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Abstract. Episodic Memory (EM) abilities are important for many
types of intelligent virtual agents (IVAs). However, the few IVA–EM
systems implemented to date utilize indexed logs of events as the under-
lying memory representation, which makes it hard to model some crucial
facets of human memory, including hierarchical organization of episodes,
reconstructive memory retrieval, and encoding of episodes with respect to
previously learnt schemata. Here, we present a new general framework
for EM modeling, DyBaNeM, which capitalizes on bayesian represen-
tation and, consequently, enables modeling these (and other) features
easily. By means of a proof-of-concept implementation, we demonstrate
that our approach to EM modeling is promising, at least for domains of
moderate complexity.
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1 Introduction

Episodic memory (EM) [27] represents personal history of an entity. Episodic
memories are related to particular places and moments, and are connected to
subjective feelings and current goals. In the context of agent-based systems,
episodic memory has been studied as a tool enhancing an agent’s performance
in simulated environments [23, 26, 13]. EM abilities can also increase believability
of intelligent virtual agents (IVAs) in many applications, including role-playing
games, serious games, interactive storytelling systems, and tutoring applications.
Agents for a serious anti-bullying game were equipped by a simple EM for the
purpose of debriefing [9]. Virtual guide Max uses EM to modify museum tours
based on Max’s previous experience [19, 24]. Generic EM for virtual characters
was proposed in [6]. Similarly EM can be used in cognitive robots [10]. At the
same time, studies investigating how humans perceive IVAs with EM abilities
started to be conducted. For instance, several results suggest that humans tend to
prefer IVAs with imperfect memory [5, 22]. Increased interest of users interacting
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with an agent presenting background stories possibly stored in EM in first person
was shown in [3].1

Here we present a new EM modelling framework, DyBaNeM. It has been
created specifically with IVAs’ needs in mind, that is, with the needs to model
human EM in a more believable manner than in the past, for instance, to re-
spect fallibility of human memory. The framework brings several key innovations.
First, to our knowledge, none of the abovementioned systems enables reconstruc-
tion of hierarchical episode structure (i.e., episode — subepisode relationship)
in cases where an observer IVA, let us call him Bob, equipped with the EM ob-
serves another IVA, say, Alice. Bob can see Alice’s atomic actions but he has to
reconstruct her high level goals if he wants to remember them. Only the model
presented in [6] makes it possible for Bob to remember his own hierarchy of
episodes but not that of Alice’s. Second, our framework enables probabilistic
reconstructive retrieval process that can result in reconstruction of events that
have not happened at all, but they are sensible given the other stored memories.
Third, the model remembers only some of the most salient events as opposed to
most of the current models that use data structure resembling plain log of events
such as [6, 9]. While some models use emotions as a measure of saliency, e.g. [8,
24], we use mathematically better rooted deviation from a statistical schema.
Fourth, current models cannot express degree of belief in the recalled memory,
they usually either return an episode or nothing. Our framework removes this
restriction, recall in DyBaNeM results in multiple, more or less probable, possi-
bilities. Fifth, the framework uses IVA’s personal experience in encoding of the
episodes. Two IVAs may remember the same episode in differently.

From the psychological point of view the framework is inspired by the Fuzzy-
Trace Theory (FTT) [11]. FTT hypothesizes two parallel mechanisms that en-
code incoming information: verbatim and gist. While verbatim encodes the surface-
form of the information in detail, gist encodes the meaning in a coarse-grained
way [11], capitalizing on previously learnt schemata [2] of episodes and parts of
episodes. From the computational point of view the framework uses Dynamic
Bayesian Network (DBN) [18] as the underlying probabilistic model.

We illustrate possible use-cases of the framework on the following example.
Imagine a MMORPG inhabited by hundreds or even thousands of non player
characters (NPCs). Each NPC can be interviewed by a human player that may
ask two basic types of questions: 1) “What were you doing yesterday?”; 2) “What
was the player X doing yesterday?” The first question asks about the NPC’s
recollection of its own actions, the second asks about the NPC’s memory for
actions of a human controlled avatar (or a different NPC). It is clear that the
NPC has to be equipped with an EM model to answer both of these questions.
However, the second question also requires the model to be able to interpret the
players’ (NPCs’) actions and infer his/her high level goal that are not directly
observable in the environment. Our framework can do that. In addition, the

1 Some authors prefer the term autobiographic memory. In cognitive psychology, the
meaning of the two terms differs but for the purpose of the present paper, we use
them as synonyms. For more detailed review of EM agents, see [21].
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model should be generic and applicable to different NPCs with minimal effort.
In DyBaNeM, the model’s parameters can be automatically adjusted for each
type of NPC in the game by means of learning schemata of episodes by standard
byesian methods.

Finally, while our IVAs are not equipped with a dialog generating system,
our framework enables, in principle, the following features in the dialog between
the player and a NPC :

1. The NPC can provide a high level summarization of an activity. For instance,
when the player (P) asks: “What were you doing yesterday?”, the NPC (N)
equipped with our model can answer: “After getting up I went to work, in
the afternoon, I visited my friends and then I returned home.” instead of
inadequately detailed “I got up, then I did my morning hygiene. I had a
breakfast, I get dressed and ...”

2. The player can ask further clarifying questions. E.g., P: “How did you get
to your friends?”; N: “I walked there.”

3. The NPC can express degree of certainty for each recalled event. E.g., N:
“Maybe I went there by a car. I’m not sure.”

4. The NPC can make mistakes that are believable given the context. E.g., N:
“I went to work by public transport.” (Even though the NPC used a car.)

5. The memory weights interestingness of the events, thus it can highlight the
most unusual memories. P: “What were you doing yesterday?”; N: “I saw a
foreign army marching through the town, the rest of the day was as usual.”

6. Personal experience can influence interpretation of others’ activity. A worker
NPC may think that the observed player is just visiting a museum, whereas
a thief NPC may reveal that the player is preparing a theft.

We now detail these six above mentioned use cases and we sketch how Dy-
BaNeM can be used to implement them. Then we describe DyBaNeM’s core. In
the end we present a prototype IVA simulated in a 3D environment equipped
with DyBaNeM and experiments demonstrating applicability of the EM model.

2 How DyBaNeM Supports Rich Dialog With IVAs

First we will briefly summarize functions and processes of DyBaNeM EM, then
we will detail how these can support the user’s interaction with the IVA.

DyBaNeM uses episodic schemata learnt a priori to segment sequences of ob-
servations into meaningful episodes that can have hierarchical structure. Episodic
schemata are parameters of the underlying probabilistic model used in several
stages of DyBaNeM’s working cycle. The probabilistic model is implemented by
a DBN. First the schemata has to be specified by hand or learnt from labeled
data. This happens “offline” before the model is deployed to the IVA. Later, in
encoding, the model is presented with a sequence of observations to be stored.
DyBaNeM deduces hierarchy of episodes represented by the observations and
picks the most interesting facts called mems that will be stored (persisted in
a long term store). These mems will become the internal representation of the
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observations, e.g. one day of the agent’s activity. Interestingness is measured
with the use of the episodic schemata. During storage some of the mems may be
forgotten. In retrieval the mems, that is the exact memory of fragments of the
past events, together with episodic schemata, are used to reconstruct the whole
original episodes. This process may be imperfect, the more mems remain stored
the better will be the match between the original and the recalled episodes. We
may perceive this process as a lossy compression of the episodes.

Now we will show how the functions listed in Introduction are enabled by
DyBaNeM. We will use an example dialog where a human user interviews IVA
Bob about his observation of IVA Alice. Technical details of these six functions
will be discussed later.

1. High level summarization is enabled by hierarchical nature of Dy-
BaNeM. The recalled sequences contain not only atomic actions but also high
level episodes that can be used as summarization of the sequence of actions. Thus
if Bob has DyBaNeM with two levels of abstraction, the values reconstructed by
the bayesian inference on the highest level can be used to provide a summary of
the day. Fig. 1 shows an example of such situation.

Bob Alice
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Fig. 1. Summarization example. Bob is a detective who monitors Alice. First, let Bob
observe Alice’s atomic actions o0:T . Second, Bob can deduce the higher level episodes
from this observation. Third, Bob encodes the whole day by the most salient events
— these are the mems computed in the encoding algorithm. Mems are marked as the
shaded boxes. When Bob is asked to summarize what Alice did yesterday he recalls
the mems and reconstructs the rest with the use of the episodic schemata. In the end
he responds by episodes in the highest level: “Morning routine, work and dinner.”

2. Possibility of further clarifying questions is another useful feature
of the hierarchical memory organization. When the user asks for details of an
episode, Bob can reply by its sub-episodes as illustrated on Fig. 2a.

3. Expressing degree of certainty for recalled events is enabled by
probabilistic nature of the framework. Each action/episode is represented by at
least one random variable in the DBN. During reconstructive recall we obtain
a probability mass function (PMF) for each variable that encodes probability
of every action/episode at this point in time. When the probability of the most
probable outcome dominates the other outcomes, we can say that the IVA is
sure. However if there are two competing alternatives, the IVA can reflect this
in the dialog. See Fig. 2b for an example.

4. Believable mistakes in recall can emerge as interplay of forgetting
and reconstructive retrieval. When only a few mems remain stored then during
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Fig. 2. a) When Bob is asked to say more about Alice’s dinner, he will reply: “She
left from work and went to the restaurant, she ate there and then she went back
home.” Shaded boxes represent mems, white represent reconstructed events. b) Further
question can be: “How did she get to the restaurant?” which asks about recall of
atomic actions represented by observations o6 and o7. In case of o6 the associated
PMF computed in recall assigns similar probability to both Walk and Car. Thus Bob
is not sure and he can reflect this in his answer: “She went by car or she just walked,
I am not sure, sorry.”

the recall the forgotten events are reconstructed from the episodic schema. It
can happen that the schema predicts an event that had not actually happen
but it fits well to the way the episode usually unfolds. Different approach to
this so called false memories phenomenon is discussed in our previous work [28].
Continuing in the example from Fig. 2, it may be the case that Alice used Public
transport that day, but Bob does not remember this in a mem and his schema
favors other options.

5. Measuring interestingness of events can be achieved by comparing
the actual events to prediction from the schema. Imagine that 95 percents of days
start by a sequence: Get up, Brush teeth, Have a shower, Have a breakfast. If the
schema is expressive enough to capture this sequence, those events will become
completely uninteresting. They are predictable, thus they do not distinguish one
day from other. However meeting foreign soldiers marching through one’s home
town is much less probable. Thus it is the event that deserves more attention
in the dialog than brushing teeth every morning again and again. The general
notion is the lower the probability of an observed event given schemata the
higher the surprise of observing it. We use Kullback-Leibler (KL) divergence [20]
to measure how each observed event “diverges” from the prior prediction given
solely by the schemata.

6. Influence of personal experience on interpretation of behavior of
others is possible through a personalized set of episodic schemata for every IVA.
Episodic schemata are parameters of the probabilistic model used in DyBaNeM,
thus if Bob has a schema theft preparation, he may reveal that Alice was not
visiting the gallery because of her interest in the new exhibition. Instead, he may
conclude, she was examining the safety devices near the Da Vinci’s painting. If
the player asks IVA Cloe who does not have such schema, she would not know
what Alice was planning.
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3 DyBaNeM: Probabilistic EM Framework

We now describe DyBaNeM’s computational core. We start with auxiliary defi-
nitions needed for description of the framework. Then we show how DBNs can
be used for activity/episode recognition and how the episodic schemata are rep-
resented. We present the algorithms of encoding, storage and retrieval. Finally,
we show how features 1-6 from Sec. 2 can be implemented in DyBaNeM. Ad-
ditional details of DyBaNeM that are out of scope of this paper are available
in [15, 16]. DyBaNeM is available for download on its homepage2.

Notation. Uppercase letters denote discrete random variables (e.g. X,Y )
whereas lowercase letters denote their values (e.g. x, y). PMF of random vari-
able X is denoted by P (X). Domain of X is denoted as D(X). Notation Xi:j

is a shorthand for sequence of variables Xi, Xi+1 . . . Xj ; analogically, xi:j is a
sequence of values of those variables, the subscript denotes time. M will be a
probabilistic model and V is a set of all random variables in the model.

Now we formalize representation of episodes and world state assumed by
DyBaNeM.

Episode is a sequence (possibly of length 1) of observations or more fine-
grained episodes (sub-episodes) that has a clear beginning and an end. Note that
episodes may be hierarchically organized.

Episodic schema is a general pattern specifying how instances of episodes
of the same class look like. For instance, an episodic schema (cf. the notion of
script or memory organization packet [25]) might require every episode derivable
from this schema to start by event a, then go either to event b or c and end by
d.

Episodic trace ε0:nt is a tuple 〈e0t , e1t . . . ent 〉 representing a hierarchy of
episodes at time t; e0t is the currently active lowest level episode, e1t is its
direct parent episode and ent is the root episode in the hierarchy of depth
n. Example of an episodic trace can be ε0:n0 = 〈WALK,COMMUTE〉 and
ε0:n1 = 〈GO BY BUS,COMMUTE〉. The notation of episodic trace reflects
hierarchical nature of agent behavior.

Our framework uses probabilistic representation, hence even if there is only
one objectively valid episodic trace at each time step, input of the EM model will
be a probability distribution. Let Ei

t denotes a random variable representing a
belief about an episode on level i at time t. While the true value of Ei

t is, say, eit,
the PMF enables us to cope with possible uncertainty in perception and recall.

Probabilistic episodic trace E0:n
t is a tuple of random variables 〈E0

t . . . E
n
t 〉

representing an agent’s belief about what happened at time t. Analogically E0:n
0:t

denotes probabilistic episodic trace over multiple time steps. The following data
structure represents an agent’s true perception of the environment state. Let ρt
denotes observable environmental properties at time t.

For instance, ρ can hold atomic actions executed by an observed agent (and
possibly other things too), e.g. ρ0 = STAND STILL, ρ1 = GET TO BUS.

2 DyBaNeM’s homepage: https://code.google.com/p/dybanem/



DyBaNeM: Bayesian Episodic Memory Framework for IVAs 7

Analogically to E0:n
t and ε0:nt , Ot is a random variable representing belief about

observation ρt.
Fig. 3 shows how these definitions translate to an example DBN structure

used in this paper called Cascading Hidden Markov Model (CHMM) [4].

Ot

E0
t

E1
t

En
t

Ot+1

E0
t+1

E1
t+1

En
t+1

E0:n
t

E0:n
t:T

Ot:T

Observations

1st level of 
episodes

2nd level of 
episodes

(n+1)th level 
of episodes

Ot+1

E0
t+2

E1
t+2

En
t+2

OT

E0
T
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Fig. 3. An example of a DBN’s structure called CHMM [4] together with our notation.

Surprise. In encoding, the framework works with quantity measuring dif-
ference between the expected real state of a random variable and its expected
state given the remembered facts. We call this quantity surprise. In Bayesian
framework surprise can be defined as “difference” between prior and posterior
probability distributions. We adopt approach of [14] who propose to use KL
divergence [20] to measure surprise. KL divergence of two PMFs P (X) and
P (Y ), where D(X) = D(Y ) is defined as:

KL(P (X) → P (Y )) =
∑

x∈D(X) P (X = x)lnP (X=x)
P (Y=x) . We use notation with →

to stress directionality of KL divergence; note that it is not symmetrical.
Learning schemata. Episodic schemata are represented by parameters θ̂ of

a DBN. Expressiveness of schemata depends on the structure of a model at hand.
We suppose that the DBN’s topology is fixed. Thus learning schemata will re-
duce to well known parameter learning methods. Topologies without unobserved
nodes including CHMM, are learnt by counting the sufficient statistics [18]. In
our case examples of episodes that we want to use for schemata learning will
be denoted by D = {d1, d2 . . . dn} where each di is one day of an agent’s life; di
itself is a sequence of examples ct, that is, di = {ci0, ci1 . . . ciTi

}. Each cit is a tuple
〈ε0:nt , ρt〉, it contains an episodic trace and observable state of the environment.

DBN Architecture. For computing probabilities, our framework makes it
possible to use various DBN architectures. In this paper we use a CHMM [4]
architecture which is a hierarchical extensions of a well known Midden Markov
Model (HMM) (see Fig. 3). However more complex models, better suited for ac-
tivity representation, like Abstract Hidden Markov Memory Model (AHMEM) [7],
can be used. Downside of the AHMEM is its higher computational cost, thus
we use simpler, but still sufficient CHMM. Experiments comparing AHMEM
with CHMM in DyBaNeM are presented in [15]. The schemata are represented

by parameter θ̂, that is, by all conditional probability mass functions (CPMFs)
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of the DBN’s nodes. Expressiveness of the schemata depends on the structure
of DBN. In CHMM episodic schemata encode probability of an episode given
previous episode on the same level in the hierarchy and also given its parent
episode (P (Ei

t |Ei
t−1, E

i+1
t )).

Encoding. The encoding algorithm computes a list of mems on the basis
of the agent’s perception, Per0:T , of the situation to be remembered. Per0:T
is a tuple of PMFs such that Per0:T = {fX : X ∈ Observable}, where fX is
PMF for each variable X of interest. In a case when Bob is going to encode
Alice’s activity (see Fig. 1), Observable = O0:T . Alice’s εAlice is hidden to Bob,
nevertheless Bob perceives Alice’s atomic actions that are contained in ρAlice.

Algorithm 1 is a skeleton of the encoding procedure. The input of the algo-
rithm is Per0:T , where the time window 0 : T is arbitrary. In our work we use
time window of one day. The output is a list of mems encoding this interval.

Algorithm 1 General schema of encoding algorithm

Require: Per0:T — PMFs representing the agent’s perception of the situation (i.e.
smoothed observations)

Require: M — probabilistic model representing learned schemata
1: procedure Encoding(Per0:T ,M)
2: mems← empty . List of mems is empty
3: while EncodingIsNotGoodEnough do
4: X ← GetMem(M, P er0:T ,mems)
5: xmax ←MLOPM(X|mems)
6: mems.add(X = xmax)
7: end while
8: return mems
9: end procedure

The algorithm terminates once the EncodingIsNotGoodEnough function is
false. We use stopping criterion |mems| < K because this models limited mem-
ory for each day. In each cycle, the GetMem function returns the variable Xi

t

that will be remembered. The MLO function (most likely outcome) is defined as:
MLOPM(X|evidence) ≡ arg maxx∈D(X) P (X = x|evidence). We get the most
probable value for X and add this assignment to the list of mems. The GetMem
function is implemented in the following way. The idea is to look for a variable
whose observed PMF and PMF in the constructed memory differs the most.
This variable has the highest surprise and hence it should be useful to remember
it. This memory creation strategy is retrospective, it assumes that the agent has
all observations in a short term memory, and, e.g., at the end of the day, he ret-
rospectively encodes the whole experience. The strategy memorizes the value of
variableX such that:X ← arg maxY ∈V OI KL (PM(Y |Per0:T )→ PM(Y |mems)),
where P (Y |Per0:T ) ≡ P (Y |X = fX : fX ∈ Per0:T ); we condition the probability
on all observations. V OI ⊆ V is a set of random variables of interest whose value
can be remembered by the model. In our implementation V OI = E0:n

0:T ∪ O0:T .
Note that we remember only the most probable value, including the time index.

Storage and forgetting. During storage, the mems can undergo optional
time decayed forgetting. The following equation shows relation between age t
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of the mem m, its initial strength S and its retention R: R(m) = e−
t
S [1]. The

initial strength S of mem m can be derived from the value of KL divergence
computed in GetMem. Once R(m) decreases under the threshold βforget, m
will be deleted from the list of mems and will not contribute to recall any more.

Retrieval. Retrieval is a simple process of combining the schemata with
mems. We obtain the list of mems for search cue k, which can be, e.g., a given
day. Then we use assignments in the mems list as an evidence for the proba-
bilistic model. The resulting PMFs for all variables of interest are returned as a
reconstructed memory for the cue k. Retrieval can be formalized as computing
PM(Y |mems) for each Y ∈ V OI.

Now we show how DyBaNeM’s dialog supporting features are implemented.

1. High level summarization and 2. Further clarifying questions are
possible because of the hierarchical structure of DBN used in both encoding and
retrieval. Values of variables En

0:T (see Fig. 3) can be used for summarization. If
the user asks for details of time interval 〈t1, t2〉, values of En−1

t1:t2 can be used to
construct the answer (or Ot1:t2 when n = 0).

3. Expressing degree of certainty of recall is implemented by computing
entropy of random variable corresponding to the action/episode. Entropy H(X)
of random variable X is defined as H(X) = −

∑
x∈D(X) P (x)log2P (x). The

higher the entropy is, the more uniform the PMF over X is. Thus there is more
uncertainty since all outcomes of X seem similarly probable. On the other hand
when entropy is close to zero there is only a little uncertainty about X’s value.

4. Believable mistakes in recall result from forgetting and the inference
process in retrieval. It can happen that there was an action a at time t′ and during
storage the mem for t′ was forgotten. Later in retrieval, that is when computing
PMF ft′ = PM(Ot′ |mems), the value had to be deduced from remembered mems
and the probabilistic model M that includes the episodic schemata. If action b
is more probable under this assumption (PM(Ot′ = b|mems) > PM(Ot′ =
a|mems)), b will be recalled instead of a. There is no specific process for this
feature, it is DyBaNeM’s emergent property.

5. Interestingness of events is measured by KL divergence in the same
way it is done by the encoding algorithm. The more different is a PMF pre-
dicted by the schemata from the recalled PMF the higher is the value of KL
divergence. The first mem picked by the encoding algorithm is the one that de-
viates most from the prediction from schema. Subsequent mems contain less and
less information. Thus if an IVA wants to communicate the interesting events
first it can start with the first mem followed by the second and so on. If both the
IVA and the human player have the same episodic schemata they will be able to
reconstruct the same episodes. This is similar to function of lossy compression
algorithms. DyBaNeM gets observed episode on the input, then it transforms
the episode into a list of mems that is shorter than the original episode. With the
use of the episodic schemata the mems can be used to reconstruct the episode.
However some details of the episode might be changed due to forgetting and
imperfect schemata. The difficulty in interpreting DBNEM as a compression al-
gorithm is that not only mems but also the episodic schemata θ has to be stored
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(or transmitted). Since storage of θ requires far more space than storage of one
mem this approach is feasible only if large number of episodes will have to be
stored. On the other hand θ does not have to be transmitted if both parties, i.e.
Bob and Alice, have already the same schemata.

6. Influence of personal experience follows from a different set of episodic
schemata of each IVA. When Bob’s schemata are trained on a different corpus
of examples than Cloe’s, the resulting probabilistic models will be also different.
Thus inferences from these models may give different mems.

4 Prototype DyBaNeM Connection to an IVA

To demonstrate DyBaNeM’s applicability to the domain of IVAs we connected it
to an IVA whose behavior resembles a background character from a MMORPG.
We show 1) that DyBaNeM can learn the schemata, store and recall one day of
IVA’s activity and 2) that it can support the dialog enhancing features discussed
in Sec. 2. We also show 3) that the method has reasonable computational time
requirements given domains of moderate complexity, even though the problem of
exact inference in Bayesian Network is exponential in the network’s treewidth.

Activity dataset. As input for the EM model, we generated hierarchical
activity dataset simulating 23 “days” of an IVA’s life. The IVA was controlled
by hierarchical decision making system (DMS) based on AND-OR trees formal-
ism. An AND-OR tree describes decomposition of IVA behavior into goals and
subgoals with possible alternatives of accomplishing each goal. The IVA’s nonde-
terministic scheduling algorithm together with nondeterminism originating from
the 3D simulation result in irregularities of stream of actions produced for each
day. In our previous work we compared various statistical properties of the gen-
erated behavior to datasets of human behavior with reasonable match [17]. Our
IVA is connected to a 3D virtual environment of Unreal Tournament 20043. The
agent was implemented in Java and the Pogamut platform [12] was used as a
middleware for interfacing the IVA with the environment.

Every simulated day has a similar structure, the IVA gets up at home, he
brushes teeth, washes face, goes to the toilet; then he usually goes to work;
in the evening he may go to a theater or to a pub. He may also do shopping,
clean the house and other activities resembling a normal life. In total the sim-
ulation contains 37 different types of atomic actions and 19 types of first level
episodes. The generated stream of actions contains more levels of episodes but
for this evaluation we use only the first level of episodes which is sufficient for
demonstrating all the features. There are different plans for working days and
for weekends, that increases variability of the the IVA’s episodic schemata. Not
all days contained the same number of the atomic actions, the longest one has 33
actions. To make all days equal in size we added a sufficient number of padding
actions DAY END to the end of each day. Details of IVA’s DMS are provided
in [17] (sec 3.2).

3 Epic Games, 2004, [7.4.2013],
http://web.archive.org/web/20060615184746/http://www.unrealtournament2003.com/
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Fig. 4. Recall of the stored day when three mems are used for reconstruction. The
mems are atomic actions (subfig. b), in ellipses). Subfig. a) shows selected high level
episodes recalled for the day of interest. Level of gray indicates probability of each
atomic action/episode at that time step. The darker the color is the more probable the
action/episode is. This corresponds to the feature 1. Entropy shows how certain the
IVA is about his memory for those events (feature 3). The more alternative memories
are there the higher the entropy is. Subfig. b) shows probability and entropy of selected
atomic actions. This is the second level of hierarchy that allows for clarifying questions
(feature 2). Subfig. c) shows KL divergence of all episodes (first line) and actions
(second line) in the day compared to the prior episodic schema (feature 5). The most
interesting actions are marked by a cross (gray coding as in the case of probability).
Most of the interesting actions/events become mems. Feature 4 is demonstrated by
“fuzzy” transition around time 10: the model is not sure when exactly happened the
switch from household duties to a gallery visit.
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Method. Twenty-two days were used for learning episodic schemata. The
underlying probabilistic model CHMM was learned by counting the sufficient
statistics [18]. The 23rd day was stored in DyBaNeM to demonstrate its abilities.
The model was presented with the atomic actions from that day and it had to
deduce high level episodes and store the observations. The result of the encoding
process were 3 mems. This way we model Bob’s EM for Alice’s activity. For
belief propagation in DyBaNeM’s DBNs, SMILE4 reasoning engine for graphical
probabilistic models was used.

Results. When using only one mem to reconstruct the whole day, 52% of
atomic actions were correctly recalled, with two mems it was 64%, and with three
mems 73%. This means that when all three mems were used the most probable
action in 73% of time steps matched the real action previously encoded. Recall
of the stored day when all three mems were used is shown on Fig. 4. Learning
the episodic schemata took 2 seconds, computing the first 3 mems for the stored
day took 1.3 second on one core of P8600 2.4GHz, 1.5GB RAM.

Discussion. The evaluation indicates that computational cost is reasonable.
Learning the schemata is done only once off-line and time necessary for encoding
(1.3s) is also acceptable, though the domain is of moderate complexity only.
Fig. 4 illustrates all the features 1-5. To demonstrate feature 6 we would need a
second IVA with a different lifestyle that could be used to learn another set of
episodic schemata. This extension is trivial but we omit it for space restrictions.
The 73% recall accuracy is a reasonable starting point: it can be increased with
more mems stored, and a user study, a future work, will indicate what accuracy
is most welcomed by users.

Extending the IVA with ByDaNeM is a simple task that requires a developer
only to: a) get logs of IVA’s behavior that were used for episodic schemata
learning, b) decide when to store episodes (e.g. at the end of the day) and c)
decide when to recall the episode. Thus no advanced knowledge of DyBaNeM’s
internals is needed by the IVA developer.

5 Conclusion

We have demonstrated that bayesian approach to IVA—EM modeling, exempli-
fied on our new DyBaNeM framework, is promising and it can be considered by
developers of IVAs with EM abilities as a possible development method. To in-
vestigate scalability of this approach, we are presently experimenting also with
larger domains, including human corpora, and different underlying DB repre-
sentations. Our most recent evaluation data actually must be omitted for space
limitations. A key future step is a user evaluation of the framework.

4 SMILE was developed by the Decision Systems Laboratory of the University of
Pittsburgh and is available at http://genie.sis.pitt.edu/.
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17. Kadlec, R., Čermák, M., Behan, Z., Brom, C.: Generating Corpora of Activities of
Daily Living and Towards Measuring the Corpora’s Complexity. Cognitive Agents
for Virtual Environments - First International Workshop (LNCS 7764) pp. 149–166
(2013)

18. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
The MIT Press (2009)

19. Kopp, S., Gesellensetter, L., Kramer, N., Wachsmuth, I.: A Conversational Agent
as Museum GuideDesign and Evaluation of a Real-World Application. Intelligent
Virtual Agents, LNCS 3661 pp. 1–14 (2005)

20. Kullback, S.: Statistics and information theory (1959)
21. Lim, M.Y.: Memory Models for Intelligent Social Companions. In: Human-

Computer Interaction: The Agency Perspective, Studies in Computational Intelli-
gence Volume 396, pp. 241–262. Springer (2012)

22. Lim, M., Aylett, R., Enz, S., Ho, W.: Forgetting Through Generalisation — A
Companion with Selective Memory. AAMAS 2011 pp. 1119–1120 (2011)

23. Nuxoll, A.M., Laird, J.E.: Enhancing intelligent agents with episodic memory.
Cognitive Systems Research 17-18, 34–48 (2012)

24. Rabe, F., Wachsmuth, I.: Cognitively Motivated Episodic Memory for a Virtual
Guide. ICAART pp. 524–527 (2012)

25. Schank, R.C.: Dynamic memory revisited. Cambridge University Press (1999)
26. Subagdja, B., Wang, W., Tan, A.H., Tan, Y.S., Teow, L.N.: Memory Formation,

Consolidation, and Forgetting in Learning Agents. AAMAS 2012 pp. 1007–1014
(2012)

27. Tulving, E.: Elements Of Episodic Memory. Clarendon Press Oxford (1983)
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