
 

 

 

  

Abstract—Recently several episodic memory models have 

been developed for virtual characters to increase their 

believability.  However, none of these models addresses the issue 

of plausible timing of events. Here we present a model that 

addresses this issue. We introduce a prototype implementation 

and discuss the psychological underpinnings. Then we 

demonstrate that the model is able to mimic some psychological 

phenomena such as blending similar episodes. 

I. INTRODUCTION 

Enhancing cognitive abilities of non-player characters 

(NPCs) can increase game-play quality in many videogames 

[1]. Episodic memory is one such ability. In psychological 

terms, episodic memory (EM) [2, 17] is an umbrella term for 

memory systems operating with representations of an entity’s 

personal history. EM traces are related to particular places 

and moments and connected to subjective feelings and 

current goals. The EM is distinguished from the semantic 

memory and the procedural memory. The former is 

conceived, more or less, as systems operating with general 

facts about the world as viewed from the objective 

perspective (e.g. “France is a part of Europe”). The latter 

covers processes related to skill learning. 

EM modelling has gone almost unstudied in the context of 

videogames. However, because there is now a growing 

interest in this issue in the neighbouring field, the study of 

intelligent virtual agents (IVAs), it may be soon possible to 

develop NPCs with EM abilities capitalising on the 

knowledge gained by the IVA research. Examples of skills 

an NPC (or an IVA) can possess that demand some facet of 

EM include, but are not limited to: a) general giving of 

information to a user based on the past history of the NPC’s 

interaction with the virtual world, b) imitating a dialog 

between two NPCs, again, based on their personal history, c) 

remembering a course of interaction with a user, notably 

remembering the course of a dialog, d) learning [3]. These 

skills would increase the believability of many NPCs in 

shooter games and role-playing games (RPGs). For instance, 

NPCs could answer questions like “what happened in your 

shop yesterday?” based on their history and not using pre-

scripted answers. 
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EM modelling is a new topic even in the context of IVAs. 

Research so far has focused mainly on developing proof-of-

concept implementations [4 – 9]. Only some of the models 

were included in final applications [4, 5, 9]. Evaluations of 

multiple models against each other are rare [see 6, 10 for the 

first swallows], as well as evaluations of models against 

psychological data and/or during a believability study in 

which subjects are asked whether an IVA with EM abilities 

appears human [see 11 for an exception]. Addressing 

technical issues like consumption of computational resources 

is also rare [see 7, 8]. 

Additionally, because human EM is a multi-faceted 

phenomenon, many important aspects of EM have not been 

modelled yet. One such missing trait is the ability of 

estimating the time when an event happened. Without the 

ability of time events, human life would be dull. For 

instance, imagine yourself recalling that you brushed your 

teeth in the morning, but not whether this happened a minute 

ago or three days ago. IVAs should be equipped with a 

similar ability for many applications. Obviously, one can 

store precise time information (“I was cooking yesterday 

from 1:12 p.m. to 2:37 p.m.”). However, this is neither 

psychologically plausible, nor would it be believable to the 

audience. For instance, time information in human memory 

often deteriorates as episodes get older.  

The goal of this paper is to present a computational 

module for believable timing by IVAs (timing module 

throughout). The model is primarily intended for NPCs from 

role-playing games, though it can be used in any simulation 

featuring long-living IVAs. The model has three notable 

features: 1) It stores information using socially agreed time 

patterns (e.g. “morning”, “after lunch”); 2) These time 

patterns are learnt, to some extent, automatically based on 

the IVA’s history, using an artificial neural network with 

Hebbian learning; 3) The module is able to blend similar 

episodes during forgetting (“I remember I was gardening 

some evenings last week, but I don’t know which days 

exactly. I also remember some perceptual details, but I don’t 

know what detail happened on which day.”). The present 

version of the model works with time periods of weeks. 

The paper proceeds as follows. Sec. II reviews what is 

known about human timing and presents general 

requirements on the timing module for IVAs. Due to the 

novelty of the topic, we deem it appropriate to include such a 

section here. Sec. III introduces architecture of our agent. 

Sec. IV presents the memory model and its timing module. 

Sec. V presents the prototype implementation and details a 

part of the evaluation. The evaluation is a compromise 
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between what is possible and what would be optimal. First, 

there is no model against which we could compare our 

model. Second, perhaps surprisingly for some, up to date 

psychological findings are not sufficient to provide 

information needed for quantitative evaluation of the model 

against human data [3]. Third, to conduct a rigorous 

believability study, it would be necessary to develop an 

appropriate infrastructure, e.g. a dialog system and graphical 

content. Thus, in our evaluation, we focused on 

demonstrating that the timing module is able to mimic some 

phenomena of human timing qualitatively. For brevity, we 

detail here only the test that concerns blending similar 

episodes. Other experiments are described in [12]. 

Additionally, results of a precursor to a believability study 

concerning whether RPG players prefer to use time patterns 

to NPCs when speaking can be found in a complementary 

paper [13]. 

II. DRAWING S OF TIMING 

In general psychology and neuropsychology offers useful 

metaphors, conceptual models and human data that can help 

IVA (and NPC) designers to answer many question posed by 

EM modelling. Notable examples include clarifying the 

notions of short-term vs. long-term memory, specifying what 

should be remembered by an IVA and why, or specifying the 

processes of storage, retrieval, and maintenance, which 

includes forgetting. However, beyond conceptual models and 

metaphors, the issues become hazy. The modellers must 

basically come up with many ad hoc solutions to fill the gaps 

and specify their models in precise detail [3]. This will be 

exemplified in this paper on the phenomenon of timing.  

A comprehensive review of psychological theories of 

human timing is given in [14, 15]. These reviews make it 

clear that human timing is not perfectly resolved by 

psychology yet. Still, there are several psychological theories 

on human timing as well as evidence from experiments that 

is of importance to IVAs’ designers.  

Perhaps the simplest theories are based on the idea that the 

time of events, e.g. date, is coded explicitly: these are called 

time-tag theories [14, 15]. Strengths and accuracy of these 

tags possibly decay with time. However, humans are poor at 

giving the exact time of events as well as using time 

information as a cue for retrieving events [16]. Data suggest 

that the time of only very important events is learnt, so-called 

landmarks [14, 15], and these events are later used as 

reference points. A different family of theories capitalises on 

the idea that events are chronologically ordered via 

“pointers”, so-called event-succession theories [15]. In this 

view events need not be time stamped. Yet other kinds of 

theories emphasise the reconstructive nature of EM: 

reconstructive recall combines general semantic knowledge, 

knowledge of one’s lifestyle and personal episodes to 

approximate the time of an event.  

The outcome of this debate [14, 15] is that humans use 

multiple techniques for dating past events, among which the 

reconstructive way is the most important one.  

For instance, if you try to recall what you did on 

“December 20 last year”, you would automatically convert 

the date to “five days before last Christmas” and use 

Christmas as an important time landmark. You would 

remember that you were working two days before that 

Christmas, resulting in the refinement of the time information 

to “Saturday before that Christmas”. Thus you would 

conclude that you were probably shopping for gifts. Another 

example: assume you are recalling when you visited your 

dentist the last time. It is likely that you would again 

reconstruct the information, but now going from the reason 

why you went there (tooth ache, long-distance travel) and 

asking when this cause occurred. Finally, you may recall that 

it was approximately in May last year, even though the right 

answer is June 5. Yet another example: you are asked when 

the event happened in which your brother broke a window. 

Because you remember that the window was broken with a 

snowball, you would conclude that it was during winter.  

Additionally, data from various experiments show that the 

quality of recall can differ independently on different time 

scales (hours, days, months) [15]. For example, it was found 

in an experiment on the dating of events that subjects made 

errors that tended to be in multiplies of 7 days, suggesting 

that a day of the week was represented more often than an 

exact date [15]. Data also show that when asked to date an 

event, people usually use various socially-agreed time 

patterns (“morning”, “evening”, etc.) instead of exact 

information (“from 5:40 to 6:38”). Thus, the reconstructive 

nature of recall is supplemented by temporal patterns or 

schemata: “...the evidence is overwhelming that the primary 

process is reconstruction based on schemata for time” [15, p. 

130]. Our own data support this finding [13]. We conducted 

a simple study on human subjects using questionnaires 

(age=19-28; n=24; 17 males) asking whether the subjects 

would prefer to ask NPCs questions regarding their past 

using time patterns (“morning”) or exact timing information 

(“6:38”); there was a strong tendency among subjects to 

prefer the former. 

The tentative conclusions we draw from our review of 

psychological literature are:  

1. The timing module for IVAs should link consecutive 

episodes according to the event-succession theories. 

These links can decay until most of them are forgotten.   

2. The timing module for IVAs should use time concepts; 

i.e. socially-agreed time patterns like “yesterday” or 

“night”. These should be used not only when speaking 

about events, but also for the representation of time. Time 

concepts are analogies of temporal schemata used in [15].   

3. The timing module should exploit time concepts that are 

overlapping (“early morning” vs. late morning”) and 

hierarchically nested (“morning” vs. “the beginning of the 

week” vs. “spring”). This again agrees with [15] and [13].  

4. Time concepts should serve as time tags for recent 

episodes. Our ad hoc definition of “recent” is roughly the 

previous week. This has a technical rationale, but the 



 

 

 

definition can be changed in future models (in 

psychology, some would define “recent” differently, e.g. 

[17, pp. 63]). As episodes get older, their time tags are 

gradually removed until only the most salient episodes 

retain their time tags and thus become landmarks [cf. 14, 

15]. 

5. The timing of distant episodes should have a 

reconstructive nature [14, 15]. Features of episodes that 

occur regularly should be associated with the time 

concepts in which they occur (e.g. “toothbrush” – 

“morning”, “snow” – “winter”).  

6. Time concepts should be both inborn and culturally-

based. In computational terms, they should be learnt 

based on a priori knowledge. This seems to be a plausible 

requirement and it accords with [15].  

We propose this list as a set of tentative requirements for 

timing modules for IVAs. Here, we present a model that 

works with time periods of weeks, focusing on Points 2, 3, 4, 

and 6. Concerning hierarchical nesting, we investigated 

interaction between in-day concepts and in-week concepts. 

Point 1 has been implemented in our previous model [8] that 

we further elaborate here, but it has not been reimplemented 

in the present model. Point 5 is not implemented, although 

reconstructive timing is theoretically possible in the new 

model. 

III. ARCHITECTURE AND IMPLEMENTATION OF OUR AGENT 

We are actually working on several EM subsystems 

simultaneously and the timing module is only one of them. 

Each subsystem capitalises on our generic agent architecture 

(Fig. 1), which resembles universal cognitive architectures 

by which many IVAs have been inspired. The IVA receives 

inputs from the environment (ENV on Fig. 1) via a simple 

attention filter. The inputs fill up the perception field (PF) of 

the short-term memory (STM). The architecture has several 

memory appendages, such as the long-term spatial memory 

(LTSM) and the long-term episodic memory (LTEM). The 

timing module is part of the LTEM.  

A key feature of the architecture is hierarchical 

decomposition of an agent’s behaviour: IVAs’ behaviours 

are decomposed to sub-behaviours, which are further refined 

until some atomic actions are reached. In fact our 

architecture distinguishes tasks from goals making the 

mechanism resembling the BDI architecture [18], but this is 

unimportant for present purposes (see [8, 12] for details). 

Every behaviour may require several resources, i.e. objects, 

for execution. Behaviours to be pursued are selected within 

the goal structure and the conflict resolution mechanism 

based on drives, external events, and a schedule. Currently 

pursued behaviours are represented within the task field (TF) 

of the STM. The memory field (MF) of the STM can hold 

information about an object recalled from a long-term 

memory temporarily. Every object is regarded as a tool for 

action, i.e. it is a set of “affordances” [19], meaning it 

possesses pointers to behaviours it can be used for as a 

resource (dotted arrows on Fig. 1). IVAs perceive these 

pointers when observing their environments. The 

architecture also features an emotion module.  

Individual parts of the architecture are implemented only 

when needed, e.g. the IVA with the timing module does not 

feature emotions. This IVA has been fully implemented 

using Pogamut 2 [20], a toolkit for fast prototyping of IVAs 

in Unreal Tournament 2004 [21].  

   

Fig. 1. Our IVA’s architecture. 

 

Fig. 2. The structure of one chronobag of LTEM-t. 

IV. THE MEMORY MODEL WITH THE TIMING MODULE 

As already said, we extended the previous model we 

introduced in [8] by the timing module, addressing Points 2, 

3, 4, and 6 (Sec. II). The new model is called LTEM-t. It is 

important to distinguish what has been designed only 

theoretically from what has been implemented. The features 

of LTEM-t related to Points 2 – 4, 6 are implemented, but 

the current implementation of LTEM-t does not have a 

feature that the previous model had: time pointers (Point 1). 

Since their reimplementation in LTEM-t would be 

straightforward and would not bring any new knowledge, we 

have focused on potentially more promising issues in present 

work. 

Additionally, besides adding the timing module, a 

conceptual shift has been made while migrating from the old 

model to LTEM-t. The core module of the old model was 



 

 

 

conceived symbolically. Currently it is conceived using the 

connectionist view. This change allows us to address, in the 

future, the issue of reconstructive recall (Point 5). A reader 

may perhaps be disappointed that the reconstructive recall 

has not been addressed yet, but unlike time pointers the 

reconstructive recall a) as far as we know has never been 

explored in the field of IVAs, b) is extremely complex and, 

in our opinion, will demand the research work of several 

PhD theses to be cracked. Thus, it is far beyond the scope of 

this paper.  

 

Fig. 3. Left) Hierarchical representation of episodes within the core 

lobe. For clarity not all episodic links are depicted. Direction of 

gradual forgetting is denoted by the arrow. Right) The I-lobe’s 

structure. An I-TC node “hungry around noon” and its connections 

are highlighted. 

We now introduce the individual parts of LTEM-t. Note 

that while the model is psychologically inspired, neuro-

/psychological plausibility of its parts is not claimed here. A 

good starting point for a comparative analysis concerning 

our model and psychologically-grounded models (which are 

predominantly not implemented) would be [17, 22]. 

The LTEM-t structure. LTEM-t is composed of one 

lobe called the extra-day time concepts lobe (E-lobe) and 

several structures called chronobags. Every chronobag 

consists of two lobes: an intra-day time concepts lobe (I-

lobe), which is responsible for the representation of time, 

and a core lobe, which is responsible for the actual storage of 

episodic entries (Fig. 2). The core lobe is the only 

component present in the old model. 

The core lobe. For explanatory purposes assume LTEM-t 

consists of just one chronobag. The core lobe is a network of 

interconnected nodes that is built incrementally during 

storage in the following way: the content of the STM is 

copied into the core lobe, which entails copying behaviours 

being pursued by the IVA including sub-behaviours and 

objects used (but not what other IVAs are doing – that is not 

represented in the STM; see [23] for the details of our work 

in progress in that direction). For instance, it could be stored 

that the IVA is “cooking” (behaviour) and he is currently 

“slicing vegetables” (sub-behaviour) using a “knife”, a 

“cutting board”, and a “carrot” (objects). Every sub-

/behaviour and every object is represented as a node in the 

network. Sub-behaviours are linked with their parent 

behaviours and with objects used. These links and nodes are 

called episodic. Finally, the network starts to resemble the 

original hierarchical behavioural decomposition used for the 

purpose of action selection (Fig. 3/left). The episodic links 

are weighted, as detailed below. Note that no timing 

information has been stored yet. 

The core lobe stores behaviours of various grain sizes, 

which allows for gradual forgetting: unimportant details of 

episodes can be “eaten away” from the “bottom” of the 

network (Fig. 3/left). The IVA can originally remember that 

he was cooking goulash yesterday morning, including all 

involved sub-behaviours, but later forget the sub-behaviours, 

keeping only the high-level information about cooking. Our 

previous model [8] is likely the only EM model for IVAs 

having this feature. Additionally that model linked 

consecutive episodic nodes with time pointers. Recall that 

LTEM-t does not have the latter feature, but it can be easily 

extended in this way. 

Intra-day time concepts. The I-lobe consists of several 

kinds of nodes. We will first describe the most important 

ones: the nodes representing intra-day time concepts 

(“morning”, “after lunch”; I-TC nodes throughout) (Point 2, 

Sec. II). Think of I-TC nodes as rate-coded neurons with 

activity from <0, m>, where m only rarely grows over 3.7, as 

explained later. Every I-TC node gets activated based on the 

degree to which the time concept it represents corresponds to 

the IVA’s present situation. Given overlapping time 

concepts, we have a population coding of subjective time 

within one day. Assume now that a mechanism for this 

activation is given. 

Assume further that we store information only over one 

day. Episodic storage including timing information works as 

follows. Let E be a set of episodic nodes being stored in a 

particular instant and let E be different from the set of nodes 

that were stored in the previous instant. Every node from E is 

interconnected with other nodes from E, making a clique of 

episodic nodes, and also with the I-TC node with the highest 

activity among all I-TC nodes at that moment. The latter link 

is called a temporal link and it represents time information. 

Both episodic and temporal links are weighted and the 

“interconnection” actually means the updating of weights:  

 w( t+1 ) = s( s
-1

( w( t ) ) + γc ) (1) 

That is, if the link already exists between two nodes it is 

strengthened. Otherwise it is created and its weight is set to 

0.5. This value corresponds to the fact that function s is the 

standard logistic sigmoid 1/(1+e
-λ

). Its parameter λ is 0.75; 

this value has been set empirically. The sigmoid assures that 

weights do not grow beyond 1 and that further strengthening 

has increasingly lower impact on the weight. γ is the learning 

rate, set to 1. c is the delta value, set to the constant 0.5. This 

means that in our present implementation, episodic links and 

temporal links are updated in the same manner, a 

simplification we made for the purposes of trialling. In the 

future c for episodic links can reflect the strengths of entities 

in the STM and the overall interestingness of the episode 

(e.g. based on the emotional state of the IVA), while c for 

temporal links can reflect the activation of I-TC nodes. 



 

 

 

Additionally, the winner-take-all (WTA) mechanism for 

selecting an I-TC node to be linked with the episodic nodes 

from E can be replaced by a k-WTA mechanism, which 

would exploit fully the population coding of I-TC nodes. 

Trialling with that version of the model presents our future 

work. 

The weights are updated iff the set E has changed from the 

last time step or the winning I-TC node has changed from the 

last time step. 

Learning I-TC nodes. Game designers would likely opt 

for specifying I-TC nodes manually to have the network 

“under control.” However, the I-TC nodes can be also learnt. 

That is what we did. The advantage is that different I-TC 

nodes can emerge automatically for IVAs with different 

“lifestyles” (Point 6, Sec. II).  

The I-lobe is actually a 2-layered, feed-forward neural 

network (Fig. 3/right). The input layer consists of 19 context 

nodes and 24 Cartesian nodes; the behaviour of these nodes 

is our a priori information. Cartesian nodes represent 

objective time. In a biologically more plausible way they can 

be also conceived as biorhythms, presenting an organism’s 

inborn internal notion of time (on the scale of one day). They 

have Gaussian-based, weakly-overlapping <0, 1> activation 

functions. Every hour one of the nodes peaks [see 12 for 

details]. Context nodes represent external context (e.g. 

“sunset”), the urgent state of drives (e.g. “hungry”), courses 

of some activities (e.g. “eating”), ends of some activities 

(e.g. “after sport”), and emotional states (e.g. “stressed”). 

Their activation functions are specified by a designer. 

Biologically speaking, context nodes can be interpreted as 

representations of internal states that the organism has learnt 

to recognise, either after birth or evolutionary.  

The output layer comprises the I-TC nodes. Weights 

between the input and the output layer are real numbers from 

<0, 1> initially set randomly to <0, 0.2>. Equation (2) 

describes how activation of I-TC nodes is computed; w 

denotes weights and u the input activation. Equations (3) – 

(5) are the learning rule, a variant of the Hebbian learning 

rule with subtractive normalisation [24].  

 vi( t ) = ∑j wi←j( t ) uj( t )  (2) 

 wi←j( t● ) = wi←j( t ) + γvi( t ) uj( t )   (3) 

 yi( t ) = ∑j( wi←j( t● ) – wi←j( 0 ) ) – d  (4a)  

 xi( t ) = yi( t ) / n when yi > 0 (4b) 

 xi( t ) = 0 when yi ≤ 0 (4c) 

 wi←j( t+1 ) = wi←j( t● ) – xi( t )  

  when wi←j( t● ) – xi( t ) ≥ wi←j( 0 ) (5a) 

 wi←j( t+1 ) = wi←j( 0 )  

  when  wi←j( t● ) – xi( t ) < wi←j( 0 ) (5b) 

Learning proceeds in two steps. First, the weights are 

updated according to the basic Hebb’s rule (3) [24], where γ 

is the learning rate. However, each I-TC node can support 

only a fixed sum of weight increments from the initial 

weights wi←j( 0 ). Thus, second, a subtractive term xi is 

subtracted from every weight to prevent weights from 

outgrowing that sum (4, 5). The total increments are given 

separately for all weights from Cartesian nodes and all 

weights from context nodes (d in (4)). The former sum is 2, 

the latter 1.7, which are empirical values. Thus, while the 

sum in (2) goes over all input nodes, the sum in (4) goes only 

over Cartesian nodes and context nodes, respectively, and n 

is the number of Cartesian (24) and context (19) nodes, 

respectively. Weights cannot decrease below their initial 

values (5), which allows for further exploration of the link, 

helping with re-learning. Due to (5b), it may happen that the 

total increment is actually larger than 2 or 1.7, respectively, 

but this discrepancy will tend to be remedied in the next time 

steps. As a whole the main reason for using this learning 

mechanism is that it is highly competitive resulting in only 

about 2-3 context weights plus 2-3 Cartesian weights 

supporting every I-TC node. The weakly-overlapping 

activation functions of Cartesian nodes make it likely that 

consecutive Cartesian nodes will support one I-TC node, 

which is an advantage. Experiments with various degrees of 

overlap of activation functions are detailed in [12]. 

Learnt I-TC nodes capture temporal regularities in the 

activation of context nodes; the I-TC nodes represent 

behaviourally relevant time periods. Whereas there will be 

several nodes for periods during which activations of context 

nodes change often, like during morning, only one or two I-

TC nodes for night may be learnt (because the content of the 

STM does not change much during night).  

I-TC nodes are unnamed; they can be used for internal 

representation of time but not for communication. To allow 

IVAs to express themselves conventionally agreed names 

specified by designers such as “around noon” and “evening” 

must be assigned to the nodes. A crude natural analogy to 

this process is a child being taught by its parents to name 

various parts of day. Note that although the names may be 

the same for all IVAs, different IVAs will learn different I-

TC nodes based on their lifestyles (e.g. early birds vs. late 

risers). Thus, the internal representation of time may still 

differ in different IVAs, resulting in the different behaviour 

of the two memory models (e.g. concerning the accuracy of 

representation and forgetting rates) and consequently in the 

different behaviour of the IVAs. An algorithm for the 

naming is detailed in [12, 13]. 

Multiple chronobags and the E-lobe. Overall behaviour 

of LTEM-t depends on the number and behaviour of the 

chronobags it contains. Chronobags can differ in how many 

episodes they store and over what periods. Different 

chronobags can be designed depending on whether one 

wants to address Point 4 or 5 (Sec. II). Concerning Point 4, a 

natural tendency is to use one chronobag for representing all 

episodes that happened during one day, starting every 

morning with a new empty chronobag. At night every 

chronobag will be shifted one day into the past, the “today” 

chronobag becoming “yesterday”, etc. During every such 

shift, i.e. during the night, a selective competition among 



 

 

 

episodic and temporal links will take place until only the 

most salient links are kept; these will represent landmarks 

(this competition extends the gradual forgetting mechanism 

of the previous model). The E-lobe contains extra-day time 

concept nodes (E-TC nodes) such as “yesterday”, “the day 

before yesterday”, etc., each of which is linked with all 

episodic nodes from the corresponding chronobag. 

Another approach, addressing Point 5, is to fill one 

chronobag with episodes from more days. That chronobag 

will gradually start to represent an “average day” from the 

given period, because the night-time selective competition 

will favour episodes that happen regularly. We can either 

store just two or three days in one chronobag representing 

e.g. “the beginning of the week”, or a larger period, e.g. “a 

week”. Again nodes of these chronobags will be linked with 

respective E-TC nodes.  It is important to note that an 

episode may be stored in several chronobags that represent 

different yet overlapping time periods (Point 3). When 

different constants for the competitive selection are 

employed in different chronobags, an episode or its part can 

be removed from one chronobag but kept in another. 

Additionally, a kind of “commonplaceness” of events can be 

determined automatically based on whether an event is well 

represented in an average-day chronobag. When only 

uncommon events are stored within single-day chronobags, 

their timing will become more precise (an earthquake vs. a 

breakfast). Note that the mechanism of average-day 

chronobags is reminiscent of the script concept [25]. 

We have implemented all of these mechanisms.  

Recall. For recall the memory structure is not conceived 

as a neural network but as a spreading activation network. 

Every question one can ask an IVA, e.g. “when were you 

swimming?” or “what were you doing yesterday evening?”, 

contains some cues – time, an object, an activity. Nodes 

corresponding to those cues are injected with activity, which 

is then propagated to directly neighbouring nodes 

proportionally to the weight of each link. The most active 

nodes represent the answer. 

V. IMPLEMENTATION AND EXPERIMENTS 

The design of the memory system was followed by the 

successful implementation of a prototype. The prototype was 

thoroughly tested by a set of experiments [12]. We could test 

LTEM-t in a maze-style experiment, but we wanted a more 

complex scenario. Thus, all tests involved a 3D IVA living 

in an Unreal Tournament 2004 (UT) [21] environment 

imitating a small town over periods of about a month (one 

time step represented 15-30 seconds depending on the 

experiment). By the word “imitating” we mean that the UT 

map comprised of 6 rooms that were conceived as various 

parts of the town, i.e. we run the experiments without 

appropriate graphics. The map featured 27 different objects 

and places in total.  

Summary of the experiments and methods. We tested 

the memory’s ability to learn I-TC nodes, memory 

robustness, memory space demands, memory accuracy, and 

episode blending. To test the model under various conditions 

the IVA lived according to several different lifestyles 

(student, millionaire, travelling salesman). Lifestyles defined 

the behaviours to be executed by the IVA and their timing. 

Every lifestyle usually contained a few regular activities (e.g. 

breakfast) and a few occasional activities (e.g. going to the 

cinema). Possible behaviour was represented hierarchically 

as described in Sec. III. Every IVA had 10 different top-level 

goals to accomplish (many of them repeatedly) and had the 

following biological drives: thirst, hunger, weariness, need to 

urinate and need to wash oneself. The top-level goals were 

selected to be pursued based on a daily schedule determined 

by the lifestyle and changes of drives. Note that even the 

regular activities set out in the schedule started at various 

times (e.g. the travelling salesman ate breakfast between 7 

a.m. and 8 a.m. and the exact time was generated randomly). 

We conducted all the experiments using Pogamut 2 [20], 

which is a toolkit for the fast prototyping of virtual agents 

inhabiting UT worlds. In every experiment, the I-TC lobe 

comprised 19 context nodes, 24 or 48 Cartesian nodes, and 

40 concept nodes. In general experiments differed in the 

details of IVAs’ lifestyles and in the configuration of 

chronobags. For brevity, we describe here only the last 

experiment: see [12] for the others. 

Blending episodes. Blending is an interesting 

phenomenon. It is very natural and common in humans [e.g. 

26] and thereby a good candidate for modelling in the field 

of IVAs. This phenomenon is broad and no-one can claim 

replicating it computationally in its entirety; however, to our 

knowledge, reproduction of any of its aspects has not been 

reported yet in the field of IVAs. We detail here conditions 

under which one aspect can be reproduced in our model.  

In this test we asked whether it could happen that the IVA 

would report that he/she remembered that “he/she was doing 

X in the evenings last week”, but did not remember which 

days exactly.  

Setting. We used the student IVA and simulated him for 

three weeks. The agent’s weekly plan is depicted in Table I. 

The IVA’s LTEM-t consisted of 23 chronobags and 

respective E-TC nodes: 14 for single days, 7 for pairs of 

consecutive days and 2 for weeks. Over the first week no 

episodes were stored but I-TC nodes were learnt (Eq. 2 – 5). 

Episodic storage (Eq. 1) happened over the last two weeks. 

In every chronobag the night time selective competition 

decreased every temporal and episodic weight by 5%. 

Weights weaker than 0.32 (an empirical value) were 

removed and their strengths were redistributed 

proportionally to the remaining weights in the chronobag.   

The agent’s schedule was generated for every day as 

follows: 1) biological needs were scheduled (e.g. sleeping, 

eating, drinking etc.); 2) plans from the weekly schedule 

were added (e.g. Study, Frisbee, SeePlay for the first day); 3) 

leisure time activities (entertainment and watching TV) were 

added to fill the free gaps in the plan. Finally, the agent’s 



 

 

 

daily plan consisted of approximately 10 top-level goals. 

TABLE I 

AGENT’S WEEKLY SCHEDULE. BESIDES THESE PLANS THE AGENT ALSO HAD 

REGULAR PLANS SCHEDULED EACH DAY FOR SLEEPING, HYGIENE, EATING, 

DRINKING, GOING TO TOILET AND FREE TIME ACTIVITIES: ENTERTAINMENT 

AND WATCHING TV. 

  Part of the day 

Day Morning  Afternoon Evening 

1 Study Frisbee SeePlay 

2 Study Frisbee SeeMovie 

3 Study Frisbee SeePlay 

4 Study Frisbee, Swimming SeeMovie 

5 Study Swimming SeePlay 

6 nothing Swimming SeeMovie 

7 Study Swimming SeePlay 
 

TABLE II 

 EXAMPLES OF AGENT’S GOALS (THE LIST IS NOT COMPLETE FOR BREVITY). 

SOME GOALS HAVE MORE ALTERNATIVE SUBGOALS FULFILLING THEM (E.G. 

ENTERTAINMENT), SOME ARE DIRECTLY EXECUTABLE (E.G. SEEPLAY). 

Top level goal Alternatives of subgoals 

Read 

DoSport Entertainment 

PlayComputerGames 

FindResto, EatAtResto 
Eat 

ShopFood, Cook 

SwimmingTraining GoSwimming, Swim 

Study SitAtTheLecture, GoHome 

Frisbee ConfirmTraining, GetToParkAndPlay 

GoToToilet have no subgoals 

 

TABLE III  

ANSWERS FOR A SINGLE-DAY CHRONOBAGS (A) AND AN AVERAGE-DAY 

CHRONOBAG FOR THE PREVIOUS WEEK (B). IN THE ANSWER COLUMN THERE 

ARE NODES THAT WERE RECALLED FROM THE MEMORY CUED BY THE 

“EVENING” CARTESIAN NODES. THE NUMBERS ARE ACTIVATIONS OF THOSE 

NODES IN THE CORE LOBE. WHEN TWO NODES ARE ON A SINGLE LINE, FOR 

INSTANCE IN THE CASE OF [EAT - SHOPFOOD], THE FIRST NODE REPRESENTS 

A TOP-LEVEL GOAL AND THE SECOND A SUBGOAL. IN THIS CASE THE 

ACTIVATION CORRESPONDS TO THE SUBGOAL. IN THIS PARTICULAR 

EXPERIMENT, UP TO 5 THE MOST ACTIVE NODES ARE CONSIDERED FOR EACH 

ANSWER.  

Chronobags Answer 

1 day ago (a) 

 

[Eat - Cook, 1.174], [Eat - ShopFood, 1.046 [Eat - 

Shop, 0.95], [Eat - Carrefour, 0.95] 

2 days ago (a) [Eat - EatAtResto, 1.172], [Eat - FindResto, 

1.143], [SeeMovie, 0.832], [DrinkWater, 0.813] 

3 days ago (a) [SeePlay, 1.118], [Drink, 0.98], [Eat - EatAtResto, 

0.943], [Eat - FindResto, 0.886] 

4 days ago (a) [SwimmingTraining – GoSwimming, 1.175], [Eat 

– AtResto, 1.086], [SwimmingTraining – Swim, 

0.959] 

5 days ago (a) [Eat - EatAtResto, 1.174], [Drink, 1.174], [Eat - 

FindResto, 1.089], [DrinkWater - FindTap, 0.934] 

6 days ago (a) [Eat - Cook, 1.292], [Drink, 1.153], [Eat -

ShopFood, 1.019], [GoToToilet, 0.966] 

7 days ago (a) [Study - StudyAtSchool, 1.178], [Study - 

SitAtTheLecture, 0.999], [Eat, 0.803] 

 

Results. After the third week the IVA was asked (a) “What 

were you doing during the evening on a particular day?” or 

(b) “evenings last week?”. Table III shows an example of an 

answer. The IVA indeed reported some episodes that had 

happened regularly only in the (b) answer, e.g. playing 

computer games (which is randomly scheduled goal that had 

happened three times this week), while other less regular 

episodes only in the (a) answer, such as eating in a special 

restaurant, and some in both cases, e.g. going to cinema. 

Note that the (b) answer was constructed from the week-

chronobag, where different instances of an episode were 

intermixed. The competition strengthened regularities of 

these instances and removed details that had happened just 

once, keeping a common “gist”. Similar results occurred 

when the cue was an event (“When were you playing 

computer games?”).  

Note that no subgoals were recalled for the “Last week” 

answer. Only a more abstract knowledge of the top level 

goals remained in the memory because top level goals had 

higher activation than subgoals. 

Discussion. The results show that the model is able to 

partially forget the time information of several similar 

episodes, leading to one aspect of blending. Of course, 

blending is more than that [26]. For instance, humans can 

blend different colours in certain conditions. Bending 

objects’ features is out of scope of the LTEM-t. Humans also 

make timing-specific errors beyond blending, for instance, 

they can mistake specific days. While the model can forget 

whether going to cinema happened on Monday or Tuesday, 

stating that it happened at the beginning of the week (using 

average-day chronobag for the beginning of the week), it 

cannot say Monday instead of Tuesday. Still, to our 

knowledge, this is the first demonstration that an IVA 

memory model has the capacity to blend episodes under 

certain conditions. This paves the way for IVA memory 

researchers to address more complex blending and false 

memory phenomena. 

VI. DISCUSSION AND CONCLUSIONS 

In this paper we have presented a new psychologically-

inspired, long-term episodic memory model for virtual 

agents enhanced by a timing module. The model was 

prototyped and thoroughly tested. Here we have presented 

that the model is able to blend episodes of the same class and 

partially forget timing information. Our other experiments 

demonstrate that the model mimics also other psychological 

phenomena, including error proneness of timing at the scale 

of hours qualitatively similar to those of humans, adaptation 

to different time zones after a time shift, and usage of 

different time scales [12].   

Is the model ready for practical usage? We will analyze 

this question from the standpoints of academia and the 

gaming industry. From the academic perspective several 

issues remain unaddressed. First, the model works with time 



 

 

 

periods of weeks, but the real scientific challenge is the 

entire period of human life. While the I-lobes and the core 

lobe may remain intact for longer time periods, many kinds 

of E-TC nodes should be added (and perhaps also learnt). 

This will bring new questions such as the interaction of 

multiple timescales, blending over larger periods, and 

emergence of absolute time concepts (“the week when I got 

married”) and their interaction with relative ones (“last 

week”). Second, the learning rules the model uses should be 

compared to other rules. Third, while timing information can 

deteriorate, the IVA cannot mistake the date. Here a 

probabilistic interpretation of weights may help. Fourth, the 

time pointers present in the previous model can be 

incorporated into LTEM-t. This would represent a first step 

towards the implementation of reconstructive timing. 

However, for general reconstructive recall other issues far 

beyond the scope of timing will need to be addressed, such 

as the emergence of false memories [26]. A model extended 

by these features can contribute also to psychology. 

From the industry perspective our results suggest that a 

refined version of the model can be used in many NPCs and 

IVAs. However, by “refined” we do not mean an extended 

version but rather a lightened one. From the industry 

standpoint it does not make much sense to investigate the 

above-mentioned academic issues unless some of them 

directly stem from the requirements of a real-world 

application. Because tuning of the model’s parameters is a 

time consuming process, it makes more sense to simplify the 

model. For example, I-TC nodes can be learnt off-line or 

even hard-coded by a game designer. Some technical issues 

that need to be addressed before the model can be used also 

exist: most notably consumption of computational resources. 

Here the model’s advantage is that memory requirements can 

be controlled by forgetting. Also at some point during 

development a believability study with human subjects will 

likely have to be conducted.  

We presently focus only on some of the academic issues: 

most notably on false memories and representing actions that 

happened to other agents including human players [23].  
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