicting tendencies.

2. Implement the storage mechanism. Once the mems for the last time win-
dow are computed they have to be stored somewhere and indexed with
cues used in later retrieval. DyBaNeM does not come with any storage
mechanism thus it is the developer’s decision whether to use in memory
data structures like hash maps or some persistent store implemented as,
e.g., an SQL database. DyBaNeM does not cover this phase since it may
vary considerably depending on the application’s needs. IVAs running for a
long time may need a complex database system, whereas for simpler agents
in memory hash maps might be sufficient. It should be noted that forget-
ting what takes place during storage must be also implemented by the end
developer. For instance, the developer can decide that no forgetting depen-
dent on time passed is desirable. The agent simply computes N mems for
each time window and those mems remain intact. A different option might
be exponential forgetting, as discussed in Section 4.3. An efficient way of
implementing this type of forgetting is discussed by Derbinsky and Laird
(2012).

3. Decide which cues will be used for indexing of the created mems in the
permanent storage. This can be a time when the episode happened, ex-
ternal context, etc. The cues should be determined by requirements on
the retrieval. For instance, when the agent will mostly answer questions
like: “What were you doing X time units ago?” then the mems have to be
indexed by time.

4. Obtain episodic schemata. The schemata can be either directly specified by
an expert (the expert specifies a probabilist model by hand) or preferably
they can be learned from annotated example episodes. Details of learning
in Bayesian models are discussed in Section 4.1.3. Annotating the example
episodes by hand might be a time consuming task. Fortunately there is one
convenient alternative unsupervised method for obtaining the annotated
data. One can exploit the agent’s own DMS as long as it uses hierarchy to
express the agent’s behavior (popular hierarchical DMSs are listed in Sec-
tion 2.6). For every time step one can log trace through the agent’s currently
executed hierarchical goal (e.g., COMMUTE → WAIT FOR BUS →
READ NEWSPAPERS) and also store all the necessary observations
from the environment (e.g., {central station, the times}). Then the episodic
schemata can be learned from this log created by the agent itself. A similar
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approach was already used in (Berzan and Scheutz, 2012). The downside
is that the agent can only recognize episodes that are coded in his DMS.

5. Pick the probabilistic model used in DyBaNeM and the encoding strategy
(RMinOS or RMaxS). The models used in the experiments are CHMM and
AHMEM. One can start with the more complex AHMEM. If it later shows
that the computation is too demanding (e.g., it does not meet real-time re-
quirements) then one should try the less expressive CHMM. Another reason
for picking CHMM might be that it generalizes better when there are only
limited training data. See results and discussion of the experiment from
Section 6.1. However, DyBaNeM can work with other types of probabilis-
tic models as well, for review of suitable models and deeper discussion of
this topic see Chapter 7.4. Based on the results of our experiments, using
AHMEM with RMaxS seems to be a reasonable starting point.

6. Decide when the storage and retrieval take place. For instance, an IVA can
buffer all observations from one day in a short term store. Then during the
“night” encoding algorithm computes mems describing the day. Retrieval
can be initiated when the IVA is asked to provide details of a specific day
or when the IVA needs to get some information for its internal decision
making.

7. If the model is too slow go back to step 5 and try a simpler probabilistic
model or use some approximate technique for inference in DBNs. Luckily
the inference engine SMILE used by DyBaNeM supports several exact and
approximate inference algorithms out of the box. Namely these are junction
tree algorithm (Huang and Darwiche, 1996), Pearl’s algorithm (Pearl, 1986),
logic sampling (Henrion, 1988), likelihood sampling (Fung and Chang, 1989),
backward sampling (Fung and Favero, 1994), AIS (Cheng and Druzdzel,
2000) and EPIS (Yuan and Druzdzel, 2003). However, accuracy of the
approximation algorithms has to be carefully assessed in each domain.

Summary of the overall system and modules provided by DyBaNeM and those
that have to be implemented by the developer is in Fig. 7.1.
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Figure 7.1: Third party developer’s perspective of DyBaNeM. Dashed orange
modules are provided by DyBaNeM, solid light blue components have to be im-
plemented by the third party developer. This figure is an extension of Fig. 3.1
where you can find additional details.

7.2 Is Memory Bayesian?

One of the core assumptions of DyBaNeM is that the memory encoding and
retrieval processes follow laws of Bayesian statistics. It is questionable whether
human memory works this way. Even though Bayesian models proved to be
useful in the cognitive science community (for a selection of papers inspired by
Bayesian statistics see, e.g., (Doya et al., 2007; Chater and Oaksford, 2008),
or see FTT discussed in Section 1.4) there are still phenomena that are better
described by different theories. If we take analogy from human decision making,
it is well known that humans do not act rationally (that is, following Bayesian
rules), they rather use some heuristics (Kahneman et al., 1982). A prominent
example of this general approach might be the prospect theory (Kahneman and
Tversky, 1979). In recent years there have been attempts to find more coherent
explanations of these heuristics, e.g., by using mathematical theories applied in
quantum physics (Busemeyer et al., 2011).

Similarly, the RMaxS and RMinOS strategies that try to model rational rules
for mem selection are only approximations of reality. Additionally, even the re-
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constructive process employed in activity recognition and memory retrieval (com-
puting P (episodes|observations) and P (episodes|mems) respectively) might be
in fact driven by some heuristics and not by Bayesian computations as is assumed
in DyBaNeM.

7.3 Compression Algorithms Analogy

As already noted in Section 1.4 the Fuzzy-Trace Theory (FTT) (Brainerd and
Reyna, 2005) states that human memory uses two distinct modes for encod-
ing episodic memories. The vivid detailed memories are encoded as verbatim,
whereas less detailed memories take the form of gist, a general schema of the en-
coded episode. For instance, gist might be professor’s office and verbatim can be
photography on professor’s table. This leads to the idea that EM may be viewed
as a natural type of lossy compression algorithm for events. There are events
that we can recall in great detail, e.g., the terrorist attacks on 9/11. This kind of
experience is referred to as a flashbulb memory (Brown and Kulik, 1977). On the
other hand other more recent but probably less important events are forgotten
much faster. One probably recalls what he/she had for dinner yesterday, but
recalling a menu from last week might be a much harder task. This gradual for-
getting guided by time passed and importance of events might be a mechanism
that humans have developed throughout evolution and which helps us retain the
important events and at least reasonably guess about the others (“I probably
had pizza, I used to have pizza on Tuesdays.”). This forgetting process is closely
related to the lossy compression algorithms from computer science.

In this section the link between compression algorithms and DyBaNeM will
be outlined. First, types of compression algorithms for different types of data will
be reviewed, second, DyBaNeM will be presented as a type of lossy compression
algorithm for stories.

7.3.1 Types of compression

Generally, a compression algorithm works as follows: an input I is transformed
by the encoder to a compressed representation C, that is later decoded to output
O. The goal of the compression is to create a compressed representation such that
Size(I) > Size(C). When I = O, we call the method lossless compression. On
the other hand, when I 6= O but O “is close” to I, we call it lossy compression.
Some details of the input may be lost during the compression but the output O
should resemble the original.

There are lossless compression algorithms that can compress any type of data,
be it a text, audio, an image or video. This category includes basic algorithms
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Data type Algorithms
Image JPEG, PNG
Video MPEG
Audio MP3
Text/Stories No standard method

Table 7.1: Lossy compression algorithms for different types of data.

like run-length encoding (RLE)1 or dictionary based LZF (Ziv and Lempel, 1978).
A different family of lossless algorithms are those based on the arithmetic cod-
ing (Moffat et al., 1998) like prediction by partial match (PPM) (Bell et al., 1989)
and its various recent extensions, e.g., PAQ6 (Mahoney, 2005). These are among
the best performing lossless algorithms when focusing on the compression ratio.

On the other hand, there is no general purpose lossy compression algorithm.
Lossy algorithms use characteristics of the compressed data and the way humans
perceive this particular type of data. For instance, algorithms for video compres-
sion may use facts that: 1) two consecutive frames will be probably similar; 2)
slight changes in color will be hardly perceived. Similarly, in audio compression,
cropping high frequencies has only a little impact on the decompressed output.
Table 7.1 shows examples of algorithms for different types of data. The interesting
fact is that there is no standard method for lossy compression of episodes.

If we think of a hypothetical episode lossy compression algorithm, one may
see a connection to text summarization. Its goal is to either rephrase the given
text or just pick the most important sentences (e.g., TextSum algorithm (Erkan
and Radev, 2004), for review see (Das and Martins, 2007)).

7.3.2 DyBaNeM as a Lossy Compression Algorithm for Activities

In this section, we argue that DyBaNeM can be seen as a type of lossy compression
algorithm for episodes. DyBaNeM gets an observed episode on the input and
transforms the episode into a list of mems that is shorter than the original episode.
With the use of the episodic schemata the mems can be used to reconstruct the
episode. However, some details of the episode might be changed due to forgetting
and imperfect schemata. The core assumption is that the surprising events have
more information than the less surprising ones. For instance, if every day begins
with the same routine, it makes sense to store the first event that deviates from
the most probable sequence of events.2

1RLE: URL: http://en.wikipedia.org/wiki/Run-length_encoding [31.12.2013]
2This is a similar usecase as featured in “5. Measuring interestingness of events” from

Section 4.7.
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The difficulty in interpreting DyBaNeM as a compression algorithm is that not
only mems but also the episodic schemata θ have to be stored (or transmitted).
Episodic schemata can be seen as a counterpart of a dictionary in dictionary
based algorithms like LZF. Even though the exact content is different, they play
the same role. Since storage of θ requires far more space than storage of one mem
this approach is feasible only if a large number of episodes will have to be stored.
The method can be considered as compression only if the following statement
holds:

Size(original episodes) > Size(episodic schemata) + n ∗ Size(one mem)
(7.1)

Where n is a number of stored mems. Now imagine that Bob wants to re-tell
the story to Alice. Bob can tell Alice every even uninteresting detail. Or he can
tell her only the interesting details and hope that Alice has the same episodic
schemata as him and therefore she can reconstruct the whole story. This can be
true in the real world where people from the same culture can have almost the
same schemata due to cultural influences3. Thus when Bob encodes the episode
with respect to his own schemata and subsequently he tells her only the content
of these mems Alice can use her schemata to fill in the missing events. Only a
small number of falsely reconstructed events should emerge. Bob picks only the
interesting details and he knows that the rest of the episode follows from his own
schemata and thus also from Alice’s ones.

In some usecases the limitation of storing the schemata might be only a minor
problem. Imagine a MMORPG with tens of thousands of IVAs. Among the
IVAs there might be one thousand lumberjacks that can share the same episodic
schemata. The schema will consist of getting up, going to a wood, chopping
down trees, having lunch in the wood, getting the trees to a sawmill and going
back home. Memories of all lumberjacks will be encoded with respect to the
same schemata thus its size will be minimal compared to the aggregated size
of memories of all lumberjacks. This way DyBaNeM can enhance not only the
players’ experience, but it can also provide benefits in the form of reduced storage
space needed for IVAs’ EMs.

7.4 Activity Recognition Probabilistic Model

The activity recognition module is one of DyBaNeM’s main subprocesses. Its
current implementation, as presented in Section 4, uses two DBN topologies:
CHMM and AHMEM.

3For examples of cross cultural differences see, e.g., (Bartlett, 1932).

128



In this section we will discuss what other types of probabilistic activity recog-
nition models can be used in DyBaNeM.

As can be seen from the review in Section 2.5 there is a wide range of al-
gorithms applicable to activity recognition. Any of the reviewed activity recog-
nition algorithms can be used for the activity recognition/perception phase in
DyBaNeM. That is the phase where Bob observes Alice’s behavior and he infers
what her high level goals are (Bob computes P (episodes hierarchy | observation)).
However, this is not the only place where the probabilistic model is used in Dy-
BaNeM. Besides perception, it is also used in encoding where the difference be-
tween what Bob has seen and what he would recall with mems computed so
far is repeatedly measured, i.e., the difference between P (episodes hierarchy |
observation) and P (episodes hierarchy and observations | mems). In the end, the
probabilistic model is also used in reconstructive recall to once again compute
P (episodes hierarchy and observations | mems).

The last two use-cases require usage of a model that is able not only to recog-
nize episode hierarchy given the observation, but that is also able to regenerate
the observations given incomplete evidence, i.e., a list of mems. This leads to
the concept of generative and discriminative models in machine learning (Ng and
Jordan, 2001).

The distinction between generative and discriminative models can be ex-
plained as follows. When translated to the probabilistic setting, generative models
learn joint probability P (X, Y ) of inputs X and the target classes Y . Using the
Bayes rule, both P (Y |X) and P (X|Y ) can be computed. The generative models
make no distinction between inputs and target classes. On the other hand, so
called discriminative models learn only the distribution P (Y |X). Thus for any
given input x they can compute probability of the target class y. A generative
model can do the same and additionally generate a random example of input x
that belongs to y. In general, discriminative models have asymptotically lower
prediction error, however, generative models perform better when only a limited
number of training examples are available (Ng and Jordan, 2001).

In the context of activity recognition popular generative models are, e.g.,
DBNs, whereas discriminative models are, e.g., CRFs or neural networks.

Therefore DyBaNeM can work with any generative model presented in sec-
tion 2.5. For instance, any model expressed as DBN can be used. AHMEM and
CHMM used in experimental evaluation are two examples of such models, how-
ever, they can be replaced with HHMM, HSMM, CxHSMM or any other similar
model.
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7.5 Summary

In this chapter we have discussed steps that have to be taken by the third party
developer in order to apply DyBaNeM in a new application. We touched on
representation of observations and granularity of time. We emphasized that it is
important to choose a model that is efficient from a computational perspective.
For instance, it is advised to use the simplest possible model that fulfills all
requirements of the application.

We also showed that under some assumptions DyBaNeM can be considered
as a form of lossy compression for episodes. Mems store only interesting details
that deviate from known schemata and the rest of the episode can be probably
easily reconstructed. In the end we discussed possible alternative probabilistic
models that might be used to represent the episodic schemata.
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Chapter 8

Future Work

Future work on the DyBaNeM can come along several axes. These are:

1. Obtaining realistic data for schema learning.
2. Extending the core functionality.
3. Applying the model to different domains.
4. Testing the model with human users.
5. Implementing a game prototype.
6. Integrating the model in a broader agent architecture.

8.1 Data for Schemata Learning

8.1.1 Learning episode schemata from natural activity datasets

In the current experiments the episodic schemata were learned on data generated
by the simulation. Streams of actions generated in these simulations are inher-
ently restricted by the nature of behavior/plans implemented by the program-
mer. It would be better if the schemata could be learned on real activity corpora.
However, there are not that many hierarchically annotated corpora of human ac-
tivities. There are annotated corpora that come from the field of activity recog-
nition, for instance, PlaceLab (Intille et al., 2006)1 or Huynh’s dataset (Huynh
et al., 2008)2. The disadvantage of these datasets is that they usually contain
only relatively low level activities (walking, sitting, etc.) over a limited time pe-
riod. A dataset with higher level activity annotation was created in our previous
work (Kadlec and Brom, 2011), this dataset contains nearly three months of data
collected on a mobile phone with hierarchical annotation that uses on average

1PlaceLab URL: http://architecture.mit.edu/house_n/data/PlaceLab/PlaceLab.htm
[15.11.2013]

2URL: http://www.ess.tu-darmstadt.de/datasets/tud-ubicomp08 [15.11.2013]
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three levels of abstraction. An interesting source of data might be annotated
videos. A recent EU funded project Codmos (Cataldi et al., 2011)3 aimed at
creating tools for semantic annotation of videos. Unfortunately besides creating
the annotation tools and methodology only a few hours of video were annotated
in this project.

A different option might be to use unannotated activity datasets (i.e., Nokia’s
Lausanne Data Collection Campaign (Kiukkonen et al., 2010)4) and employ some
semi-supervised method for activity recognition. Thus the annotation would be
the result of joint work of a computer program and a human. This way we can
obtain several years of annotated activities.

8.1.2 Common sense reasoning

Common sense reasoning provides a qualitatively different approach that tries to
mine activity schemata from common sense data sources available on the Inter-
net. One of the first examples of this approach is LifeNet (Singh, 2003), which
tries to translate a common sense corpora to a Markov network which is a type
of undirected graphical model. Mined activity models were also used to boot-
strap activity recognition in (Wyatt et al., 2005). There are general purpose
engines mining relations from natural language sources like Wikipedia (i.e., Re-
Verb (Fader et al., 2011)5). The mined relations include frequency counts, thus
they can be easily translated into probabilities. The final step is to figure out
how to translate general relations into episodic schemata, that is, to identify rela-
tions that describe time precedence of activities and their hierarchical structure.
Alternatively one could use some already existing activity ontologies (Akdemir
et al., 2008; Chen and Nugent, 2009) and translate them into parameters of the
probabilistic model.

8.2 Extending the Core of DyBaNeM

This section summarizes possible extensions of DyBaNeM’s computational core.

8.2.1 Connecting different probabilistic models

As was already discussed CHMM and AHMEM are not the only possible DBN
architectures that can be used in DyBaNeM. Thus extending DyBaNeM with any

3URL: http://cadmos.di.unito.it [12.11.2013]
4Lausanne Data Collection Campaign URL: https://research.nokia.com/page/11367

[15.11.2013]
5URL: http://openie.cs.washington.edu [12.11.2013]
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of the models reviewed in Chapter 7.4 might be a future work. Or even better,
the structure of DBN itself can be learned from the data (Boyen et al., 1999;
Abbeel et al., 2006; Campos and Ji, 2011).

8.2.2 Unsupervised schemata learning

The current experiments supposed that the training data contained not only
observations but also the high level episodes. That is, all observations were
hierarchically labeled with episodes. In an unsupervised setting both the labels for
episodes and their starting and ending times are missing. Thus when Bob watches
Alice he has to figure out when she probably finished some episode, how many
episode schemata are needed to describe her activity and what are the instances
of the same episode schema. There already exist algorithms for unsupervised
sequence segmentation (Seldin et al., 2001) based on statistical regularities of
the sequences. A different approach to segmentation in the context of activities
might be to use heuristics from psychological literature. For instance, boundaries
between episodes often correlate with features like change in movement direction
or change in the object of the behavior (see (Zacks and Tversky, 2001) for in
depth discussion). One can imagine that this heuristic event segmentation might
be used in conjunction with the AHMEM model. Values of H i

t will be set from
the heuristics and EM algorithm will be used to compute the most probable
episode labels6. One assumption of the previous approach is that the number of
possible activities is known in advance (|D(Ei)|). A further extension could be
the estimation of the optimal number of episodic schemata from the training data
via nonparametric Bayesian methods (Orbanz and Teh, 2010). More specifically
an infinite HMM (Beal et al., 2001) might be a promising option.

8.2.3 Different recall strategies

The current model uses marginal probabilities at each time step as the basis of
its recall. As already discussed in Section 4.4 there are other options, for instance
MAP estimate. Alternatively one can use only random walk (Pearson, 1905)
that matches constraints given by mems and it is drawn from the probabilistic
distribution given by the episodic schemata. This way the agent’s recall can
be slightly different each time but arguably still believable. The problem of
generating Markov chain random walk with additional constraints is addressed
by Pachet et al. (2011).

6Note the learned labels will be purely abstract in this case (i.e. EPISODE 7). Mapping
of these abstract labels to human readable has to be done later.
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8.2.4 Fuzzy time index of mems

Currently each mem has precise time information. However, this does not match
our expectation of the human memory (Larsen et al., 1996). Thus time of each
mem might be specified by a probabilistic distribution (for instance Gaussian)
rather than an exact time index. One of our previous EM models already ad-
dressed this issue (Brom et al., 2010).

8.2.5 Transfer of episodic schemata across domains

It might also be interesting to employ techniques of transfer learning (Pan and
Yang, 2010) and try to transfer schemata learned in one domain to another do-
main with minimum of training examples. This would decrease development time
needed to connect DyBaNeM equipped IVA to a new environment. The general
question is if there are some “meta activity schemata” that encode structure com-
mon to similar episodic schemata in different domains. Parameters of those meta
schemata could be learned in virtually any domain with human activity. Then
they could just be transferred to the target domain where fewer training examples
should be needed since the schemata will be already pre-trained on a different
domain. Transfer learning can help to deal with the fact that different domains
use different vocabulary to describe the activities. Each domain can have a dif-
ferent number of atomic actions and episodes and even semantically equivalent
actions might use different names (e.g., WALK and GO). Transfer learning can
identify the common structure in both domains (e.g., WALK in domain A is the
same action as GO in domain B) and thus speedup learning in the new domain.

8.3 Testing the Model With Human Users

There are two main possible approaches to testing the model with humans.

8.3.1 Fitting human data

In this approach the research task will be to compare recall of humans and recall of
DyBaNeM when both are provided with the same input real life data. The model’s
parameters will be fitted on a training dataset and accuracy of its predictions
will be assessed on the testing dataset. This would be an ideal scenario for
testing any episodic memory model. However, there is one inherent drawback
to this approach. Humans will have some episodic schemata that they have
acquired throughout their lives prior to the beginning of the experiment. But
the computational model will have to learn the schemata only on the input data.
This will clearly disadvantage the computational model. One way of overcoming
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this limitation may be to learn the schemata on external data as discussed in
Section 8.1.

To eliminate this discrepancy one could design a completely artificial environ-
ment similar to the abstract grammar learning task used by Knowlton and Squire
(1996). The grammar would be initially unknown to both humans and the model,
thus they would both build the schemata from the same input data. Transfer of
knowledge from normal life would be impossible. The disadvantage of using an
artificial domain is that humans would probably use a different memory system
than the EM that they employ for long term memories from real life. This type
of evaluation might be interesting for the community of computational cognitive
science.

8.3.2 Measuring believability

A different experiment setup can use a modified Turing test (Turing, 1950) where
human subjects and the memory model would have the same inputs and then
humans will judge whether DyBaNeM’s recall seems believable to them. Com-
pared to the previous setup this one focuses more on believability of the recall
than on its exact match to human data. However, believability is exactly what
is required by the majority of applications utilizing IVAs.

8.3.3 Personalized memory for social services

A promising research direction could be providing the memory model with per-
sonal histories that users of social media like Facebook, Google+ or Twitter gen-
erate. Feeds of profile updates can be connected with a person’s location tracked
via a mobile phone, with e-mail communication, instant messaging, check-ins
on Foursquare7, etc. When these sources are combined together they create a
digital diary of one’s lives. More and more people are now “living in the net-
work” (Lazer et al., 2009), meaning that they either consciously (i.e. Facebook
updates) or unconsciously (i.e. logs of phone calls) create digital footprints of
their life. Thus experiments similar to Wagenaar’s pioneering autobiographic
memory study (Wagenaar, 1986) can be now conducted on a significantly larger
scale.

8.4 Applying the Model to Different Domains

Even though DyBaNeM was formulated as a model for IVAs it can be applied to
any relational domain.

7URL: http://foursquare.com [15.11.2013]
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8.4.1 Music

One particularly interesting domain is music. In this domain episodic schemata
would change to schemata of different musical genres. These can be trained on a
library of MIDI files. The trained DyBaNeM can be used to memorize a song and
replay it after some time. Hopefully the replay will capture important aspects of
the song and guess the rest from the inferred music genre. This ability would be
an extension of systems like Sony’s The Continuator (Pachet, 2003). Modeling
various types of constraints needed to generate music is a well studied problem,
see (Pachet et al., 2011; Boulanger-Lewandowski et al., 2012; Roy and Pachet,
2013)

8.4.2 Generic relational domains

Domains like episodes or music are inherently temporal. However, DyBaNeM can
be applied to any domain that can be expressed in a BN (note that DBN is a
only a sub-type of generic BN). The key idea of measuring discrepancy between
recall given mems computed so far and the observation will work equally well.
Thus the model can be used not only for episodic memories but also for storing
semantic facts.

8.5 Implementing a Game Prototype

This work has shown how DyBaNeM can be applied to activity streams of IVAs.
Creating a more complete virtual environment where the human user can interact
with the IVAs and ask them about their memories for past events would be a
natural extension of this initial work. Ideally the environment should resemble a
small fraction of a MMORPG inhabited by multiple types of agents (i.e., wood-
cutter, soldier, priest, merchant, etc.) each with a slightly different set of goals
and daily schedule. Thus each agent type would have its own episodic schemata
influenced by its daily habits. Most of the simulated days will be alike. However,
from time to time an unexpected event like a siege of the town will happen.

This environment would serve two purposes at once. First, it will be suitable
for conducting thorough user studies where human subjects would judge believ-
ability of an IVA’s recall. Second, it will be a standardized testbed where one
would be able to study how different types of agents interpret actions of the other
agents. As well as how they remember their own activity and activity of observed
agents. The difficulty in interpreting activity of other agents is that observations
will be usually sparse, thus there will be more possible episodes explaining the
observations.
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8.6 Integrating the Model in a Broader Agent Architecture

An interesting future work might be integration of DyBaNeM in a more generic
cognitive architecture like Soar (Laird, 2012) or Sigma (Rosenbloom, 2013, 2014)
which also uses the formalism of probabilistic graphical models. Knowledge stored
in the episodic schemata, that is a generic model of the world, can be reused for
an agent’s DMS. When the agent has some hypothesis about his current state he
might use episodic schemata to predict the effect of his own actions on the world
state. This type of reasoning was shown in Section 5.5.

8.7 Summary

In this chapter we discussed how DyBaNeM can be extended in the future. This
includes enhancements of the core functionality like integration of new probabilis-
tic models or new encoding strategies. Another possible direction of work would
be a series of empirical evaluations with human subjects. An interesting option
would also be to integrate DyBaNeM to a complex agent architecture and then
measure the impact of the EM module on an agent’s overall performance.
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Chapter 9

Conclusion

This thesis has developed a novel computational framework for EM modeling
designed with the needs of IVAs in mind. The framework called DyBaNeM builds
on top of probabilistic graphical models used for activity recognition and it is
inspired by findings from psychology. Thorough review of related work has shown
that none of the existing EM models matches the features of DyBaNeM.

After describing the model on a formal basis its functions were demonstrated
on a simplistic toy domain. Two strategies for encoding memories were for-
mulated and two probabilistic models were empirically evaluated in the more
complex domain of the Monroe corpus. The framework was also applied to the
activity stream generated by an IVA embodied in a 3D environment, demon-
strating its applicability to virtual worlds. Both corpora contained sequences of
atomic actions together with high level activities that were used as ground truth
to measure accuracy of recall. The evaluations show that DyBaNeM fulfills all
the requirements specified in Section 1.3.

DyBaNeM was designed as a generic framework that should be applicable to
a wide range of applications including E-memory, computer games and virtual
companions. In many cases development of complex software consists of inte-
grating libraries implementing the needed sub-functionality. For instance, most
current 3D computer games use some generic 3D engine, they integrate it with
a physics engine and possibly with a separate engine implementing AI function-
ality like path finding and NPCs’ DMS. However, there is no generic purpose
EM library that could be integrated to multiple applications. DyBaNeM tries
to bridge this gap. It provides a framework that should enable NPCs to answer
questions about their own past activity and about activity of observed agents
and players. Empirical evaluation of DyBaNeM in two domains shows promising
results in this direction.
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Appendix A

Running the experiments

A.1 Installation

The source code of the DyBaNeM framework together with the code of all experi-
ments can be downloaded from http://dybanem.googlecode.com/svn/trunk/.
Issue the following command to download the repository.

> svn checkout http :// dybanem . goog lecode . com/svn/ trunk /

DyBaNeM requires:

1. Java 1.8 or newer, it is recommended to use 32bit version of Java.

2. The experiments were run on Windows 7 system, however, it should be pos-
sible to run the experiments on Linux since most of the program is written
in Java and the mandatory dependencies are available in both Windows
and Linux versions.

3. Maven1 as a build tool.

4. jSMILE library2, the experiments were run with a version from April 10,
2014. After downloading jsmile win32.zip unpack it and place jsmile.dll in
a location that is included in the system path variable (%PATH% on Win-
dows, $PATH on Linux). The jsmile.dll library will be loaded by the Java
program during runtime. In the end move smile.jar file to
${svnCheckoutDir}\projects\jsmileMvnInstall and execute installJsmileJar.bat

1Available from URL: http://maven.apache.org/
2Proprietal licence of SMILE prohibits redistribution of the library with third party soft-

ware. The binaries have to be downloaded from the project’s homepage. URL: https:

//dslpitt.org/genie/index.php/downloads where you can find them under the section
“SMILE Wrappers for Java and .NET” as Java Win32 binaries. At the time of writing the file is
available under this link, URL: https://dslpitt.org/genie/download/jsmile_win32.zip.
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script that resides in the same folder. This will install jSMILE as Maven
artifact into the local Maven repository.

5. (OPTIONAL) To edit and compile source code from an IDE you will need
to add install project Lombok to your IDE. All the necessary steps are de-
scribed at http://jnb.ociweb.com/jnb/jnbJan2010.html#installation.

Now you can build DyBaNeM and all required sub-projects by the following
commands:

> cd ${ svnCheckoutDir}\ p r o j e c t s
> mvn i n s t a l l

A.2 Toy Domain Examples

After building the project you can run the experiment by executing:

> cd ${ svnCheckoutDir}\ p r o j e c t s \dybanem
> t a r g e t \appasembler\bin\ToyDomain . bat

Alternatively you can execute class:
cz.cuni.amis.episodic.bayes.experiment.Experiment 2a.java from Java

IDE of your choice. All the results and graphs will be written to a folder
target\experiments\2 relative to the place of execution.

A.3 Monroe Corpus Examples

Script Experiment 4c monroe effectOfTrainingDataLarge.java generates all the
results presented in Section 6.1. It outputs all the graphs shown in Figures 6.1
— 6.8 together with other graphs that were not included in the thesis. The body
of Tables 6.1, 6.3, 6.4 and 6.5 will be printed to the standard output.

> cd ${ svnCheckoutDir}\ p r o j e c t s \dybanem
> t a r g e t \appasembler\bin\MonroeDomain . bat

After executing this script the generated graphs will be stored in a folder
target\experiments\4 monroe effectOfTrainingDataLarge 2 relative to the
place of execution.

A.4 Pogamut Corpus Examples

Experiments with the Pogamut corpus presented in Section 6.2 can be replicated
by executing a script Experiment 9 cermak.java.
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You can use the following command to run this script:

> cd ${ svnCheckoutDir}\ p r o j e c t s \dybanem
> t a r g e t \appasembler\bin\PogamutDomain . bat

After executing this script the graphs with example recall will be stored in a
folder target\experiments\9 cermak relative to the place of execution.
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Appendix B

Monroe plan corpus

The highest level episodes in the Monroe corpus are:

CLEAR_ROAD_HAZARD

CLEAR_ROAD_TREE

CLEAR_ROAD_WRECK

FIX_POWER_LINE

FIX_WATER_MAIN

PLOW_ROAD

PROVIDE_MEDICAL_ATTENTION

PROVIDE_TEMP_HEAT

QUELL_RIOT

SET_UP_SHELTER

The atomic action in the Monroe corpus are:

CALL

CARRY_BLOCKAGE_OUT_OF_WAY

CLEAN_HAZARD

CLIMB_IN

CLIMB_OUT

CUT_TREE

DIG

DISENGAGE_PLOW

ENGAGE_PLOW

FILL_IN

HOOK_TO_TOW_TRUCK

HOOK_UP

LOAD

NAVEGATE_SNOWPLOW
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NAVEGATE_VEHICLE

PAY

PICKUP_CONES

PLACE_CONES

PUMP_GAS_INTO

REMOVE_WIRE

REPLACE_PIPE

SET_UP_BARRICADES

STRING_WIRE

TREAT_IN_HOSPITAL

TURN_ON

TURN_ON_HEAT

UNHOOK_FROM_TOW_TRUCK

UNLOAD
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Acronyms

2TBN two-slice temporal Bayes network. 35, 36

AHMEM Abstract Hidden Markov Memory Model. 34, 38, 41, 53–73, 77, 78,
80–82, 84, 90, 91, 94, 95, 123, 124

AHMM Abstract Hidden Markov Model. 78

AI artificial intelligence. 2

ART adaptive resonance theory. 15, 26

BN Bayesian Network. 47, 78, 97

CHMM Cascading Hidden Markov Model. 34, 38, 47, 53–60, 64–69, 72, 73, 77,
78, 80, 81, 84, 88, 91, 94, 123, 124

CPMF conditional probability mass function. 37, 38, 55

CRF Condition Random Field. 78, 79

CSP constraint satisfaction programming. 78

CTBN Continuous Time Bayesian Network. 79

CxHSMM Coxian hidden Semi Markov Model. 78, 80

DBN Dynamic Bayesian Network. 1, 3, 28–31, 34–36, 38–40, 43–47, 49, 50, 60,
77–80, 83, 88, 91, 94, 97, 123

DFP Directed Forgetting Paradigm. 10

DMS Decision Making System. 15–18, 22, 39, 85, 91

EM Episodic Memory. 1–12, 15–18, 20–23, 26, 28–31, 33, 51, 74, 76, 85, 88, 96,
123
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EM algorithm Expectation-Maximization algorithm. 36–38, 46, 47, 54, 95

EST Event Segmentation Theory. 1, 3

FPS first person shooter. 15

FSM Finite State Machine. 38

FTT Fuzzy-Trace Theory. 1, 3, 28, 30

HFSM hierarchical finite state machine. 28

HHMM Hierarchical Hidden Markov Model. 38, 78, 80

HMM Hidden Markov Model. 38, 78, 95

HSMM Hidden Semi-Markov Model. 78, 80

HTN hierarchical task network. 83

ISC intelligent social companion. 2

IVA intelligent virtual agent. 1–6, 21–24, 47–51, 81, 84–91, 96–98, 124

KL Kullback-Leibler. 35, 42, 46, 50–52, 60, 64, 69

LHMM Layered Hidden Markov Model. 78

LTM long term memory. 19, 21

LTS long term store. 30, 42, 43, 46, 47

MAP maximum a posteriori. 45, 55, 83, 95

MLE maximum likelihood estimate. 37

MLN Markov Logic Network. 79

MMORPG massive multiplayer online role playing game. 4, 76, 98

MN mixed network. 78, 79

NPC non player character. 4, 6, 7, 76

PFSM probabilistic finite state machine. 38, 82
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PMF probability mass function. 32, 33, 35, 39, 40, 43, 49–51

POMDP Partially Observable Markov Decision Process. 78

PPM prediction by partial match. 75

PSDG Probabilistic State-Dependant Grammar. 78

RLE run-length encoding. 75

RMaxS retrospective maximum surprise. 40, 48, 53, 56, 60–68, 81, 82, 84, 123,
124

RMinOS retrospective minimum overall surprise. 41, 48, 53, 56, 60, 64, 66–68,
81, 82, 84, 123, 124

SDM sparse distributed memory. 26, 27

SM Semantic memory. 1, 2

STM short term memory. 19, 90

TCM temporal context model. 24, 25

UT2004 Unreal Tournament 2004. 15

WM Working memory. 1, 2, 17, 21

WMG working memory graph. 18

WSD word sense disambiguation. 18

171



List of Figures

1.1 Human memory systems classification. . . . . . . . . . . . . . . . 6

1.2 Encoding, storage and retrieval — processes included in every EM
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 An example of a complete agent architecture that is able to answer
questions discussed in this section. . . . . . . . . . . . . . . . . . 11

3.1 Perception-encoding-storage-retrieval cycle in DyBaNeM. . . . . . 39

4.1 DBNs for AHMEM and CHMM. . . . . . . . . . . . . . . . . . . 45

4.2 DBNs for AHMEM and CHMM. . . . . . . . . . . . . . . . . . . 47

4.3 An example of episodic traces. . . . . . . . . . . . . . . . . . . . . 49

4.4 Activity recognition/perception phase as implemented by the DBN. 53

4.5 Forgetting curves for various initial strengths of mems. . . . . . . 57

4.6 Reconstructive retrieval phase as implemented in DBN. . . . . . . 58

4.7 Activity summarization example. . . . . . . . . . . . . . . . . . . 62

4.8 Examples of providing additional details and recall uncertainty. . 63

5.1 Posterior marginal probability P (E0
t |O0:5 = AABAAB) for each t

from 0 to 5 in CHMM. . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Posterior P (E0
t |o0:5 = AABAAB) in AHMEM. . . . . . . . . . . 71

5.3 Prior probability of P (Ot) in CHMM. Legend is the same as in
Fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Prior of Ot in AHMEM. Legend is the same as in Fig. 5.1. . . . . 74

5.5 Prior of E0
t in CHMM. Note that with increasing time the distri-

bution converges to the same probability for both outcomes X and
Y . Legend is the same as in Fig. 5.1. . . . . . . . . . . . . . . . . 76

5.6 Prior of E0
t in AHMEM. Note that the probability remains the

same for three consecutive time steps. This correctly models struc-
ture of the toy domain. Legend is the same as in Fig. 5.1. . . . . 76

5.7 Computation of the first mem in AHMEM with RMaxS strategy
on an input sequence AABAAB. . . . . . . . . . . . . . . . . . . 78

172



5.8 Computation of the second mem in AHMEM with RMaxS strategy
on input sequence AABAAB. . . . . . . . . . . . . . . . . . . . . 79

5.9 Computation of the second mem in AHMEM with RMaxS strategy
on input sequence AABAAC. . . . . . . . . . . . . . . . . . . . . 80

5.10 Entropy of recalled episodes. . . . . . . . . . . . . . . . . . . . . . 81

5.11 Mem picked by the RMinOS in AHMEM on the sequence AABAAB. 81

5.12 Computation of the first mem in CHMM with RMaxS strategy on
input sequence AABAAB. . . . . . . . . . . . . . . . . . . . . . . 82

5.13 Computation of the second mem in CHMM with RMaxS strategy
on input sequence AABAAB. . . . . . . . . . . . . . . . . . . . . 83

5.14 Computation of the third mem in CHMM with RMaxS strategy
on input sequence AABAAB. Legend is the same as in Fig. 5.7. . 83

5.15 Computation of the second mem in CHMM with RMaxS strategy
on input sequence AABAAC. . . . . . . . . . . . . . . . . . . . . 84

5.16 Entropy of recall on the level of episodes in CHMM on sequence
AABAAC when two mems (O2 = B,O5 = C) are used. Compared
to the same situation in AHMEM (shown in the upper right sub-
figure in Fig. 5.10) we can see that CHMM is much more uncertain. 85

5.17 Recall of the sequenceAABAAB in AHMEM+RMaxS, AHMEM+RMinOS
and CHMM+RMaxS architectures. . . . . . . . . . . . . . . . . . 86

5.18 Evolution of belief, entropy and surprise in AHMEM on the level
of episodes for the sequence AABAAB. . . . . . . . . . . . . . . . 89

5.19 Evolution of belief, entropy and surprise in AHMEM on the level
of observations for the sequence AABAAB. . . . . . . . . . . . . 90

5.20 Evolution of belief, entropy and surprise in CHMM on the level of
episodes for the sequence AABAAB. . . . . . . . . . . . . . . . . 91

5.21 Evolution of belief, entropy and surprise in CHMM on the level of
observations for the sequence AABAAB. . . . . . . . . . . . . . . 92

6.1 Influence of the amount of the training data on 1st-best recall
accuracy in AHMEM1

8 using the RMinOS strategy on the level
of observations. We will denote this combination as AHMEM1

8 +
RMinOS + O. The ribbon shows a variance of the data. Note
that more mems lead to better recall. Adding more training data
helps universally when three mems are used as evidence. However,
the training data between sequences 625 and 650 seem to harm
performance of the recall with one and two mems. Also note that
the variance of recall accuracy with three mems decreases with
more training data. . . . . . . . . . . . . . . . . . . . . . . . . . 100

173



6.2 Influence of the amount of the training data on 1st-best recall
accuracy in AHMEM1

8 + RMinOS + E0. Note higher variance
compared to recall in the same model on the level of observations
(shown in Figure 6.1). . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Comparison of recall accuracy on the level of episodes in AHMEM1
8

when using RMinOS and RMaxS with just one mem. . . . . . . 101
6.4 Recall in CHMM1

8 +RMinOS+O. Approximately after using 200
sequences for training the model does not improve. Compare this
figure with Figure 6.1 showing the same situation in AHMEM1

8,
which can make use of more training data. . . . . . . . . . . . . 102

6.5 Recall in CHMM1
8 + RMinOS + E0. Compare this figure with

Figure 6.1 showing the same situation in AHMEM1
8, which can

make use of more training data. . . . . . . . . . . . . . . . . . . 102
6.6 Comparison of recall accuracy between AHMEM1

8 and CHMM1

on the level of observations when using RMinOS. These figures are
superpositions of the graphs from Figures 6.1 and 6.4. . . . . . . 103

6.7 Comparison of recall accuracy between AHMEM1
8 and CHMM1

on the level of episodes when using RMinOS. These figures are
superpositions of the graphs from Figures 6.2 and 6.5. . . . . . . 104

6.8 Comparison of RMinOS and RMaxS strategies on recall accuracy
in AHMEM1

8 +O when three mems are used as evidence for recall.
This is the only case where RMaxS performs better than RMinOS. 105

6.9 Recall of observation probabilities for 10 time steps in AHMEM1
8+

RMaxS model with an increasing number of mems used to recon-
struct the sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.10 Screenshot of a simulation showing the IVA performing an action
COOK in a virtual kitchen. The action is not animated in detail
in our simulation. The screenshot is rendered using UT2004 (Epic
Games, 2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.11 Recall of the stored day when three mems are used for reconstruction.111
6.12 Recall of the stored day when two mems are used for reconstruction.112
6.13 Recall of the stored day when one mem is used for reconstruction. 113
6.14 Recall of the stored day when no mem is used for reconstruction. 114
6.15 Ground truth of the stored day. . . . . . . . . . . . . . . . . . . . 115
6.16 Comparison of recall on the level of episodes when three mems

are used. AHMEM1
2 correctly recalls the IDuties episode whereas

CHMM1 forgets it. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.17 Entropy of recall in AHMEM1

2 with three mems. . . . . . . . . . . 118

7.1 Third party developer’s perspective of DyBaNeM. . . . . . . . . . 125

174



List of Tables

4.1 Summary of the main phases of DyBaNeM’s working cycle. . . . . 60

5.1 Training examples of the toy dataset. . . . . . . . . . . . . . . . . 69

6.1 Results of the recall experiment for all tested models, encoding
strategies and the number of stored mems and level of hierarchy
(observations O and first level of episodes E0). The table reports
mean recall accuracy in percentage and its standard deviation on
the 100 testing sequences when the schemata were learnt on 725
sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Average time ± SD needed to compute one mem measured in
microseconds. The average is over the time needed to compute
the first, second and third mem in 100 testing sequences. . . . . . 97

6.3 Results of testing the hypothesis that having n mems is better than
n− 1 mems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4 Results of testing the hypothesis that AHMEM is a better proba-
bilistic model than CHMM. The legend is the same as in Table 6.3. 99

6.5 Results of testing the hypothesis that RMinOS encoding strategy
is better than RMaxS. The legend is the same as in Table 6.3. . . 99

6.6 Accuracy on the level of episodes for recall of the 23rd day in the
two compared probabilistic models. . . . . . . . . . . . . . . . . . 117

6.7 Hypothetical verbalized recall of high level events based on Fig-
ures 6.11 – 6.14. Text in italics highlights where the recall differs
from recall when using one more mem. The list line shows ground
truth that is the same as recall with three mems. The modal verb
“maybe” is used whenever there are multiple possible episodes with
high probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1 Lossy compression algorithms for different types of data. . . . . . 127

175


	Introduction
	Motivation
	Scope
	Taxonomy of Memory Systems
	Computational Modeling of EM
	Processes in EM
	Intelligent Virtual Agents

	Requirements on EM in IVAs
	Design Implications
	Goals of the Thesis and the Main Contribution
	Structure of the Thesis

	Related Work
	Episodic Memory Model Types
	Axes Along Which the Models Will be Organized
	Existing Episodic Memory Models - Algorithmic level
	Subagdja et al. 2012
	Deutsch et al. 2008
	Soar 8
	Soar 9
	Ho et al. 2008
	Model of FearNot!
	Tecuci — A Generic Memory Module For Events
	Li et al. 2013
	Brom et al. 2007
	Ziggurat
	Kope et al. 2013

	Existing Episodic Memory Models - Implementational level
	Temporal context model
	Lisman 1999
	LIDA

	Activity Recognition
	Hierarchical Activity Representation of IVAs
	Summary
	Summary of Activity Recognition
	Summary of Algorithmic Level Models


	Problem Analysis
	Notation
	Example Scenario
	Requirements on the Probabilistic Model
	Summary of EM Work Cycle

	Proposed EM Framework — DyBaNeM
	Framework Parts — Prerequisites and Definitions
	Dynamic Bayesian Network Definition
	Virtual Evidence
	Learning parameters of DBN — Learning Schemata
	DBN Architectures
	Formalizing the Episodic Representation, World State, and Inputs/Outputs.
	Quantifying Difference Between Two Distributions — KL Divergence
	Smoothing Probabilities
	Applying General Parameters Learning — Learning Schemata

	Encoding
	Storage and Forgetting
	Retrieval
	Summary of The Main Phases
	Complexity Analysis
	How DyBaNeM Supports Rich Dialogs With IVAs
	Implementation of the Dialog Supporting Features

	Other Uses of Probabilistic Model
	Model Implementation
	Summary

	DyBaNeM in Example Synthetic Toy Domain
	Domain Description
	Activity Recognition
	Encoding
	Prior Prediction for Episode Encoding
	Mem Creation: AHMEM and RMaxS
	Mem Creation: AHMEM and RMinOS
	Mem Creation: CHMM and RMaxS
	Mem Creation: CHMM and RMinOS

	Models and Strategies Comparison
	Online Use of the Model for Behavior Surprise and Uncertainty Estimation
	Summary

	Experiments
	Monroe Corpus: Recall Accuracy - RMaxS and RMinOS in CHMM and AHMEM
	Aim
	Dataset
	Method
	Results
	Discussion

	Prototype DyBaNeM Connection to an IVA
	Aim
	Dataset
	Method
	Results
	Discussion

	Summary

	Discussion
	Third Party Developer's Perspective of DyBaNeM
	Is Memory Bayesian?
	Compression Algorithms Analogy
	Types of compression
	DyBaNeM as a Lossy Compression Algorithm for Activities

	Activity Recognition Probabilistic Model
	Summary

	Future Work
	Data for Schemata Learning
	Learning episode schemata from natural activity datasets
	Common sense reasoning

	Extending the Core of DyBaNeM
	Connecting different probabilistic models
	Unsupervised schemata learning
	Different recall strategies
	Fuzzy time index of mems
	Transfer of episodic schemata across domains

	Testing the Model With Human Users
	Fitting human data
	Measuring believability
	Personalized memory for social services

	Applying the Model to Different Domains
	Music
	Generic relational domains

	Implementing a Game Prototype
	Integrating the Model in a Broader Agent Architecture
	Summary

	Conclusion
	Bibliography
	Appendices
	Running the experiments
	Installation
	Toy Domain Examples
	Monroe Corpus Examples
	Pogamut Corpus Examples

	Monroe plan corpus
	Acronyms
	List of Figures
	List of Tables

