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Abstract 

The ability to acquire, remember and use information about locations of objects in one’s 

proximal surrounding is a fundamental aspect of human spatial cognition. In this paper, we 

present a computational model of this ability. The model provides a possible explanation of 

contradictory results from experimental psychology related to this ability, namely explanation 

of why some experiments have reproduced the so-called “disorientation effect” while others 

have failed to do so. Additionally, in contrast to other computational models of various 

aspects of spatial cognition, our model is integrated within an intelligent virtual agent. Thus, 

on a more general level, this paper also demonstrates that it is possible to use intelligent 

virtual agents as a powerful research tool in computational cognitive sciences. 

Keywords: spatial cognition, paradigm of pointing, disorientation effect, intelligent 

virtual agent 
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1. Introduction 

Computational approaches to cognitive science have become increasingly important in 

the past decade (Sun, 2008; Burgess, 2007). This is likely because, compared to verbally-

based theories, in silico simulations enable a researcher to specify hypothetical mechanisms in 

precise detail, systematically explore the model and manipulate its parameters, and generate 

new predictions (Tyrrell, 1993; Burgess, 2007; Sun, 2008; Marsella & Gratch, 2009). At the 

same time, simulations can be both more complex and well-specified than analytical or 

numerical models (Kokko, 2007; ch. 8).  

Intelligent virtual agents (IVAs) are pieces of software that are both autonomous and 

graphically embodied in a 2D or 3D virtual environment, capitalizing on the general agent 

metaphor used in software engineering and artificial intelligence (Wooldridge, 2002). IVAs 

are currently used in a large variety of applications, for instance, in educational simulations, 

virtual storytelling, cultural heritage, and computer games.  

In general, research on IVAs attempts to make these entities more believable, that is, 

to increase the agents’ ability to appear and behave in a lifelike manner.  Believable IVAs 

enable users to suspend their disbelief by providing a convincing portrayal of the personality 

the user expects (Loyall, 1997). It is worth noting that for designers of many IVAs, the goal is 

to imitate a character’s behavior, but not necessarily to develop a cognitively plausible model 

producing the behavior.  Nonetheless, these agents can be used as tools for investigating 

plausible computational models of cognitive phenomena (Brom, Lukavsky, & Kadlec, 2010a) 

primarily because virtual worlds present convenient models of real worlds, and IVAs, owing 

to their modular architectures, can serve well as “vehicles” for carrying and testing the 

models. IVAs can generate input data for these models and allow output data to be 

meaningfully manifested. Compared to a robotic platform, which is sometimes used for 
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research in computational cognitive sciences (e.g. Krichmar et al., 2005), virtual reality is 

more technically accessible and allows for investigation of higher-level phenomena. The input 

representations can be more abstract and can enable researchers to ignore other difficult 

problems (e.g., robotic vision) (see Brom, Lukavsky, & Kadlec, 2010a for a longer discussion 

of positives and negatives of IVA platform vs. robotic platform).  

However, to date, the use of cognitively plausible IVAs has been quite limited. In the 

past, some parts of IVA control mechanisms were psychologically inspired; most notably 

emotion models (e.g. Gebhard et al., 2008) and spatial memory models (e.g. Thomas & 

Donikian, 2006). Yet even these psychologically inspired models are not necessarily 

cognitively plausible when judged by standards of computational cognitive sciences. Indeed, 

most of psychologically inspired models for these agents enable a researcher neither to do 

comparative analysis against real world data nor to make predictions. Similarly, it has been 

demonstrated that IVAs can be controlled by Soar (Laird, 2000) as well as ACT-R (Best & 

Lebiere, 2006) cognitive architectures and that ACT-R can be integrated with Leabra, a neural 

architecture, and implemented in an IVA (Jilk, Lebiere, O’Reilly, & Anderson, 2008). 

However, even though these works presented valuable proof of concepts of connections of 

cognitive architectures with IVAs, they did not demonstrate fully the alleged advantages of 

IVAs for computational cognitive sciences.  

This article has two goals. First, we will present a computational model of one 

fundamental aspect of human spatial cognition: the ability to acquire, remember and use 

locations of objects in one’s proximal surrounding. In contrast to other computational models 

of various aspects of spatial cognition, our model is integrated within an IVA, and provides 

one possible explanation of contradictory results of experimental psychology related to this 

ability (Wang & Spelke, 2000; Holmes & Sholl, 2005; Waller & Hodgson, 2006). Second, and 
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more generally, this paper also demonstrates that it is possible to use IVAs as a powerful 

research tool in computational cognitive sciences.  

 

1.1 Paradigm of pointing 

Knowing locations of objects in one’s environment is a critical component of many 

human behaviors. Accordingly, substantial effort has been devoted to understanding the 

processes and representations underpinning this ability. Most contemporary theories of human 

spatial knowledge posit (at least) two partly independent subsystems. First, a transient system 

is thought to update spatial relations as one moves through an environment.  This system 

integrates multi-modal perceptual information and is generally thought to keep track of the 

locations of relatively few objects with respect to an egocentric frame of reference. A second 

system, based in long-term memory, codes locations of objects that are not perceptually 

available. This more enduring system of spatial knowledge may employ nonegocentric 

reference frames and has far greater capacity, although generally less precision, than the 

transient system (Burgess, 2006; Waller & Hodgson, 2006). The exact nature of these systems 

has been intensively investigated and debated in past (Easton & Sholl, 1995; Gallistel, 1990; 

Neisser, 1976; Wang & Spelke, 2002).   

One experimental paradigm used to distinguish transient from enduring spatial 

knowledge involves pointing to remembered but unseen objects. In a typical experiment, a 

person learns the locations of several objects in a room-sized environment, e.g. Figures 1, 3. 

The person is subsequently asked to point to the remembered locations of these objects after 

the objects have been removed or occluded.  Pointing while oriented to one’s environment is 

generally assumed to tap into transient spatial knowledge, while pointing after being 

disoriented requires enduring spatial knowledge. Wang and Spelke (2000) documented a 
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reliable increase in the variability of a person’s pointing errors as a result of disorientation 

(referred to here as the “disorientation effect”) and argued that such an increase is not well-

explained by theories that posit exclusive control of spatial behavior by an enduring system 

using nonegocenctric reference frames.  Subsequent research (Waller & Hodgson, 2006) 

interpreted this increase in variable error as evidence for a switch from the relatively precise 

transient representation to the coarser enduring one.  

Despite the apparent reliability of the disorientation effect in Wang and Spelke’s 

(2000) work as well as Experiment 1 of Waller and Hodgson (2006), Holmes and Sholl (2005) 

(Experiments 3–7) repeatedly failed to replicate it. With the present research, we examine the 

possibility that these contradictory findings may have been a result of relatively subtle 

difference in experimental procedures. In so doing, we develop a computational model that 

enables us to replicate these experiments in silico, including the key difference in 

experimental procedures. This is possible because we model the subject’s walking behavior 

using a walking IVA and we let the IVA walk in environments modeling the experimental 

rooms. The model enables us to fit precisely the data of Waller and Hodgson and to replicate 

qualitatively the key difference between results of the two experiments without altering any 

parameter settings. The model thus provides one possible explanation of the contradictory 

findings as well as generating new predictions that can, in future work, be tested empirically 

on human subjects.  

1.2 Structure of the paper 

The remainder of this paper begins with detailing the paradigm of pointing, explaining 

its importance, and outlining the findings of the two original studies we have modeled.  Next, 

our computational model is introduced and underlying assumptions explained. We will also 

discuss how the model is integrated within cognitive architecture of our virtual agent. Then 
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the experimental method will be outlined and the results of the in silico study presented. The 

paper will conclude with a discussion of implications of our research for the spatial cognition 

studies as well as general computational psychology.  

2. Paradigm of pointing and disorientation effect in detail 

2.1 Motivation 

As mentioned above, spatial knowledge is often conceptualized as comprising both 

transient, online, perceptual awareness of one’s immediate surroundings as well as enduring, 

offline memorial representations of environmental structure.  Understanding the nature of 

these two spatial systems and how they interact has been a central theme of much 

contemporary research in human spatial cognition. 

Based partly on previous work with reorientation in children (Hermer & Spelke, 1996) 

and animals (Cheng & Gallistel, 1984), Wang and Spelke (2000) introduced a disorientation 

paradigm to examine adult human spatial knowledge.  After learning the locations of six 

objects in their immediate environment, participants pointed to these objects while 

blindfolded, both before and after a long (e.g., one minute) rotation.  Before rotation, pointing 

accuracy was high, and relatively unbiased, indicating that people were oriented to their 

environment.  Wang and Spelke also calculated participants’ “configuration error” as the 

variability of their errors.  Configuration error before rotation was relatively low, indicative of 

a coherent knowledge structure on which online pointing was based.   

After rotation, the uniform distribution of participants’ pointing responses suggested 

that the rotation had disoriented the participants.  More importantly, across all participants, 

configuration error while disoriented was significantly greater than when oriented.  This effect 

persisted even after controlling for participants’ variability in pointing to a single object – 

their so-called “pointing error.”  Wang and Spelke argued that if pointing had been based on 



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       9 
 

 

an enduring coherent “cognitive map” of an environment, configuration error would not have 

been affected by disorientation.  In such a case, people would have presumably used the same 

mental representation before and after rotation and there should thus be no effect of 

disorientation.  The significant increase in configuration error was therefore more consistent 

with the idea that people updated their directions to target objects in a piecemeal way while 

oriented, and that disorientation affected each direction estimate somewhat independently.  

These provocative results cast doubt on the ubiquity and importance of the concept of a 

“cognitive map” (a global and comprehensive internal spatial representation that does not 

code spatial relationships with respect to the observer) and notable attempts to replicate them 

were soon conducted by Holmes and Sholl (2005) and Waller and Hodgson (2006). 

2.2 Holmes & Sholl procedure 

In experiment 7 of Holmes and Sholl (2005), participants were tested in 4.90 m ×  

3.91 m room devoid of any furnishing other than 6 target objects as well as the tables and 

stool on which they were placed (Figure 1). During learning, participants walked around the 

room to familiarize themselves with the locations of the objects. Then they sat in a swivel 

chair in the middle of the room and they were tested in the three phases used by Wang and 

Spelke (2000). In the first phase they closed their eyes and pointed to each object location. If 

they made a mistake in this phase they were asked to study the room again. In the second 

phase (eyes-closed phase) the participants were blindfolded and were rotated approximately 

45 degrees to either their left or right. In the third phase (disoriented phase) participants were 

slowly rotated so that they became disoriented. After they were stopped, they were told to 

imagine facing a direction of their choice. There were 24 trials for both the second and the 

third condition. Participants had to point at one object in a trial, four times to each of six 

objects chosen in a random order. 
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The critical results of this experiment are depicted on Figure 2, which illustrates a 

failure to replicate the disorientation effect originally reported by Wang and Spelke (2000, 

Exp. 1, 2).  

 

--- Insert Figure 1 about here --- 

 

--- Insert Figure 2 about here --- 

  

2.3 Waller & Hodgson procedure 

In another attempt to replicate Wang and Spelke’s (2000) results, Waller and Hodgson 

(2006) asked participants to learn the locations of six objects in a 8.66 m × 8.40 m room. In 

contrast to the procedures of Holmes and Sholl (2005), Waller and Hodgson placed a 1.9 m × 

1.9 m booth in the middle of the room, replicating closely the original conditions of the 

original Experiment 2 of Wang and Spelke (2000) (Figure 3). The procedure was the same as 

in Holmes & Sholl with the four small differences. First, participants sat on the chair placed in 

the booth.  Second, in the eyes-closed phase blindfolded participants were rotated 40°. Third, 

in the disoriented phase, participants were asked to imagine facing an object of their choice. 

Fourth, in each phase, participants pointed twice to each of the six objects.   

In this experiment, Waller and Hodgson replicated the disorientation effect of Wang 

and Spelke (2000). Figure 4 summarizes the data.  

 

--- Insert Figure 3 about here --- 
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--- Insert Figure 4 about here --- 

 

2.4 Our hypothesis 

For both Holmes and Sholl’s and Waller and Hodgson’s experiments, we modeled the 

learning phases and the pointing phases (the eyes-closed phase and the disoriented phase). As 

detailed later, in our model, we assume the allocentric object-to-object relations are built only 

between objects that were perceived recently. These objects change while the agent is moving 

around the room. In the conditions of Holmes and Sholl the agent can perceive more objects 

at the same time than in the conditions of Waller and Hodgson because the booth is blocking 

the agent’s view in the latter setting. Thus, our hypothesis is that the model will develop more 

accurate object-to-object spatial representation in the Holmes and Sholl conditions than in the 

Waller and Hodgson conditions. When confirmed, this discrepancy would help us to explain 

why Holmes and Sholl failed to replicate the disorientation effect. Although a similar idea has 

been expressed by Mou et al. (2006), here we aim at supporting it by in silico data. To 

examine our models’ predictions with respect to object-to-object representations, we will also 

compare accuracy of developed object-to-object spatial representations in Waller and 

Hodgson’s condition with the booth to the same condition without the booth, an opportunity 

we have due to the computational approach.  

3. Computational model of disorientation paradigm 

In this section, we introduce our computational model of disoriented paradigm (DP-

model throughout). Because the model is integrated within an IVA, we will first introduce 

cognitive architecture of our IVA model. Then, we will outline assumptions behind the DP-

model in detail. Finally, the DP-model will be introduced.  
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3.1 IVA architecture 

The integration of the DP-model within an IVA is only possible because IVAs, 

including our own IVA, have elaborate and modular cognitive architectures. The IVA 

cognitive architectures are somewhat similar to general cognitive architectures, such as ACT-

R, Soar or ICARUS (see Samsonovich (2010) for more of these architectures). However, in 

general, the IVA architectures depart from the general cognitive architectures in that the 

former tend to be special-purpose and application driven, while the latter predominantly serve 

general AI or neuro-/psychological goals.1  

The architecture that drives our IVA is depicted on Figure 5. This figure depicts the 

IVA receiving inputs from the environment (ENV on Figure 5) via a threshold-based attention 

filter. The inputs fill up the perceptual field (PF) of the short-term memory (STM). The 

architecture has several long-term memory appendages, such as the long-term spatial memory 

(LTSM) and the long-term episodic memory (LTEM).2 

The key feature of the architecture is hierarchical decomposition of an agent’s 

behavior: IVA’s behaviors are decomposed to sub-behaviors, which are further refined until 

some atomic actions are reached. This is similar to how representation of possible behavior is 

conceived by ICARUS cognitive architecture (Langley, Choi, & Rogers, 2009). In fact, our 

architecture distinguishes tasks from goals making the mechanism resembling also the Belief-

Desire-Intention architecture (Bratman, 1987), but this is unimportant for present purposes 

(see Brom, Peskova, & Lukavsky (2007) for details). Note that hierarchical representations of 

behavior are popular in the field of IVAs and in videogames in particular (e.g., Isla, 2005; 

Champandard, 2008). 

Every behavior may require several resources, i.e. objects, for execution. Behaviors to 

be pursued are selected within the goal structure and the conflict resolution mechanism based 
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on drives, external events, and a schedule. Currently pursued behaviors are represented within 

the task field (TF) of the STM. The memory field (MF) of the STM can hold temporarily 

information about an object recalled from a long-term memory. Every object is regarded as a 

tool for action, i.e. it is a set of “affordances” (Gibson, 1979), meaning it possesses pointers to 

behaviors it can be used for as a resource (dotted arrows on Figure 5). These pointers are 

perceived by IVAs when observing their environments. The architecture also features a simple 

valence-based emotion module and a simple linguistic module allowing the IVA to explain 

itself based on the content of its LTEM. 

We have implemented several IVAs capitalizing on this architecture, most notably in 

the context of modeling various aspects of episodic memory for virtual characters (Brom et 

al., 2007; Brom et al., 2010a; Brom, Burkert, & Kadlec, 2010).3 Individual parts of the 

architecture are implemented only when needed, e.g. only some of our IVAs feature emotions. 

Some of these IVAs inhabit 2D worlds while others 3D worlds of the game Unreal 

Tournament 2004 (Epic, 2004; Gemrot et al., 2009). The IVA developed for the DP-model 

uses a lightweight version of this architecture: it features neither emotions nor drives nor 

long-term episodic memory. In terminology of our architecture, the DM-model is an 

augmentation of the short-term memory and the long-term spatial memory.  

 

--- Insert Figure 5 about here --- 

 

3.2 The DP-model: overview and assumptions 

Any researcher developing a complex computational model faces a problem of 

describing the model’s properties in enough detail to enable in silico execution of the model.  

Here, we detail the assumptions we made when specifying the DP-model and overview the 
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model. We start with conceptual requirements and considerations, which we number with “G” 

prefix, and continue with technical considerations, numbered with “T” prefix. For brevity, we 

detail only the components of the model that are needed for explaining the results of Waller 

and Hodgson (2006; Exp. 1) and Holmes and Sholl (2005; Exp. 7). In Section 5, it will be 

shown that the model is actually more complex. 

In general, the model is abstract; it operates with conceptual entities used for 

describing mental processes at the psychological level of abstraction. We make no links to 

neural substrate of human positional system in this paper. Additionally, we consider spatial 

relations only in the horizontal plane at eye height; in other words, objects’ heights played no 

role in the experiments in question (other than the requirement that the objects could not 

occlude each other).  

3.2.1 General requirements and conceptual considerations 

G1. Egocentric and allocentric components. As already mentioned, dominant 

models of the human positional system posit (at least) two partly independent subsystems: 

one transient and the other more enduring (Burgess, 2006; Gallistel, 1990; Mou et al., 2004; 

Waller & Hodgson, 2006). Additionally, recent research suggests that both egocentric – 

subject to object – and allocentric – object to object – representations exist in parallel (see 

Burgess (2006) for a review). The idea of an egocentric module fits naturally with the idea of 

the transient system, while an allocentric module accords well with the notion of the enduring 

system (Burgess, 2006, pp. 555; but see also Waller & Hodgson, 2006). Thus, the extant 

literature supports two key subsystems for our model: an egocentric and an allocentric. While 

the representations held by the former one should be relatively short-lived, the representations 

of the latter should be more enduring. These two subsystems - transient egocentric and 

enduring allocentric will be featured by our model.  
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G2. Vectors, weights and errors. The natural assumption is to code egocentric 

information using self-to-object vectors while allocentric information using object-to-object 

vectors; in this way the information is to be coded in our model.  

An important question is how to represent inaccurate information and how 

representational inaccuracies translate into output error (i.e. error in pointing). Although error 

in human pointing behavior can arise from a large number of underlying cognitive processes 

(e.g., storage, updating, maintenance, retrieval, etc.), for the sake of parsimony, our model 

will simplify these sources into only one kind of general memory error and one kind of motor 

error. Thus, we can represent all self-to-object and object-to-object vectors precisely, which is 

technically the most convenient solution, and generate these two errors during pointing tasks 

based on two sources of information. The first source is how well the vector was learnt during 

the learning phase; we will represent this information using a vector’s weight (also called 

strength here). The second source is a noise from the motor and memory system.  

To be more precise, the motor error will be generated using parameterized gaussian 

noise, which is an abstraction for the noise in the motor system. The motor error will not be 

influenced by the amount of learning.  

The situation with the memory error is more complex. The memory error obviously 

should be influenced by both sources of information, not just by the noise in the memory 

system. We can assume that the longer a part of the objects’ layout is visible the better it will 

be represented internally; the initial uncertainty in the internal representation of self-to-object 

and object-to-object relations will be gradually reduced. At the same time, we can assume that 

the longer a part of the layout will not be visible, the more will the respective internal 

relations become distorted, that is, the uncertainty will grow. This corresponds mainly to the 

noise accumulation due to updating of egocentric vectors towards non-visible objects and due 
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to general memory maintenance (at the neural level). We assume that the decrease and the 

increase of the accuracy are reverse processes. Thus, the weight is to correspond positively to 

the amount of learning the vector is exposed to during the learning phase and negatively to the 

amount of forgetting. The memory error will be then generated using gaussian noise the 

magnitude of which will be influenced by the respective weight. For convenience, we will use 

the scale 0 - 1 for weights (0 corresponds to a maximal uncertainty, 1 to a minimal 

uncertainty; later, we will see what exactly is meant by “minimal” and “maximal”). 

For brevity, we will often use terms egocentric vectors and egocentric weights for 

vectors and their weights from the egocentric subsystem, and allocentric vectors and 

allocentric weights for vectors and their weights from the allocentric subsystem. 

G3. Relation between the subsystems. Although there are several ways how 

information can flow within the system, we assume that egocentric representation is updated 

based on information in the perceptual field, and the allocentric representation is updated 

based on the egocentric vectors, not the other way round. These assumptions are aligned with 

dominant theories of human information processing (e.g., Neisser, 1967; Marr, 1982), which 

generally consider the information used in perception and action to be egocentrically (e.g., 

retinotopically) organized, and for additional processing to be required in order to store non-

egocentric information in long term memory. Thus, an egocentric weight is strengthened or 

weakened when a particular object is perceived or not perceived, respectively, i.e. based on 

whether the object is actually represented within the perceptual field. An allocentric vector 

between two objects is strengthened proportionally to the strengths of the two subject-to-

object vectors corresponding to these two objects (i.e., let us assume we have an agent A and 

objects O1 and O2; the allocentric vector O1–O2 is updated based on the strengths of A–O1 and 

A–O2). 
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When a human moves, the coordinates of self-to-object vectors are updated. The exact 

nature of human updating is subject to intensive research (see, for example, Loomis, Klatzky, 

Golledge, & Philbeck, 1999). In the model, in accordance with Point G2, the self-to-object 

vector coordinates are updated precisely.  

G4. Pointing. When pointing, we assume that the agent prefers to use the egocentric 

representation when it is available (Waller & Hodgson, 2006; Hodgson & Waller, 2006). 

Additionally, we assume that representations of self-to-object relations are disrupted after 

disorientation (e.g. Mou et al., 2006, pp. 1276). When this happens, the agent must use the 

often less precise object-to-object representation. Therefore, in our model the egocentric 

subsystem assists in the pointing task in the eyes-closed phase (i.e. before the disorientation) 

while the allocentric subsystem is used in the disoriented phase. We will call the former 

situation egocentric pointing and the latter allocentric pointing.4 

G5. Speed of learning. Because the egocentric representation should be built (and 

forgotten) more rapidly than the allocentric one (Point G1), egocentric weights should 

increase and decrease more quickly than allocentric weights. But is this the only requirement 

on the speed of learning? 

Psychologically speaking, human subjects will most likely know the objects’ layout 

well at the end of the learning phase, but some self-to-object or object-to-object relations can 

be expected to be represented better than others. In terms of the model, this means that, at the 

end of the learning phase, the vectors should tend to be strong, but their weights should not be 

the same, and in particular, they should not be all very close to 1. With all weights very close 

to 1, a ceiling effect would be produced during generating memory error. We call this situation 

full saturation. Note a reverse problem, that is, with a floor effect, would appear when all 

weights are very small. Thus, we require the weights, when considered all together, to be 



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       18 
 

 

reasonable strong yet diverse at the end of the learning phase; some may approach the 

saturation (value 1), but some should be weaker. This holds for both egocentric and 

allocentric vectors.  

How should a model achieve this? Let us start our thinking with allocentric vectors. In 

order to prevent full saturation of allocentric vectors, the egocentric vectors must be built and 

must decay very rapidly (strong egocentric weights basically mean that the allocentric weights 

are continuously being increased due to Point G3). Ideally, for the purpose of allocentric 

weights to be reasonably strong, but not fully saturated, at the end of the learning phase, 

egocentric weights should increase from 0 to 1, and vice versa, in about an order of magnitude 

shorter time period than the learning phase lasts. But is this possible? 

Recall that egocentric weights should be also used for estimating errors during 

egocentric pointing (Points G2, G4). Should egocentric weights increase from 0 to 1, and vice 

versa, several times during the learning phase (due to the requirements on allocentric 

weights), two unwelcome things would happen at the end of the learning: a) several 

egocentric weights would most likely be close to 0, b) egocentric weights in general would 

not reflect the amount of learning/forgetting the vector is exposed to during the learning 

phase.  

Thus, there are two contradictory requirements: on a rapid build-up and decay of the 

egocentric weights (due to the allocentric pointing) and on a slow build-up and decay of the 

egocentric weights (due to the egocentric pointing). To resolve this conflict, we define two 

kinds of egocentric weights; transient and enduring. The transient weights change more 

rapidly than the enduring weights and they are influenced by information in the perceptual 

field directly. The enduring weights are changed based on the transient weights and they assist 
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in the egocentric pointing. In addition, transient (but not enduring) egocentric weights are 

used for changing the allocentric weights.  

Recall that the build-up of allocentric weights should be even slower than the build-up 

of enduring egocentric weights. Concerning the speed of allocentric weights’ decay, because 

the forgetting in the allocentric representation is not crucial within the time scope we are 

investigating, we abstract from it: the allocentric weights will not decay in the model. 

The requirements on the speed of learning of the three types of weights are 

summarized in Figure 6. For explanatory purposes, one can note a rough correspondence to 

Atkinson and Shiffrin’s memory model (1968) (although this correspondence was not actually 

our guiding design principle). Note also that the “long-term” memory should be rather 

denoted as “intermediate” term memory given the time scope of our experiments. 

 

--- Insert Figure 6 about here ---  

 

 

3.2.2 Technical considerations 

T1: Localization abilities and geometrical memory. Because the experiments that 

we model involve environments that are only room-sized, for simplicity, we endow our model 

with perfect knowledge of environmental topology, i.e. surrounding walls, and perfect ability 

to localize itself in the environment. 

T2: Perception, attention. Our agent perceives all objects in its current visual field, 

which is 120° wide. The eye movements and foveation are not modeled. We do not limit the 

number of objects that can be represented in the perception field at one moment for there are 
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only up to 6 objects in the experiments we modeled. Additionally, we abstract from attention 

for its role has not been fully examined empirically and thus is not fully understood. Finally, 

because the experiments do not employ features of objects, the objects we model are state-less 

(nevertheless, the agent is able to distinguish one object from another).5 

T3: Geometry of the perceived space. Although there is some evidence that the 

geometry of perceived proximal space is non-Euclidean (e.g. Cutting & Vishton, 1995), we 

make the simplifying assumption that both the peri-personal as well as extra-personal space 

have Euclidean geometry. Note that this consideration justifies the usage of gaussian-based 

noise for mimicking the error during pointing (Point G2). 

T4: Grouping, alignment. For the purpose of this study we do not model high-order 

geometrical relationships between objects (e.g. gestalt laws—three objects being placed on 

the same line, objects forming two parallels etc.). Similarly, each object in our scenario is 

easily distinguishable from others and we do not implement any grouping. Because these 

principles were not explicitly treated in the experiments we modeled, we do not include them 

here. 

T5: Intrinsic axis for the allocentric representation. In this paper, we assume that 

the 0° axis of the allocentric representation is the south-north axis of the rooms in which 

experiments were conducted (see Sec. 5 for more on this issue). In the egocentric 

representation, the natural 0° axis is represented by the agent’s current heading. 

T6. Steps. One agent’s step approximates one human step or rotation by any angle (an 

arbitrary multiple of 15°).   

 

3.3 The DP-model: details 
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Formally, the DP-model is a triple <E, A, P>, where E represents the egocentric 

component, A the allocentric one, and P is the perceptual field. The perceptual field is exactly 

what was described above: a set of internal representations of all objects that are currently 

perceived in the agent’s visual field (Point T2 from Sec. 3.2). 

In terms of our IVA architecture, the egocentric component augments the perceptual 

field and the allocentric extends the long-term spatial memory.  

3.3.1 Egocentric component. The egocentric component E is a triple <H, egV, egC>, 

where H is an angle representing the agent’s current heading (with respect to the south-north 

axis), egV is a set of egocentric vectors (Point G2) and egC is the egocentric updating 

configuration. 

A vector egvA ∈ egV represents a doubly weighted egocentric vector from the agent to 

the object A (Point G5) and it is a tuple <(egaA, egbA), eg-twA, eg-tdA, eg-ewA, eg-edA >, where: 

· (egaA, egbA) are Cartesian coordinates (Point G2) of the vector between the 

agent and the object A with respect to the agent’s actual heading H and position as 

shown in Figure 7; 

· eg-twA is the vector’s transient weight (or strength), a number from the interval 

<0,1>; 

· eg-tdA is a base for computing the transient weight, a number from interval <0, 

egbound >. This variable is related to eg-twA via the standard logistic sigmoid 

function, as depicted on Figure 11. 

· eg-ewA is the vector’s enduring weight, a number from the interval <0,1>; 

· eg-edA is a base for computing the enduring weight, a number from interval <0, 

egbound >. This variable is related to eg-ewA via the standard logistic sigmoid. 
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The configuration egC contains parameters eg-tinc, eg-tdec, eg-einc, eg-edec, egbound: 

· eg-tinc is the speed of increasing the transient weights of the egocentric vectors; 

· eg-tdec is the speed of decreasing the transient weights of the egocentric 

vectors; 

· eg-einc is the speed of increasing the enduring weights of the egocentric vectors; 

· eg-edec is the speed of decreasing the enduring weights of the egocentric 

vectors (Point G2, G3, G5); 

· egbound is an upper limit for the bases eg-tdA and eg-edA for computing the vector 

strengths. Its purpose is to constrain the base of the egocentric vectors when an 

object is perceived for a long time. Such an over-learned egocentric vector would 

be then uneasily forgotten even a long time after the object was perceived (see Fig. 

11).   

These five parameters had been set before experiments started as described in Sec. 4. 

 

--- Insert Figure 7 about here ---  

 

3.3.2 Allocentric component. The allocentric component A is a tuple < allV,  allC >, 

where allV represents a set of allocentric vectors (Point G2) and allC is the allocentric updating 

configuration.  

A vector allvA,B, i.e. an allocentric vector from the object A to object B, is a triple 

<(allaA,B, allbA,B),  allwA,B, alldA,B>, where: 
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· allaA,B, allbA,B are cartesian coordinates of the vector between objects A and B 

with respect to the main environment axis with direction 0° as shown if Figure 8 

(Point T5); 

· allwA,B is the vector weight (or strength), a number from an interval <0,1>; 

· alldA,B  is the base for computing the vector strength, a real positive number. 

This variable is related to allwA,B
  via the standard logistic sigmoid function, as 

depicted on Figure 11. Note that egbound is used as the upper limit for the base 

alldA,B for computing the vector strengths. 

The configuration allC contains only one parameter allinc which is the speed of 

increasing the weights of the allocentric vectors. As part of investigating our hypothesis, we 

examined how behavior of the model changes when the value of this parameter changes, as 

described in Sec. 4. Note that there is no alldec, an allocentric analogy to eg-tdec and eg-edec 

because the allocentric weights do not decay (Point G5).  

Note that vectors allvA,B and allvB,A are symmetric, meaning they have the same 

weights. 

 

--- Insert Figure 8 about here ---  

 

3.3.3 The initial state and update mechanisms. At the beginning of every 

experiment, all vector bases and weights are initialized to 0 for both the egocentric and the 

allocentric component. During the learning phase of every experiment, the IVA walks along a 

specified trajectory (how these trajectories were acquired is described in Sec. 4). The weights 

of the egocentric and allocentric vectors are updated each time the agent steps or turns. 
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Therefore, the final vector strengths depend on the path followed by the agent while exploring 

the room.  

The perceptual field update.  Every time step, we remove all objects that are no 

longer visible from the perceptual field P and insert all newly visible objects to P.  

The egocentric component update. In every time step, every vector egvA ∈ egV is 

updated as follows: 

(1) eg-tdA( t+1 ) = eg-tdA( t ) + eg-tinc, if object A was present in the 

perceptual field in time t; 

eg-tdA( t+1 ) = eg-tdA( t ) – eg-tdec, if object A was not present in the perceptual 

field in time t (Point G3); 

with additional rule for bounding the vector base within predefined limits: 

eg-tdA( t+1 ) = eg-tdA( t ),  if eg-tdA( t+1 ) < 0; 

eg-tdA( t+1 ) = egbound,  if eg-tdA( t+1 ) > egbound; 

(2) eg-twA( t+1 ) = 1 / { 1+exp[ -( eg-tdA( t+1 ) – egbound/2) ] }; 

note that (2) is a shifted standard logistic sigmoid (Figure 11); 

(3) eg-edA( t+1 ) = eg-edA( t ) + eg-twA( t ) . eg-einc  – eg-edec; 

with additional rule for bounding the vector base within predefined limits: 

eg-edA( t+1 ) = eg-edA( t ),  if eg-edA( t+1 ) < 0; 

eg-edA( t+1 ) = egbound,  if eg-edA( t+1 ) > egbound; 

 

(4) eg-ewA( t+1 ) = 1 / { 1+exp[ -( eg-edA( t+1 ) – egbound/2) ] }; 
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(5) (egaA, egbA) is updated according to the agent’s movement as depicted in 

Figures 9 and 10 (Points G2, T3). 

 

--- Insert Figure 9 about here --- 

--- Insert Figure 10 about here --- 

--- Insert Figure 11 about here --- 

 

The allocentric component update. In every time step, every vector allvA,B ∈ allV is 

updated as follows: 

(6) alldA,B( t+1 ) = alldA,B( t ) + eg-twA( t ) . eg-twB( t ) . allinc, 

where eg-twA( t ) and eg-twB( t ) are transient weights of egocentric vectors to 

objects A and B in time t (Points G3, G5); 

(7) allwA,B( t+1 ) = 1 / { 1 + exp [ -( alldA,B( t+1 ) – egbound/2 ) ] }; 

note that (7) is a shifted standard logistic sigmoid (Figure 11). 

3.3.4 Action selection. The action selection mechanism of our agent enables it to: (a) 

follow a pre-specified trajectory in order to learn the spatial representations during the 

learning phase, and (b) perform one of the pointing tasks. 

3.3.5 Pointing to objects. Recall that both egocentric and allocentric vectors are 

stored precisely and that the weight is an abstraction of representation precision (Point G2). In 

order to fit errors produced by real humans in the two pointing tasks (that is, in their eyes-

closed phases and the disorientation phases), we need to devise a pointing mechanism that 

would “artificially” distort the precise representations based on the vector weights and 
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additional parameters. These parameters will than be subject to a data-fitting procedure. The 

point is that we need to fit data from both the experiments by the same setting of the 

parameters.  

Because we have two representations used for the different phases of the pointing 

tasks, the enduring egocentric and allocentric (Point G4), we need two ways of distorting the 

precise representations, that is, two pointing mechanisms, one for each representation. Both 

mechanisms will operate in two steps:  the first step models a memory error, and the second 

step models a motor error. First, when humans retrieve a spatial relation from memory, this 

relation may be inaccurate (recall that we are not concerned with when and how the memory 

error has been caused, we are only interested in replicating its magnitude here). Second, when 

an object’s position (possibly inaccurate) is retrieved, humans may make another error during 

the pointing—the motor error—i.e. they may not point exactly where they intend to point.  

Wang and Spelke (2000) measured quantities called the pointing and the configuration 

error (see Sec. 2.1). In our model the memory error corresponds mainly to the configuration 

error and the motor error corresponds to the pointing error: the higher the memory error the 

higher configuration error, and the higher motor error the higher pointing error. However, as 

Wang and Spelke noted, increases in pointing variability “within objects” (i.e., pointing error) 

affect measures of pointing variability “between objects” (i.e., configuration error).  In the 

present context, this relationship implies that motor error also affects the configuration error. 

The configuration error in our model depends therefore on the memory error as well as on the 

motor error while the pointing error depends only on the motor error. The memory and the 

motor errors are independent. 
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In the eyes-closed phase (i.e. when the agent is not disoriented; see Sec. 2) the agent 

uses only the enduring egocentric representation (Points G4, G5). The pointing direction is 

generated from the enduring weight of the egocentric vector towards the object.  

In the disoriented phase, the pointing is driven by the allocentric representation (Point 

G4). The egocentric representation is ignored in this phase. The agent is told which object it is 

facing. The imagined direction to the object that the agent has to point at, i.e. the memory 

error, is created by distorting vectors constituting a particular path towards this object in the 

allocentric representation (Figure 13). This path is chosen using a heuristic that attempts to 

make the pointing performance as precise as possible (i.e. the “shortest” path in terms of 

precision is found). Again, the vector weights influence the precision. The final pointing 

direction is deduced from the imagined direction towards the object with added motor error. 

Formal description of pointing to objects. The pointing mechanism is a quadruple 

<M, E, D, C> where M is a an agent’s model of spatial representation described above, E is 

the pointing mechanism used by the agent while the agent is oriented to the surrounding 

environment (eyes-closed phase, after rotation), D is the pointing mechanism used by the 

agent when it is disoriented (disoriented phase), and C is the configuration of pointing 

mechanisms E and D. 

Configuration C contains four parameters determining:  

· egσmem: a parameter responsible for the amount of the memory error while the 

agent is inferring the pointing direction from the egocentric representation (this 

parameter will be used by E);  

· egσmot: a parameter responsible for the amount of the motor error in inferring 

the pointing direction from the egocentric representation (this parameter will be 

used by E); 
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· allσmem: the first parameter responsible for the amount of the memory error in 

inferring the pointing direction from the allocentric representation (this parameter 

will be used by D);   

· allσmot: a parameters responsible for the amount of the motor error in inferring 

the pointing direction from the allocentric representation (this parameter will be 

used by D).  

We note that all of these parameters relate only to the distortion of an accurate 

representation during the pointing; these parameters do not influence how the representation 

is built during learning. During learning, the topology of the room, the positions of objects, 

the agent’s trajectories and parameters allinc, eg-tinc, eg-tdec, eg-einc, and eg-edec can influence 

how a representation is built.  

These parameters will be subject to data-fitting procedure described in the next 

section. 

Pointing mechanism E (eyes-closed phase). Let the agent be pointing to object A after 

a rotation. Let eguA denote the egocentric vector to the object A and α the accurate angle 

between the agent’s current heading and the vector eguA. The pointing direction is computed in 

two steps. First, imagined angle α' representing inaccurately retrieved pointing angle from the 

egocentric representation is generated with respect to normal distribution with the mean value 

α and the standard deviation egσmem and further distorted depending on the enduring weight eg-

ewA of the vector eguA as described in the next paragraph. Let us denote the difference α - α' as 

ε. Note that ε actually corresponds only to that part of the total pointing direction’s error that 

is caused by the noise in the processes of perception the object, storage of the memory trace 

of the object, maintenance of the trace and recall (but not execution of the motor gesture; see 



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       29 
 

 

Point G2). Thus, second, the final pointing direction is generated with respect to normal 

distribution with mean value α' and standard deviation egσmot.  

How should the eg-ewA influence ε? Because we are unaware of empirical results that 

would help us to answer this question with a reasonable degree of certainty, for parsimony, we 

used as simple mechanism as possible, which we derived based on the following 

considerations. First, when the weight is 0, the pointing should be entirely random; i.e., ε 

should be derived from the uniform distribution (-180, 180). Second, when the weight is 1, ε 

should be minimal, and this applies for subjects with truly over-learned representations. It 

seemed implausible to us that ε is zero even for such subjects. Instead, we assume that ε 

behaves like a normally distributed random variable and use parameter egσmem to denote its 

standard deviation. Finally, for weights larger than 0 but smaller than 1, we use a linear 

combination between these two extremes as follows. Let U denotes the uniform distribution (-

180, 180) and N denotes the normal distribution with the mean 0 and the standard deviation 

egσmem. The value of ε is generated by the linear blend function (Fig. 12): 

(8) ε( eg-ewA ) = blend( eg-ewA ) = ( 1 - eg-ewA ) . U + eg-ewA  . N   

In the experiments we modeled, subjects should have studied the objects layout “as 

much as they can”, but only over a relatively short period. Thus, the layout was most likely 

not truly over-learned by these human subjects, but we can assume that it was nearly over-

learned, which we operationalize for the egocentric subsystem’s purpose as follows:  

(9) the average of the six enduring egocentric bases is between 0.8 

and 0.95 at the end of a particular learning phase; all enduring egocentric bases eg-

edA are larger than or equal to 5 at the end of a particular learning phase; at least 2 

enduring egocentric bases eg-edA are larger than or equal to 9 at the end of a 
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particular learning phase; at most 2 enduring egocentric bases eg-edA are larger than 

or equal to 9.75 at the end of a particular learning phase.  

Note that due to (8) and (9), we can fit parameter egσmem even if we do not have data 

for subjects with truly over-learned objects’ layouts in the settings of Waller & Hodgson and 

Holmes & Sholl. This will be detailed in Sec. 4. 

 

--- Insert Figure 12 about here --- 

 

 

Pointing mechanism D (disoriented phase). At the beginning of the disoriented phase, 

the agent “imagines” that it is heading towards one of the objects (chosen randomly). This 

corresponds to the experimental procedure of Waller and Hodgson (2006), see Sec. 2.3 and 

4.4. Let the agent has imagined heading to object A while standing at position P, and let it 

point towards object B. The pointing direction is generated in three steps (Figure 13).  

First, the self-to-object-A vector egv’A is inferred by the agent using the notion of its 

position in the allocentric map. Assuming the agent knows where it stands (Point T1) and that 

it is heading to object A (this accords with the method of the in silico experiment - see Sec. 

4.4), the estimation of the angle (0º) is trivial and we only need to estimate the vector’ length. 

The length is generated with respect to normal distribution with the mean given by the length 

of the real self-to-object-A vector egvA. The standard deviation of the distribution is calculated 

as in the case of estimating the length of allocentric vectors described below. For this purpose 

we defined the vector egvA as fully learned with its weight egwA=1 . Then the estimated vector 
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egv’A is aligned with the allocentric map, that is, it is rotated by the angle given by the angle 

between the agent’s heading and the south-north axis of the environment (Point T5). 

Second, a distorted allocentric vector alluA,B from object A to B representing an 

inaccurately retrieved vector from the allocentric representation is calculated. This is done by 

vector addition of vectors {allu’Ai,Aj  | i = 1..n-1; j = i+1 } estimated from allocentric vectors 

{alluAi,Aj  | i = 1..n-1; j = i+1}. The vectors alluAi,Aj constitute the “best” path in the allocentric 

map of length n between objects A and B (going through objects Ai, where the object A1 

corresponds to A and An corresponds to B). The “best” path is selected as follows. All possible 

paths without cycles between objects A and B are ordered according to these criteria: 

a) any path P1 of length k+1 is better than path P2 of length k if and only if 

the weight of the weakest vector of P1  is twice as high as the weight of the weakest 

vector in path P2;  

b) if paths P1 and P2  has the same length, s1  is the weakest vector of P1 

and s2 is the weakest vector of P2, than  P1 is better than P2  if and only if s1 is 

stronger than s2. 

The best path of these is chosen. The idea behind is that weak vectors and/or long 

paths lead to a greater memory error. The procedure above is a heuristic estimate of a path 

that might lead to smaller configuration error than other paths. Point (a) serves to estimate 

whether a longer path (counted in number of vectors) might be better than a shorter path and 

Point (b) compares two paths of an equal lengths. Obviously, these criteria are arbitrary. Note, 

however, that it is not possible to compute the shortest path using a standard algorithm for 

path searching, such as Dijkstra, for it is not clear what the distance between two objects 

should be. Setting the distance between two objects to 1-w, where w is the vector’s weight, 

does not work very well. Such mechanism would propose that a path of the length 2 
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containing vectors weighting 0.99 and 0.01 is shorter than a path of the length 3 containing 

vectors weighting 0.6, 0.6, and 0.6.  

The direction and the length of the vector allu’Ai,Aj are estimated from the direction and 

the length of the retrieved (exact) vector alluAi,Aj. Conceptually, the vector  allu’Ai,Aj is created by 

rotation of the vector alluAi,Aj and changing the length of the rotated vector (using two normally 

distributed random variables). This process seemed natural to us. Other option would be to 

add a normally distributed random variable to the two Cartesian components of the vector; 

this option seemed slightly less natural to us. Additionally, the former approach allows for 

different parameterization of estimating angular and distance errors, which is a feature that 

may be useful in future. Therefore, we had chosen the former approach. 

More specifically, the direction of each vector allu’Ai,Aj is estimated with respect to 

normal distribution with the mean given by the direction of the retrieved (exact) vector alluAi,Aj 

and standard deviation σd
j, where 

(10) σd
j = allσmem . [1/(allwAi,Aj)2] 

The higher the weight is, the lower σd
j is. When the weight is equal to 1, σd

j is equal to 

allσmem.  

The length of each vector allu’Ai,Aj is estimated with respect to normal distribution with 

the mean given by the length of the retrieved vector alluAi,Aj with standard deviation σl
j. The 

standard deviation σl
j is computed as follows. Let α denotes the angle defining a circular 

sector representing 95% confidence interval of the estimated directions as depicted on Figure 

14. Let d is the shortest distance between the exact position of the object Aj and an edge of the 

circular sector given by α. Let now u denotes the length of vector alluAi,Aj. The standard 

deviation σl
j is computed so that the range u±d is a 95% confidence interval of estimated 
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lengths. Because the distance d depends on u (in a specific way), the longer the original vector 

is, the more the estimated vector’s length can differ from the real length. 

At the end of the second step, the rotated egocentric vector egv’A calculated above in 

the first step is added to alluA,B, giving us a new (imagined) self-to-object-B vector egv’B. In the 

third step, the final pointing direction is generated with respect to normal distribution with the 

mean given by the direction of egv’B    and with the motor standard deviation allσmot.  

  

--- Insert Figure 13 about here ---  

 

--- Insert Figure 14 about here ---  

 

A note on the pointing mechanisms. In the in silico experiments, the agent actually 

points to every object twice. The step of modeling the memory error is conducted just once—

we assume the inaccurate estimate from the memory is persistent for a while because the 

agent does not move. The step of modeling the motor memory is conducted each time the 

agent is pointing.     

4. Experiments 

This section describes replication of the experiments of Holmes and Sholl (2005; Exp. 

7) and Waller and Hodgson (2006; Exp. 1) in silico. As explained in Sec. 2.4, in the conditions 

of Holmes and Sholl, the agent can perceive more objects at the same time than in the 

conditions of Waller and Hodgson because in the latter setting, the testing booth blocks the 

agent’s view of much of the environment. Thus, our hypothesis is that the model will develop 

more accurate object-to-object spatial representation in the Holmes and Sholl’s setting and 
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consequently, we will be able to replicate quantitatively the data of Waller and Hodgson yet 

qualitatively the data of Holmes and Sholl. On a more general level, the hypothesis postulates 

that the underlying cause is that the allocentric representation will develop more rapidly in the 

setting of Holmes and Sholl than in the setting of Waller and Hodgson and, in addition, the 

allocentric representation will develop more rapidly in the setting of Waller and Hodgson 

without the booth than in the setting of Waller and Hodgson with the booth. 

Note that our hypothesis concerns mainly the allocentric representation. In fact, we 

have two main goals:  

1) To find a particular parameters’ setting for our model that would generate data 

replicating data from both the eyes-closed and disoriented condition of Waller & Hodgson 

quantitatively, and, at the same time, replicating the fact that the configuration error decreased 

in the disoriented condition of Holmes & Sholl comparing to their eyes-closed condition. 

Thus, we are interested in replicating the “reverse trend” in Holmes & Sholl conditions, not in 

exact replication of their results. There are differences e.g. between data from eyes-closed 

condition of Waller & Hodgson and eyes-closed condition of Holmes & Sholl (cf. Fig. 2 and 

4) which are most likely caused by subtle differences in experimental procedures we do not 

model, e.g. differences in pointing devices or usage of different objects (with possibly 

different shapes and sizes). Additionally, we want to inspect an “artificial” condition of Waller 

& Hodgson without the booth. We are interested in whether the configuration error in the 

disoriented phase decreases in that “artificial” environment comparing to the disoriented 

condition of the original Waller & Hodgson.  

2) To investigate how the model’s behavior changes when values of its two particular 

parameters are being changed. These parameters are allinc and allσmem and their common 

denominator is that they are directly related to generating errors in pointing directions in the 
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disoriented phases of the experiments. Why are we interested in these two parameters only? 

As detailed next, the model has 10 parameters to be set, giving us extremely large 10-

dimensional parameter-space. On the one hand, it is actually not very difficult to find one 

point in this parameter-space that would replicate the data as intended by Goal (1). It is more 

interesting whether behavior of the model would support our hypothesis within a broader 

range of parameter settings. On the other hand, it would be very hard if not impossible to 

investigate the whole parameter-space.  Moreover, the preponderance of this space is likely to 

be psychologically meaningless. Thus, we will investigate its sub-space that is relevant for our 

main aim—how quickly the allocentric representation (but not the egocentric representation) 

develops under different experimental conditions (i.e., Waller & Hodgson with and without 

the booth, and Holmes & Sholl). For this aim, parameters allinc and allσmem are crucial. Note 

that by changing values of these parameters, we cannot expect to fit the real data precisely 

anymore, but we can observe general trends, such as “whether the allocentric representation 

develops more rapidly in one environment than in another”, or “whether the configuration 

error is always higher for in one environment than in another.”  

 

Before the experiment starts, two issues have to be addressed. First, we must generate 

or acquire trajectories along which the IVA walks while learning the layout. Unfortunately, 

neither of the experiments reported the nature of their participants’ trajectories. Second, we 

must determine the order in which we will fit the parameters and explain further constraints 

on the parameters. The model requires two sets of parameters to be set: a) configurations egC 

and allC of the egocentric and the allocentric component, respectively (6 parameters), and b) 

configuration C of the pointing mechanism (4 parameters). The process of parameter setting 
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must be plausible, which requires subjecting the parameters and the order of their fitting to 

some constraints.  

Our next steps will be as follows: 

1) We will set the parameters for the speed of learning and forgetting of transient 

egocentric weights, eg-tinc and eg-tdec, respectively, based on an a priori assumption on 

behavior of these weights. These parameters should be set first because both allocentric 

subsystem and enduring part of the egocentric system uses transient egocentric weights as 

input. For similar reasons, we will also set egbound. Sec. 4.1 details this step. 

2) We will now generate trajectories along which the IVA will walk. This process is 

detailed in Sec. 4.2 where it is also explained that values of eg-tinc, eg-tdec and egbound are 

already needed in this step. 

3) We will then find parameters eg-einc and eg-edec based assumptions given in Def. (9) 

(Sec. 3.3.5) and using the trajectories generated in the previous step. Sec. 4.3 details this step. 

At that point, five parameters of the configuration egC will be known. None of them will 

depend on the results from the real experiments. 

4) We will then explain the procedure of the in silico experiments (Sec. 4.4), including 

fitting the parameter allσmot based on the Waller and Hodgson’s data. 

5) We will present results concerning Goal (2). That is, we will investigate behavior of 

the model in disoriented phases of the three environments when allinc and allσmem are altered 

but the other parameters kept fixed. Note we intentionally start with Goal (2) and proceed to 

Goal (1). 

6) We will present results concerning Goal (1). In particular, we will find parameters 

of allinc, allσmem, egσmem and  egσmot based on the Waller & Hodgson’s data, and use the model 
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with those parameter values to generate data for the replica of Holmes & Sholl and for the 

Waller & Hodgson’s environment without the booth.  

 

4.1 Setting the parameters of the transient part of the egocentric module (eg-tinc, eg-tdec, 

egbound) 

We considered it reasonable that the transient weight of an egocentric vector towards 

an object increases from 0 to 1 during a dozen of seconds when the agent is looking at the 

object, and decreases from 1 to 0 when the agent is not looking at the object. The latter period 

should be a bit longer. In both cases, these periods should be an order of magnitude shorter 

than the whole learning phase, which accords well with the required short-term memory 

characteristics of that part of the egocentric representation (Point G5 from Sec. 3.2).  

Thus, we decided that increase of a transient egocentric vector base’s from 0 to 

egbound would last five agent’s steps while the decrease from egbound to 0 would last 7 steps. 

We preferred to use the base instead of the weight in this definition due to the non-linear 

speed of strengthening and weakening of weights caused by the sigmoid function (Eq. 2).  

The chosen parameters are given in Tab. 1 and were held fixed throughout. The parameter 

egbound was set to 10 in order to limit the maximal weight to approximately 0.995. Beyond 

the value of 10, the sigmoid function is nearly constant, which means that if the base is 

allowed to increase beyond 10, the weight almost would not change. However, for large 

values of the base, decaying of the weight would take too long given the duration of the 

experimental run. 

4.2 Generating the trajectories 

Because the trajectories of human subjects in the modeled experiments are unknown 

to us, we needed to generate trajectories along which the IVA will walk in the in silico 
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experiments artificially. To generate as plausible trajectories as possible, we used the 

following approach. One of the authors (J. V.) first generated 40 trajectories (20 for each 

environment) manually by walking the IVA around the room, as detailed below. Another 

author (D. W.) and four of his collaborators then rated these paths for plausibility. Each of the 

raters had previously served as an experimenter in a study on spatial representation and had 

direct experience with human participants learning room-sized layouts. From this set, ten of 

the most plausible trajectories were chosen for each environment for the in silico experiments 

(see Fig. 15, 16). 

 

--- Insert Figure 15 about here --- 

--- Insert Figure 16 about here ---  

 

For generating each of the 40 trajectories, the experimenter (J. V.) chosen a different 

means of exploring the room (e.g. walking closely around the box clockwise, walking around 

the walls of the room in both directions etc.). These means corresponded to how the 

experimenter thought a human subject would behave. Additionally, we needed to solve the 

question how long each trajectory should have been? Recall that in the real experiments, 

subjects should have learnt the layout of the environment “as much as they could.” We needed 

to find a similar “stop-rule” for the IVA. The rule we choose was to stop the IVA when the 

strength of allocentric vectors began to decelerate; i.e. they either approached saturation or 

remained weak. In other words, the bases corresponding to respective weights belonged to 

intervals in which the sigmoid function (Figure 11) was not steep.  
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The motivation for this rule was twofold. First, because of the sigmoid function used 

in learning and due to lack of allocentric forgetting, one of the following two things may 

happen with allocentric weights (in most cases). We may expect a weight to start to build up 

slowly, then increase relatively quickly and then slowly approach saturation. In this case, from 

a point, the weight does not change much, a “stop-rule”. Or a weight may remain weak; in 

this case, it does not change much from the beginning.  

Second, we had chosen the allocentric representation and not the enduring egocentric 

representation for the “stop-rule” because the former is more complex than the latter and it is 

much harder to build it up in a typical case. Recall that an allocentric vector between two 

objects increases only when transient weights of egocentric vectors towards both objects are 

strong, a case in which both enduring egocentric weights also increase (Eq. 3, 4). Because the 

allocentric representation is in our main focus, we needed the allocentric representations to be 

reasonably learnt at the end of the learning phase. This would not have been guaranteed when 

the enduring egocentric representation was used for the “stop-rule.” But note also that 

allocentric representations should not be over-learned at the end of each trajectory (Fig. 17). 

All weights saturated for every trajectory would mean ceiling effect in the pointing task: the 

IVA would behave the same in the pointing task notwithstanding the particular learning 

trajectory.   

 

--- Insert Figure 17 about here ---  
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For the purpose of the “stop-rule,” four parameters must have been set: eg-tinc, eg-tdec, 

egbound and allinc. The first three were already chosen (Sec. 4.1) but the last one was not. That 

parameter will be subject to further trialing. Thus, we could use only its “preliminary” value 

for the purpose of generating the trajectories; nevertheless, this value must be plausible. Our 

guiding idea was as follows. Imagine the IVA is looking at two objects without interruption. 

Provided the transient egocentric weights of vectors towards these two objects are 0 at the 

beginning, the base of an allocentric vector between these two objects should increase from 0 

to egbound in time period approximately three times longer than it takes the transient bases of 

the egocentric vectors towards these two objects to increase from 0 to egbound. Based on this 

idea, the value 0.9 was chosen. Note that plausible values stemming from the fitting of the 

real data will be a bit lower but still similar. Note also that in practice, the build-up of the 

allocentric base takes usually longer, because the agent often does not look at two objects 

without interruption so long and the transient egocentric bases decreases quickly and must be 

re-built before the allocentric weight starts to increase notably again.  

4.3 Setting the parameters of the enduring part of the egocentric module (eg-einc, eg-edec) 

With the parameters eg-tinc, eg-tdec and egbound from Sec. 4.1, we let the IVA walk 

along the 10 generated trajectories in the environment of Waller & Hodgson and set the 

parameters eg-einc, eg-edec and egbound so that assumptions given in Def. (9) (Sec. 3.3.5) holds 

for the most of individual enduring egocentric representations as possible. The parameters 

chosen are given in Tab. 1. For such parameters, the assumptions given in Def. (9) holds for 

most (9/10) of individual representations. The remaining representation had one base 3.47 

only. Consequently, the average of bases was 7.68 and only one base was larger than 9. 

However, this is still reasonably close to Def. (9).  
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We then checked how the weights of enduring egocentric representations were 

developed at the end of learning of the 10 trajectories with several slightly different settings of 

eg-einc, eg-edec. The model behaves coherently; mild changes of the parameter values result in 

mild changes of the weights. 

 

 

--- Insert Table 1 about here ---  

 

 

4.4 Procedure 

The procedures for the simulation resembled those of the real experiments as much as 

possible, although small differences, e.g. in usage of different pointing devices (a PC USB 

Light Gun vs. a joystick), were not accounted for.  

In the simulation of both experiments we tested 40 agents. Each agent followed one of 

the predefined paths; each path was used for four agents. During these walks the agents 

developed their spatial representations. We replaced the first phase of the original 

experiments, which was used to determine whether a participant has learned the layout 

enough, by the described methodology of generating paths (Sec. 4.2).  

When modeling the second, eye-closed, phase we walked the agent along the defined 

trajectories at the pointing place (the middle of the chamber or the middle of the room, see 

Figure 1, 3) and let it point to every object twice. In this phase the agent used the egocentric 

representation for inferring the pointing directions.  
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When modeling the third, disoriented phase, the agent chose an imagined heading to a 

random object (uniform distribution), and then pointed to every object twice. The 

disorientation by rotation a human slowly was replaced by disabling the egocentric 

representation (Point G4 from Sec. 3.2): the agent used only the allocentric representation in 

this phase. 

In the first experiment, we examined the influence of the parameters allinc and allσmem 

on configuration error in Experiment 1 of Waller and Hodgson (2006), Experiment 7 of 

Holmes and Sholl (2005), and Experiment 1 of Waller and Hodgson (2006) without the booth. 

First, we fitted the motor standard deviation allσmot in order to reach the pointing error as in the 

Experiment 1 of Waller and Hodgson (2006). Because the motor error is independent of 

memory representations (Point G2, Sec. 3.2), we basically found the value of allσmot so that the 

pointing error reported by Waller and Hodgson (Exp. 1; 2006) was reproduced as closely as 

possible. To this end, we let each of the 40 agents point to each of the six objects twice 

assuming that the vector towards the respective object retrieved from the memory is precise 

and the total error in pointing behavior is thus generated only through the motor error. The 

value chosen was allσmot = 15. Next, we simulated for each experiment the learning and the 

disoriented phase 234 times with eg-tinc, eg-tdec, eg-einc, eg-edec, and egbound given in Tab. 1, 

varying allinc and allσmem. For allinc, we iterated from 2 to 12 with the step 2, and for allσmem, we 

iterated from 0.1 to 2 over 0.05, testing every combination of the two parameters and 

collecting the results. Note that we did not simulate the eyes-closed phase since we were 

varying only parameters related to allocentric pointing.  

In the second experiment, we started with simulating the eyes-closed phase of 

Experiment 1 of Waller and Hodgson (2006) with eg-tinc, eg-tdec, eg-einc, eg-edec, and egbound 

given in Tab. 1 in order to fit two parameters that influence configuration error in the eyes-



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       43 
 

 

closed phase, i.e. egσmem, egσmot. These parameters were fitted manually so that the results of 

the configured model correspond to results of the real experiment as much as possible. The 

fitted values are egσmem=8 and  egσmot=13 (note that egσmot can be fitted without knowledge of 

the developed egocentric representations similarly to allσmot).  Then we picked several values 

of allσmem and allinc from our first experiment that led to a similar configuration error in the 

simulation of Experiment 1 of Waller and Hodgson (2006) as in the real experiment (using 

allσmot = 15). Finally we ran both phases of Experiment 7 of Holmes and Sholl (2005) and 

Experiment 1 of Waller and Hodgson (2006) without the booth with the same parameters 

setting and collected the results.   

 

4.5 Results 

Figure 18 depicts the results of the first experiment. We clearly see that the 

configuration error controlled for the pointing variability was higher in the conditions of 

Waller and Hodgson than in the conditions of Holmes and Sholl when matched for 

corresponding allinc and allσmem (Wilcoxon signed rank test, V=26928, p<0.001).6 Similarly, in 

the scenario with a booth, the mean configuration error controlled for the pointing variability 

was higher with the booth than without it (Wilcoxon signed rank test,V = 27239,  p<0.001).  

In general, for very low allinc values, a large configuration error was apparent in all 

conditions; these values are implausible since they result in underdeveloped representations. 

On the other hand, the configuration error approached an asymptote for larger values of allinc 

and did not decrease further; a ceiling effect and a sign of an over-learned representation. 

Arguably, the most meaningful values are between 0.5 and 1. 

Our second experiment demonstrated that for some parameters allinc and allσmem, first, 

the results fitted Waller and Hodgson (2006, Exp. 1) where the disorientation effect was 
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present, second, the “reverse” desorientation effect was observed in the settings of Holmes 

and Sholl (2005, Exp. 7) and, third, the configuration error in the desoriented phase decreased 

when the booth is removed in the condition of Waller and Hodgson (2006, Exp. 1).  

The configuration and pointing errors in the eyes-closed phase of the replicas of the 

three experimental conditions are given in Table 2. The configuration and pointing errors in 

the disoriented phase of the replicas of the three experimental conditions are given in Table 3 

for the three different values of allinc and allσmem.  

 

--- Insert Table 2 about here --- 

--- Insert Table 3 about here --- 

--- Insert Table 4 about here --- 

 

 

The results of the replication of Waller and Hodgson (2006, Exp. 1) from both phases  

match the values observed in the real experiment  (configuration error 15.96° and 20.12°, 

respectively, and pointing error 10.79° and 12.05°, respectively). 

In replication of Holmes and Sholl we observe lower values than the values reported 

by Holmes and Sholl (2005, Exp. 7) for both phases; however, for the values of the 

parameters allinc and allσmem from Tab. 3, we observe a similar trend to lower errors in 

disorientation phase comparing to the eyes-closed phase, which is the key result of the second 

experiment. Additionally, corrected as well as uncorrected configuration errors in both phases 

of the Holmes and Sholl replica and the condition of Waller and Hodgson without the booth 

are lower then the respective configuration errors in the replica of the original Waller and 
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Hodgson with the booth, suggesting that the presence of booth influence the quality of the 

developed representations.  

The results of t-tests for a decrease in the configuration errors when controlling for the 

pointing variability are shown in Table 4. This decrease is significant for small allσmem. 

For illustrative purposes, comparison of configuration errors in both phases for the 

two original experiments and the three replicas is given by Fig. 19 for allσmem=4 and 

allinc=0.71. Examples of allocentric representations for the trajectories depicted on Figures 

15a and 16a when the allocentric component is configured with allinc=0.71 are given on 

Figure 20.  

 

--- Insert Figure 19 about here --- 

--- Insert Figure 20 about here ---  

  

 

4.6 Discussion 

Results support our hypothesis. First, while the configuration error increases in the 

disoriented phase for replication of Waller and Hodgson, this error decreases for replication of 

Holmes and Sholl for the three particular parameter settings. Second, more importantly, the 

configuration error tends to be higher in general for the condition with the booth then for both 

conditions without the booth when matched for corresponding allinc and allσmem. Figure 18 

clearly shows that the presence of the booth results in slower decrease of the configuration 

error when allinc increases. Basically, the build-up of the allocentric map is slower with the 

booth. Importantly, because the model’s parameters are the same in all the three experimental 
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conditions, the only plausible possibilities for explaining the difference are: (a) different 

learning trajectories and (b) the booth. Because the learning trajectories for the three 

simulations were generated by the same process, and in fact they were the same for the with-

booth and without-booth simulations in the setting of Waller and Hodgson, it seems most 

likely that the primary reason for the difference in results is the presence of the testing booth 

and hence the visibility of the environment during learning. The following reasoning 

underpins this opinion.  

In the model, the allocentric map is ultimately generated based on the co-occurrence 

of objects in the perceptual field. More objects in the perceptual field at the same time leads to 

better learning. Because there are presumably more objects seen at one time when there is no 

booth as opposed to when the booth is present, the resulting allocentric maps tend to be more 

complete in the replications of Holmes and Sholl but sparser in the replications of Waller and 

Hodgson (cf. Figures 20 left and right) (by the terms complete and sparse graphs we mean the 

terms of the graph theory in mathematics). To illustrate this further, we compared the average 

sum of weights over one allocentric map in Holmes and Sholl and Waller and Hodgson 

without the booth to the average sum of weights over one allocentric map in Waller and 

Hodgson with the boot for the model calibrated with parameters from Tab. 1 and the fitted 

parameters allσmem=4 and allinc=0 .71. The weights are indeed higher in the former two settings 

than in the without-booth condition (t(298) = 4.802, p<.001 and t(298) =  9.8205, p<.001, 

respectively).  

These considerations lead to experimentally testable prediction that, other variables 

held constant, trajectories along which a human can perceive more objects at the same time 

(on average) will lead to better allocentric pointing. Additionally, the model also predicts that 

a longer learning phase will lead to improved performance up to a point; however, it is likely 
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that additional parameters would have to be modeled in order to simulate the asymptotic 

learning that would be characteristic of people in this setting. Thus, in our opinion, 

empirically examining hypotheses about number of perceived objects will be more promising 

than examining the model’s predictions about the path length or learning time.    

Recall from Sec. 3.2 that the model makes several simplifying assumptions, e.g. the 

alignment effect, the effect of grouping, representing distances among objects and walls, 

looking around during learning, long-term forgetting etc. However, as long as these 

parameters influence the memory processes similarly in the two experiments we fitted, the 

different views produced by walking along different trajectories (thereby different objects 

seen) seem to remain the only cause influencing the speed of learning. 

Finally, it is worthwhile to consider why the simulation did not replicate Holmes and 

Sholl’s (2005) results exactly.  First, note that there is a large difference in configuration 

errors in the eyes-closed phase of the original experiments (Figure 19). Arguably, this 

difference was caused due to subtle differences in the experimental procedures, such as 

different objects used or different pointing devices. We have intentionally avoided modeling 

these differences as they would require the creation of new methodological parameters that do 

not contribute to our understanding of spatial cognition. Second, in our model, they are the 

parameters eg-tσmem, eg-tσmot that are used for generating the configuration error in the eyes-

closed phase and the error is reproduced by adding a gaussian-based noise to the precise 

egocentric representation, a noise that grows with lower egocentric weights. Because these 

two parameters are the same for Waller and Hodgson’s and Holmes and Sholl’s conditions, 

because there the same number of objects in both the experiments, and because there are 

presumably more objects seen at one time when there is no booth as opposed to when the 

booth is present, which means that more enduring egocentric vectors can be strengthened at 
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the same time, it is really no surprise that the magnitude of the error in the eyes-closed phase 

is similar in both the in silico replicates (in fact, it is even lower for Holmes and Sholl’s 

condition comparing to the Waller and Hodgson’s condition with the booth). What is 

important though is how quickly the allocentric representations are built up and whether the 

configuration error decreases or increases in the disorientation phase compared to the eyes-

closed phase. Concerning the first point, the booth clearly slows down the development of the 

representations, and concerning the second point, we have got the same trend as in the 

original experiments. Fitting the exact numbers with new parameters invented in an ad hoc 

manner would be trivial but bring nothing new.  

5. General discussion and future directions 

In this paper, we have presented a phenomenological computational model of 

allocentric and egocentric memory for locations of objects in a human’s proximal 

surrounding. The model has been integrated within a simple intelligent virtual agent, 

calibrated using data of one psychological experiment that employed the paradigm of 

pointing, and used to produce data of another experiment employing the same paradigm. The 

two real experiments produced contradictory findings concerning the so-called disorientation 

effect, and we were able to qualitatively replicate these contradictory findings in silico with 

equally calibrated model. Because the model was internally the same in both the replicates, 

the difference must have been caused by external conditions. Our results and the analysis 

support the idea that the notable difference in the experimental procedures of the two real 

experiments is the agent’s access to visual information during learning, which differed 

between the two experiments because of an occluding booth. This idea is further supported by 

results of another in silico experiment where we manipulated directly the presence of the 

booth in one of the experimental environments.  



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       49 
 

 

These findings have several important implications for current theories of human 

spatial representation.  First and most generally, the present results lend further support to the 

existence (and sufficiency) of two distinct psychological systems of spatial representation – 

one that codes transient spatial information primarily through egocentric relationships, and 

another that codes enduring spatial information through allocentric relationships.  These two 

systems are posited by many – but not all – theories of spatial representation (see for example 

Burgess, 2006; Mou et al., 2004; Easton & Sholl, 1995).  Theories that do not incorporate an 

allocentric component (e.g., Wang and Spelke, 2000) may be relatively hard-pressed to 

account both for the results of Holmes and Sholl (2005) and for the discrepancy between 

these results and those of Waller and Hodgson (2006) – two sets of findings that the present 

work was able to fit.  Second, and more incisively, the present work suggests specific 

functional ways in which the two systems of spatial representation interact with each other, 

trade information, and switch control over behavior.  For example, it is significant that the 

present model requires spatial information in the allocentric system to have been first 

processed by the egocentric system, rather than being picked-up directly from the perceptual 

field.  It is also significant that the presence of disorientation in our virtual agents determines 

which system exerts control over pointing.  These and other properties of our model suggest 

specific aspects of psychological functioning that enable researchers to parsimoniously 

conceptualize the spatial aspects of human cognition.  Finally, by successfully instantiating 

plausible versions of these two systems of spatial representation in a computational model, we 

have enabled rapid testing of theoretical predictions, as well as providing an extensible 

platform that can incorporate other behavioral phenomena in spatial learning and cognition 

and thus facilitate a more rapid development and refinement of theory.  
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The results of this paper can be also understood from the methodological perspective. 

We have demonstrated that an intelligent virtual agent can be employed in computational 

cognitive sciences. Without an IVA acting in space, i.e. walking along different trajectories, 

we would not have been able to reproduce the real-world data: the IVA’s embodiment added 

the vital detail to the process of data reproduction.  

Of course, it can be argued that our IVA is rather simple and that we have not 

employed many modules of our IVA’s architecture (Figure 5). In other work, our IVA and its 

memory module are more complex than described in this paper. For instance, we have a 

complex application that can model arbitrary 2D virtual worlds of the size of a flat (Figure 

21). Additionally, in our model, more allocentric maps can exist in parallel, each having a 

different intrinsic axis. This feature of the model reflects the on-going debate about intrinsic 

axes of the environment (e.g. Mou et al., 2004; Burgess, 2006; Kelly & McNamara, 2008). 

Moreover, the model also features other kind of vectors: those representing distances between 

objects and walls. The spatial memory model has another component estimating positions of 

objects in dynamic environments (think of a pen that can be moved by another agent; Brom et 

al., 2009), though this has been implemented independently. Finally, our action selection can 

be more complex than described in this paper, in particular, the agent can do various tasks, 

move objects, wait and inspect its surrounding.  

 

--- Insert Figure 21 about here ---  

 

Why have we removed all of these features? First, for the sake of parsimony; it is 

clear that they were not necessary to replicate the effects that we modeled from the literature.  

Second, in order to simulate these additional features realistically, we would have needed 
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sound empirical data in order to fix extra parameters, and these data are mostly missing. For 

instance, during the learning phase, when walking along a trajectory, the IVA can wait for a 

while or turn around inspecting the objects’ layout. 

More generally, it is worth noting that one advantage of IVAs is that they force 

researchers to think in terms of space, actions and events, which leads to thinking about 

complex models with many features, which in turn helps to identify gaps in knowledge. One 

can design and implement a complex model using an IVA and then iteratively set some of the 

parameters, identify some gaps, run new real-world experiments to get new data, refine the 

model, set new parameters, identify new gaps, etc. In this paper, we have made the first step, 

showing that this way exists. Future and ongoing work can refine these initial steps. 

For researchers willing to follow the similar path, we provide here a summary of main 

lessons learnt concerning utilizing IVAs for computational cognitive modeling: 

1. IVAs work well in relatively complex settings employing space. They 

can also work well with settings featuring multiple events and action possibilities, but 

the space (and embodiment) is critical. 

2. Input representations should be relatively abstract and high-level 

(contrary to usage of robotic artifacts). 

3. It is generally better to start with a simpler model with a small number 

of parameters and gradually proceed to more complex models with more parameters. 

As with other scientific endeavors, Occam’s razor should be one’s guiding principle. 

Taken together, these points argue for employing IVAs in modeling of high-level 

cognitive processes, such as episodic, spatial or semantic memory (but not low-level 

procedural memory or iconic memory), or socio-affective processes, human-level complexity 



Running head: A COMPUTATIONAL MODEL OF SPATIAL MEMORY                       52 
 

 

decision making and action selection that involves space (e.g. one need not an IVA for 

modeling decision making in Wisconsin card sorting tasks). In our opinion, IVAs can become 

a testing tool complementary to robotic platform. While robots serve well for investigating 

relatively low-level perceptual and motor processes due to their physical embodiment, IVAs 

are useful for implementing models of high-level cognitive abilities due to complex 

environments they can act in and because virtual environments enable by-passing problems 

stemming from modeling perception and motor behavior at a low level (see Brom, Lukavsky 

and Kadlec, 2010 for more on this point).   

 

Finally, two things deserve a comment. First, it is worth reflecting on whether 

computational modeling in cognitive sciences can contribute back to the field of intelligent 

virtual agents. For instance, can virtual characters from computer games behave more 

believably (Loyal, 1997) and/or have better cognitive abilities (Doherty & O’Riordan, 2008) 

when having more plausible computational models? In our opinion, it is disputable whether 

IVAs would benefit directly from computational cognitive psychology models. Perhaps more 

plausible is the idea that researchers will be inspired by psychological models and produce 

their own kind of models that, although simplified from the psychological perspective, will 

work reasonably well in a broad range of settings (see Brom & Lukavský, 2009 for more on 

this point). For instance, the subfield of videogame artificial intelligence studying spatial 

abilities of videogames characters has a long tradition and went so far in a different way than 

psychology. Most notably, in videogames, researchers and developers invested in 

computational efficiency and optimality issues (e.g. Axelrod, 2008). It is more plausible that 

these people will augment their models with some ideas stemming in psychology and 

sociology (e.g. Pedica & Vilhjamsson, 2009) than that they will start to use psychological 
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models such as the model presented in this paper. In our opinion, the subfields where the 

interaction may be most intensive in the next decade are emotion modeling, modeling of 

social relations and high-level action selection and planning. 

Second, can IVAs help to bridge the gap between multiple levels of analysis, e.g. 

between psychological and neurobiological levels of abstraction? Here, we are mildly 

optimistic because IVAs’ environments are well suited for presenting inputs at various levels 

of abstraction (which is harder to achieve with robotic artifacts). For instance, an IVA can 

perceive a 3D virtual reality both in terms of image-based input as well as abstractly (e.g. it 

can perceive the distance between two objects directly). So far, it has been demonstrated that 

it is possible to connect within an IVA an abstract cognitive architecture, namely ACT-R, 

with a neural architecture, namely Leabra (Jilk et al., 2008). In fact, one of our work in 

progress is to connect our platform Pogamut for fast developing of 3D IVAs (Gemrot et al., 

2009) with a simulator Emergent implementing the Leabra (Aisa, O’Reilly, & Mingus, 2007). 

This would enable researchers to develop IVAs working with image-based input 

representations.  
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Footnotes 

Footnote 1: 

It has been demonstrated that some general cognitive architectures can serve for 

controlling IVAs, e.g., (Jilk et al., 2008; Laird, 2000). However, special-purpose IVA 

architectures, including architectures employed in 3D videogames, often serve better for that 

purpose. On the other hand, the neuro-/psychological plausibility of IVA architectures is only 

limited. Note also that there are large differences among general cognitive architectures as 

well as among IVA architectures. For instance, personal opinion of the authors of this paper is 

that Soar, implementing a computationally efficient rule-based system, is better suited for 

controlling IVAs than most other general cognitive architectures. On the other hand, ACT-R 

or LIDA are more plausible than Soar. 

 

Footnote 2: 

The closest psychological metaphor is the Atkinson & Shiffrin’s (1968) model. 

Despite limitations of that model (e.g. Baddeley, Eysenck, & Anderson, 2009, pp. 42), it is the 

dominant model used in the field of virtual agents, most likely for its technical simplicity. 

Neither our architecture nor other IVA architectures, to our knowledge, feature elaborated 

short-term memory models that would include phonological loops, visuo-spatial sketch-pads 

etc. 

 

Footnote 3: 

Unlike computational cognitive sciences, research on episodic memory modeling in 

the context of virtual characters tend to focus on believable models, that is, models that 
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produce behavioral outcome appealing to target users. These models need not be 

psychologically plausible. In contrast, the model presented in this paper is intended to be 

plausible, but not necessarily producing believable outcome. 

 

Footnote 4: 

Note that pointing is intrinsically an egocentric gesture. The phrase “allocentric 

pointing” is merely a shortcut for “pointing on the basis of an allocentric representation”. 

 

Footnote 5: 

Note that IVA models of perception that distinguish between the central part of the 

visual field and the periphery exist (e.g. Leonard, 2003) as well as IVA models of attention 

(Kim et al., 2005). If an IVA application employs object features, they are represented 

symbolically. Similarly, our IVA architecture represents features of objects symbolically; 

nevertheless, the experiments do not employ features of objects; it is only important that the 

agent is able to distinguish one object from another. 

 

Footnote 6: 

Note that a part of configuration error can be explained on the basis of pointing error. 

Based on some statistical assumptions, Wang & Spelke (2000) proposed that such “corrected” 

(or “controlled for the pointing variability”) configuration error can be computed as 

configuration error minus the pointing error divided by square root of the number of trials. 

We are interested in this “corrected” configuration error rather than the absolute configuration 

error. See also (Mou, McNamara, Rump, and Xiao, 2006) for further discussion on this issue.  
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Figures 

 

 

Figure 1. Diagram of the arrangement of objects in the experiment of Holmes and Sholl. 

Cross-hairs indicate participant’s position when making pointing responses. Adopted from 

Holmes & Sholl (2005) with the publisher’s permission. 
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Figure 2. Results reported by Holmes & Sholl (2005; Exp. 7). White bars correspond to eyes-

closed phase, grey bars to disoriented phase, lines represent 95% confidence intervals. The 

portions of the configuration error that can be accounted for by the respective pointing errors 

are shown as hatched regions (see Wang & Spelke, 2000, for statistical considerations). Note 

that the part of the configuration error that cannot be accounted for by the pointing error is 

lower for the disoriented phase, which means that the disorientation effect had not been 

replicated in this experiment.  
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Figure 3. Diagram of the arrangement of objects in the experiment of Waller & Hodgson. 

When tested participants sat inside the booth. Adopted from Waller & Hodgson (2005) with 

the publisher’s permission. 
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Figure 4. Results reported by Waller and Hodgson (2006; Exp. 1). White bars correspond to 

eyes-closed phase, grey bars to disoriented phase, lines represent 95% confidence intervals. 

The portions of the configuration error that can be accounted for by the respective pointing 

errors are shown as hatched regions. Note that the part of the configuration error that cannot 

be accounted for by the pointing error is higher for the disoriented phase—the replication of 

the disorientation effect originally found by Wang and Spelke (2000). 
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Fig 5. Our IVA’s architecture. See the text for the further description. Note that for the 

experiments described here, the most relevant parts are the short-term memory, in particular 

its perceptual field, and the long-term spatial memory. The action selection part used here is 

fairly simple and the IVA features no LTEM, linguistic module, drives and emotions. 
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Figure 6. Information flow in the DP-model. There is a direct route from the perceptual field 

to the transient weights of the egocentric module, but neither to the allocentric module nor to 

the enduring weights of the egocentric module. Circles denote objects. Black circles denote 

objects just perceived, gray circles denote objects perceived a moment ago and white denotes 

unperceived objects memorized (only by enduring components). Lines and arrows denote 

vectors; the lines’ strengths represent the vector weights. Every egocentric vector is depicted 

twice; once with a transient weight and once with an enduring weight. The square represents 

the agent. The rough correspondence to Atkinson and Shiffrin memory model (1968) is 

suggested by the labels at the upper part of the figure. 
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Figure 7. Representation of an egocentric vector u to object B when the agent is standing in 

the origin of coordinates and its heading corresponds to the direction of the vector d (this 

vector is depicted as unitary; in fact, its magnitude is not important). Axis x and y represent 

directions of walls of the room (i.e. the allocentric reference frame). Axis x’ and y’ represent 

the egocentric reference frame. Vector u would be (2, 2.5) with respect to the allocentric 

reference frame and (3, 1) with respect to the egocentric reference frame. In the egocentric 

representation, the egocentric reference frame is used. 
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Figure 8. Representation of an allocentric vector from object O1 to O2. C is the position of left 

bottom corner of the room and axis x and y represent directions of walls. The absolute 

coordinates of O1 are [1,4] and they are [2,1] for O2. Thus coordinates of u are (1,-3). The 

agent’s position and heading are not relevant to represent the relationship allocentrically. 

 

 

Figure 9. Updating of the egocentric vector u after the agent moves along the vector v. The 

coordinates of old egocentric vector u were (3, 3.5) while the new coordinates of w are (3, 1). 
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Figure 10. Updating of the egocentric vector i after a rotation. The vector d represents the 

agent’s old heading, the vector d’ the agent’s new heading (both are depicted as unitary 

vectors). The coordinates of the vector u were (2, 2.5) with respect to the old heading and they 

have been updated to (3, 1) with respect to the new heading. 
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Fig 11. A logistic sigmoid used for computing a vector strength. The x-axis represents a vector 

base d and the y-axis represents the vector strength w. The scale of the x-axis depends on the 

egbound parameter, which was set to 10 as detailed in Sec. 4. 
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Fig 12. A linear blend function. 
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Fig 13. Estimation of the pointing direction to Object 2 (top middle on the figure) when the 

agent’s imagined heading is to Object 4 (right bottom on the figure). The IVA stands in the 

middle of the booth. Lines between the objects (circles) represent allocentric vectors; their 

strengths denote the vector weights. The hashed line represents the “shortest” path from the 

agent towards the target object (the “shortest” is meant in terms of pointing precision, as 

detailed in the main text). The path goes over the objects 6 and 1. Note the distortion from the 

original representation. The image of the target object is denoted as i. However, because the 

model also imitates motor error, the agent does not point directly to the image of the target 

object, but a bit aside. The final pointing direction is depicted by the dotted line and marked 

as v. 
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Fig. 14: Estimation of the vector from the object Ai to the object Aj. The angle α defines a 

circular sector representing 95% confidence interval of the estimated directions of the original 

vector alluAi,Aj. The distance d is the shortest distance between the exact position of the object 

Aj and an edge of the circular sector.  
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(a)      (b) 

Figure 15. The most plausible path (a) and the least plausible path (b) in the conditions of 

Waller and Hodgson. 
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( a )      (b) 

Figure 16. The most plausible path (a) and the least plausible path (b) in condition of Holmes 

and Sholl. 

  

  

Figure 17. An example of an over-learnt allocentric map.  
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Figure 18. Configuration error (y-axis) as a function of allinc (x-axis) and allσmem (6 different 

lines corresponding to allσmem equal to 12, 10, 8, 6, 4, and 2; number 4 is not depicted on the 

figures due to space limitations). The upper three figures depict how configuration error 

changes in the three different environments. The lower three figures depict how configuration 

error controlled for pointing variability changes in the three different environments  
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Figure 19. Configuration errors in original experiments and in our replication. White bars 

correspond to eyes-closed phase, grey bars to disoriented phase, lines represent 95% 

confidence intervals. The parts of the configuration errors that can be accounted for by the 

respective pointing errors are shown as hatched regions. 
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Figure 20. Examples of allocentric representations for the trajectories depicted on Figures 15a 

(left) and 16a (right). The IVA stands in the middle of the booth. Lines between the objects 

(circles) represent allocentric vectors; their strengths denote the vector weights. Generated for 

allinc = 0.71 and allσmem = 4. 
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Figure 21. A screenshot showing our application for running experiments with the IVA with 

the spatial memory. There is a house with five rooms loaded as the virtual environment. This 

particular agent has the egocentric module as described in this paper, but direction dependent 

allocentric module; in particular, it builds three overlapping allocentric representations 

oriented along a different environmental axis (south - north, north - south, east - west) at the 

same time. Full lines represent the weighted allocentric vectors (gray scale denotes the 

intrinsic axis) and the dotted lines represent the weighted egocentric vectors. Doors between 

rooms are also depicted as dotted lines.   
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Tables 

Table 1 

The setting of the egocentric parameters for our experiments 

eg-tinc eg-tdec eg-einc eg-edec 
egbound 
 

2 1,5 1,5 0,05 10 
 

 

Table 2  

Configuration errors (CE) and pointing errors (PE) in the eyes-closed phase for simulations 

in the three experimental environments (mean and confidence intervals). 

 

Waller & Hodgson Holmes & Sholl Waller & Hodgson (no booth) 

CE PE CE PE CE PE 

15.9° ± 2.3 11.0° ± 0.8 11.5° ± 1.4 11.0° ± 0.8 12.3° ± 1.1 11.0° ± 0.8 
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Table 3 

Configuration errors (CE) and pointing errors (PE) in the disoriented phase for simulations 

in the three experimental environments for three different values of  allinc and allσmem. (mean 

and confidence intervals). 

 

allσmem 
allinc  Waller & Hodgson Holmes & Sholl 

 

Waller &Hodgson 

(no booth) 

CE PE 
 

CE PE CE PE 

2 0.59 20.2° ± 5.5 11.9° ±1.2 9.67° ± 1.0 11.8° ± 1.4 10.4° ± 1.3  12.0° ± 1.3  

4 0.71 19.7° ± 4.1 11.6° ± 1.3 9.96° ± 1.5 11.7° ± 1.3 13.8° ± 1.8 
 

12.0° ± 1.3 
 

5 0.78 20.1° ± 3.5 12.0° ± 1.4 10.4° ± 1.4 11.1° ± 1.3 15.1° ± 2.0  12.0° ± 1.3  
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Table 4 

Decrease in the configuration error in disoriented phase of replication of Holmes and Sholl 

(2005, Exp. 7) and disoriented phase of Waller and Hodgson (2006, Exp. 1) without the booth. 

Changes in configuration error (CE) are significant if they differed using one-sample t-test 

from predicted change in configuration error estimated from the mean pointing error (using 

the procedure controlling for the pointing variability from Waller & Hodgson, 2006 and Wang 

& Spelke, 2000). Statistical significant values are marked with ** (p<0.01) and * (p<0.05), 

while + denotes a trend (p<0.1). 

 

 

 H & S eyes-closed vs. disoriented W & H (no booth, disoriented) vs.  
W & H (with booth, disoriented) 

allσmem
 allinc  CE change Predicted 

CE change 
t CE change Predicted 

CE change 
t 

2 0.59 -1.922 0.575 -2.762 ** -9.145 0.084 -3.104 ** 

4 0.71 -1.631 0.496 -2.241 * -5.213 
 

0.266 
 

-2.214 * 

5 0.78 -1.113 0.027 -1.198 
(n.s.) 

-4.256 -0.005 -1.855 + 
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