
I can (almost) remember what you are doing: from
actions to tasks
Rudolf Kadlec1, Cyril Brom1

Abstract. Recently there has been an increased attention to the
episodic memory research in the community studying intelligent
virtual agents. An episodic memory can exploit a hierarchical
representation, in which higher layers present increasingly more
abstract tasks. During storage, an agent with episodic memory
can directly access these abstractions from its own behavioral
representations or from behavioural representations of agents
being observed, provided the representations in question are
hierarchical. However, the abstractions are lacking when
observing behaviour of human users. In this paper we propose a
way in which our already existing computational model of
episodic memory can be extended by an ability to incorporate
knowledge about abstract tasks of human users. We have tested
ID3 classification algorithm and hidden Markov model for
reconstructing these tasks from observations. Our approach was
tested in a simple scenario with one agent situated in a 3D
environment of the game Unreal Tournament that is being
observed and its tasks are then inferred.

1 INTRODUCTION
Episodic memory [1] (EM) is a memory for personal history of
an entity. It was proposed that it enhances believability of life-
like intelligent virtual agents (IVAs) [2].1

Compared to other published computational models of EM
(see [2] for overview), our model [3] has some unique features
capitalizing on the fact that IVAs’ behaviour is often expressed
in a hierarchical fashion. Today, models like hierarchical
behaviour trees or hierarchical finite state automata are de facto
standards in computer games industry [4]. The behavioural
hierarchies present in the program controlling the IVA can be at
the same time used for storing the IVA’s history in EM, making
the EM representation also hierarchical.

 We are developing our model in an incremental way. First,
we have implemented a central module for remembering history
of one IVA [3] in a hierarchical tree-like structure. An IVA’s
behaviour is represented by a forest of AND-OR trees where
each tree corresponds to one top-level task. The inner nodes of
the tree represent tasks or sets of alternative tasks that the IVA
has to complete in order to satisfy the top-level task. Leafs of the
tree are atomic actions that can be executed in the environment.
Figure 1 shows an example of such tree.

In the central module of our EM, the IVA’s remembered
history is represented as a sequence of executed tasks preserving
their hierarchical structure. Upon this central module we have
implemented gradual forgetting [2, 3] that is driven by emotional
response to the remembered event and also by its age. Lower

1 Dept. of Software and Computing Science Education, Charles

University in Prague, Ke Karlovu 3, 12118, Prague, Czech Republic.

levels of the hierarchy can be forgotten first, thus preserving at
least an abstract summary of agent’s actions. Other implemented
extensions of the central module include abilities to use socially
established time patterns [5] and more plausible spatial
representation [2].

So far the model was able to store only an IVA’s own actions.
Theoretically this approach can be also used for other computer
controlled agents because the behavioural hierarchy is
represented in their “minds” and can be disclosed to an
observing IVA. However, human users cannot be treated this
way since their abstract tasks are not directly accessible by the
program, an observer can see only a stream of atomic actions.
The hierarchy has to be inferred from the available data – that is
from that stream of atomic actions and from a state of the world.
In other words, we have to reconstruct the AND-OR tree from
observations to store it in the episodic memory.

In order to deduce the actual AND-OR tree, we have to: 1)
Find a suitable representation of an IVA’s state. 2) Find out the
concrete task that most probably produced the observed state (we
mean by a concrete task the tasks from the first layer upon the
atomic actions – see Fig. 1 – and, for brevity, when the context
makes it clear, we will use the term task for concrete tasks).
3) Then reveal more abstract levels in the tree based on already
known lower level tasks (layers 2 and 3 in Fig. 1).

We have taken the first step towards this goal by inferring the
concrete tasks from streams of atomic actions. To this end we
have tested two machine learning algorithms. First of the
selected approaches has taken a naïve assumption that only one
observation of an agent’s current state is needed in order to
deduce the concrete task. ID3 [6] classifier was used in this
stage. The other approach used hidden Markov model (HMM)
[7] and operated with sequences of observations. ID3 was taken
as a simple solution that served as a baseline for comparison
with the HMM that is better suited for temporal inference.

Performance of the algorithms was tested in a scenario with
an IVA whose behaviour was classified by both algorithms. The
IVA was used for generating training data that consisted of
atomic actions, state of the agent’s surrounding and the agent’s
current concrete task. Then, testing data, only atomic actions and
the agent’s surrounding, were generated by the same agent. The
agent’s program was not deterministic. Behaviour of human
users was not classified yet. Both the agent and the classification
mechanism were implemented in Java. Agent was coded using
Pogamut [8], which is a middleware for interfacing with the
virtual environment of Unreal Tournament 2004 [9].

The rest of the paper continues as follows: Sect. 2 presents
possible alternative solutions, Sect. 3 describes our IVA’s
architecture, Sect. 4 formalizes the problem, Sect. 5 presents our
scenario, Sect. 6 describes the experiments, and Sect. 7 discusses
the results and possible future directions. The last section
concludes the paper.

Proceedings of the Remembering Who We Are – Human Memory for Artificial Agents Symposium, Mei Yii Lim and Wan Ching Ho (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

27

Figure 1. An example of a tree representing behaviour of an

IVA. The top-level task ToEatSomething on the highest level can
be realized by the task CookByMyself or by the task

GoToRestaurant. Each of these tasks is further decomposed into
several concrete tasks. Atomic actions, shown on the lowest

level, are the only output that can be observed when behaviour is
generated by a human user’s avatar.

2 POSSIBLE ALTERNATIVES
In general the problem of determining an agent’s motivation,
based on the observed state is referred to as a “keyhole plan
recognition problem”. There exist many approaches to solving
this issue; here is a non exhaustive list of these methods.

Case based plan recognition (CBPR) used for example in [10]
originates from the case based reasoning (CBR) paradigm.
CBPR works with a library of cases/plans, each case is a
sequence of observed states. Another possibility is to use mental
state abduction [11]. This technique supposes that the decision
mechanism can be described by a set of implications. Switching
antecedents and consequents then makes it possible to reason
what rules may have caused current state of the IVA. Both the
abduction and the CBPR are symbolic approaches and it is
questionable how they would deal with noise and uncertainty.

The other branch of techniques follows the probabilistic
approach. Majority of these algorithms use a form of HMM, for
example [12]. Algorithm for hierarchical probabilistic plan
recognition is proposed in [13]. For HMM’s ability to cope well
with uncertainty, we decided to employ this approach to our
purpose as well. To our knowledge, HMM was not used
previously for the problem of high level task recognition in
domain of computer games.

3 OUR AGENT’S ARCHITECTURE
Our IVA’s architecture is a reminiscence of a classical cognitive
AI architecture, by which many virtual agents have been
inspired. Our IVA is driven by hierarchical reactive planning
with behaviour represented by AND-OR trees. The AND-OR
tree metaphor works with abstract goals representing what shall
be achieved, and tasks representing how to achieve the goals.
Typically, every goal can be accomplished by several tasks,
while every task can be achieved by adopting some sub-goals. In
Figure 1, goals were intentionally omitted for parsimony. As said

in Introduction, in this paper, we are interested only in concrete
tasks; thus, the higher layers of the hierarchy, including goals,
are of no importance here.

The tasks that cannot be decomposed are atomic actions, i.e.
action primitives. Every task may need several resources to be
performed, i.e. objects. Every top-level goal has its activity level
based on drives, external events, and a schedule. The goals
compete among themselves and the winning goal chooses the
most appropriate task (e.g. “to eat” goal can chose “take
something from the fridge”) and passes its template to the task
field of the visual short term memory. From the AI standpoint,
this mechanism capitalises on the BDI framework [14].

The visual short-term memory holds templates of objects seen
that passed through a simple threshold-based attention filter.
Every object is regarded as a tool for action, i.e. it is a set of
“affordances” [15], meaning it possesses pointers to the tasks it
can be used as a resource for. These pointers are perceived
directly by the IVA when observing his environment. Objects in
experiments we have been running are state-less for the sake of
simplification, though our simulations allow the objects to have
states as well.

4 FORMALISATION
In this section, we will formalize previously presented agent
architecture in the context of task recognition problem.

Suppose that the IVA is controlled by a decision making
system (DMS), which can be formalised by function DMS: P× S
→ A× S where P is the IVA’s perception, A actions that can be
performed in the environment and perceived by other IVAs and
S is the agent’s internal state. A part of S is also the IVA’s
motivation M. M provides an explanation of the agent’s actions;
it can be for example currently running procedure or a plan
speaking in terms of BDI [14] or a trace in AND-OR tree going
from last issued atomic action to the root of the active tree or an
emotion state. For purposes of our experiments, M will contain
only concrete tasks. In case of IVAs, both A and S can usually be
disclosed for observing agents (with some exceptions such as an
agent going to raid a bank). In case of human users, S and thus M
is usually unobservable.

The representation of the set P can be fairly complicated.
Considering domain of computer games, there can be positions
and states of all observed objects, information about geometry of
the level and virtually any feature of the simulation engine that
can be accessed by the DMS. To reduce the dimensionality of P
we have mapped it to a new space P = {0, 1}n where each vector
component means presence of a salient feature in an agent’s
surrounding. Detected features have to be selected by a designer
with respect to the agent’s DMS. P also has to contain only
features that can be observed by an external observer because it
will be used for external task inference.

With this notation, the classification of IVA’s motivation, i.e.
the inference of concrete tasks, is a job of constructing the
sequence m1, m2, … mT; mt ∈ M given the sequence x1, x2, … xT;
xt ∈ P × A. This means inferring motivation based only on the
external observation of actions issued by the agent and on
current state of the environment.

Proceedings of the Remembering Who We Are – Human Memory for Artificial Agents Symposium, Mei Yii Lim and Wan Ching Ho (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

28

5 PROBLEM DOMAIN
In our example scenario the IVA have 5 top-level tasks:
Cooking, Training, GoToToilet, PlayComputerGames, Hygiene..
Those were decomposed into 20 concrete tasks. All the concrete
tasks and their associated top-level tasks are listed in Table 1. As
can be seen there are generally two types of concrete tasks: tasks
that usually control the IVA’s interaction with some world
objects (e.g. WashHands) and tasks executed when the IVA is
looking for some objects/places with which/where he can
execute another desired tasks (eg. Search_PlaceToWashHands).

Concrete task names Top-level intention
the concrete task
belongs to

Idle NONE
Search_InPocket All top-level tasks

Search_PlaceToWashUp Cooking, GoToToilet,
Hygiene

WashHands Cooking, GoToToilet,
Search_Ingredients,
GatherIngredients, Search_ToCookIn,
Cook, Search_PlaceToEat,
EatTheFood

Cooking

Search_Toilet, UseToilet GoToToilet
Search_InternetAccess,
ConfirmTraining,
Search_SportGround, Play

Training

Search_Computer, PlayVideogames PlayComputerGames
BrushTeeth, WashFace Hygiene

Table 1. List of all concrete tasks and their top-level tasks.

In our experiments, M was a set of all concrete tasks from
Table 1. Set A consisted of atomic actions {USE, EAT, TAKE,
IDLE, WALK}. In simplified perception P, each component of
the vector was associated with one affordance. If an object with
this affordance was near the agent, the component was assigned
value 1, otherwise it was set to 0. Affordances specified in the
scenario were COOK_IN, EAT_IN, STUDY_AT, WASH_UP,
FOOD_STORE, PLAY_ON, HAS_INTERNET,
GO_ON_TOILET, WORK_OUT_AT. As you can see, P has 9
dimensions. Actions were coded similarly as perception. Each
atomic action has been associated with a dimension: if the agent
was performing an action, the vector component corresponding
to this action was assigned value 1; otherwise it was set to 0.

6 EXPERIMENTS
In this section, we describe two classification methods we have
used for inferring motivations of IVA’s in our scenario.

In the first instance we tested a naïve classification method
that have no access to the observed history – ID3 tree classifier.
Hidden Markov model that was tested in the second experiment
was chosen because it is well suited for temporal reasoning.

In the training phase the IVA was executed for approximately
12 hours of the simulated time. This resulted in 1200 data
samples. Then we tested the algorithms on 650 samples obtained
from the second simulation run.

6.1 Reasoning about one observation - Tree based
classification
Motivation. In our first experiment we have used tree based ID3
[6] classifier to serve us as a baseline in assessing performance
of the HMM based classification. We choose ID3 because it is
one of the well known algorithms suitable for classification of
vectors with nominal attributes without many parameters that
has to be fine tuned to get the best performance.

Method. Input to the ID3 was just the current snapshot of the
agent’s perception and its action (P × A), not the previous time
steps. The target class was the current task. We used ID3
implementation from Weka 3.6 [16].

Results. Error of the classification was 47%. The classification
was successful in cases where the perceivable context implied
the task, as in the cooking example (error in all non Search_*
tasks was only 9%), but failed when the context was insufficient
(error in Search_* tasks was 78%). This happened because P
contained neither the current location of the IVA nor its past
actions, all states when the agent was walking were perceived as
the same. There are more ways of how to overcome this
problem. For instance, we can aggregate several last states into
one vector and run the ID3 on that vector, but this does not seem
as a scalable solution. Instead, we have adopted a solution
employing hidden Markov model.

6.2 Reasoning about sequence of observations -
Hidden Markov model based classification
Motivation. HMM is well suited for reasoning under uncertainty
that is why we decided to test it also in our domain. We
hypothesize that HMM will outperform ID3 results from the
previous experiment.

Method. HMM works with an assumption that the observed
process is driven by some probabilistic finite automata whose
current state Si∈S can be observed only indirectly via symbols
from an observation alphabet V={v1,v2, .. vm}. The HMM  is
then defined by = <A, B, > where A is a matrix of
probabilities of transition between every two states; B is an
observation symbol probability distribution, that is, probability
of observing symbol vj given the automata is in state Si; and  is
an initial state probability.

If we have a sequence of observations O=O1O2…Ot , Oi∈V
we can compute the most probable sequence of inner states
Q=q1q2…qt, qi∈S that generated this observation. This sequence
can be found efficiently by the Viterbi algorithm [7].

If we put S equal to set of all tasks and V equal to P × A then
we have translated our plan recognition problem into finding the
most probable sequence Q given the set O and HMM . For
practical reasons, the set of all observations V was simplified by
k-means clustering to just 20 possible symbols. Observation
space clustering is a standard technique used in HMM [7].

In the training phase, matrices A and B were estimated from
the data logged through the IVA’s execution,  was set to equal
value for all states since we do not know which state will be the
initial. When some conditional probability was 0 according to
the data we set it to 0.001, this expresses the fact that even
events that were not observed in the training data may happen.

Proceedings of the Remembering Who We Are – Human Memory for Artificial Agents Symposium, Mei Yii Lim and Wan Ching Ho (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

29

In the testing phase, the Viterbi algorithm was executed with
the whole testing sequence as an input. Implementation of the
Viterbi algorithm was taken from the Jahmm3 library.

Results. Resulting error in prediction was 20%. Error in
Search_* tasks was 30%, error in non Search_* tasks was only
7%. Compared to the ID3 the improvement was in sequences
when the IVA was mostly walking between locations. The
information that was missing in the context of the current state
was compensated by context of previous states. Most of the
remaining error in Search_* tasks is caused by situations when
the IVA was looking for some object A but then changed its
mind and started looking for some other object B. When the B
object was later used in some recognized task then the whole
previous searching sequence was classified as Search_B instead
of Search_A and then Search_B.

7 DISCUSSION AND FUTURE WORKS
A positive result of this paper is that the experiments with HMM
from previous section suggest that this technique can be used for
classification of concrete tasks. Thus the first level of the
behavioural hierarchy upon atomic actions can be reconstructed
and then stored in EM. However, the current model of task
inference is only a proof of concept. We have used the same
agent for both training and testing. The next step will be to
extend the scenario and explain actions of one IVA by another
IVA controlled by different tasks which in turn determine the
HMM  used for inference. This means that an IVA with
different “vocabulary” of known tasks determined by its own
behavioural representation will try to explain behaviour of other
IVA. However, our major focus is on testing the performance of
our model on explaining tasks of human players. We will have to
obtain sequences of users’ actions in a virtual scenario of similar
complexity to the current scenario. Then we will annotate these
sequences by a hierarchy of tasks and finally test the HMM
model on inferring this hierarchy.

The current experiments were focused on determining only
the concrete tasks, i.e. the first level upon leaves of the
behavioural hierarchy. To infer higher levels of the tree, we aim
at trying to construct a second HMM that will have already
discovered concrete tasks on its input and the top-level tasks will
be its states.

8 CONCLUSION
In this paper we have presented our existing computational
model of episodic memory, proposed how it can be extended to
represent actions of other IVAs and humans whose internal state
cannot be accessed by the EM module. Finally we have
proposed, implemented and tested two solutions in a simple
virtual scenario. One solution used the ID3 classifier and one
used the HMM. As we have expected the HMM outperformed
the ID3 in revealing the task hierarchy.

Acknowledgement. This work was partially supported by the
student research grant GA UK 21809 and by the grant
201/09/H057 and by the research project MSM0021620838 of
the Ministry of Education of the Czech Republic.

3 Jahmm: http://code.google.com/p/jahmm/ [19.1.2010]

REFERENCES
[1]E. Tulving, W. Donaldson. Organization of memory. New

York: Academic Press. (1972).
[2]C. Brom, J. Lukavský. Towards virtual characters with

episodic memory II: Episodic memory strikes back. In:
Proc. Empathic Agents, AAMAS workshop. 1 - 9. (2009).

[3]C. Brom, K. Pešková, J. Lukavský. What does your actor
remember? Towards characters with a full episodic
memory. In: Proc. ICVS, LNCS 4871, Springer-Verlag.
(2007).

[4]D. Isla. Handling Complexity in the Halo 2 AI. (2004).
URL:
http://www.gamasutra.com/gdc2005/features/20050311/isla
_01.shtml [21.1.2010]

[5]O. Burkert. Connectionist Model of Episodic Memory for
Virtual Humans. Master thesis. Charles University in
Prague. (2009).

[6]J. R. Quinlan. Induction of Decision Trees. In: Machine
Learning 1, pp. 81-106. (1986).

[7]L. R. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition. Proceedings of
the IEEE. pp. 257—286. (1989).

[8]J. Gemrot, R. Kadlec, M. Bida, O. Burkert, R. Pibil, J.
Havlicek, L. Zemcak, J. Simlovic, R. Vansa, M. Stolba, T.
Plch, C. Brom. Pogamut 3 Can Assist Developers in
Building AI (Not Only) for Their Videogame Agents. In:
Agents for Games and Simulations, LNCS 5920, Springer,
pp. 1-15. (2009).

[9]Epic Games Inc. Unreal Tournament 2004. (2004). URL:
http://www.unrealtournament2004.com [21.1.2010]

[10]M. Fagan, P. Cunningham. Case-Based Plan Recognition in
Computer Games. In: Case-Based Reasoning Research and
Development. Springer Berlin. pp. 161-170. (2003).

[11]M.P. Sindlar, M.M. Dastani, F. Dignum & J.-J.Ch.
Meyer. Mental State Abduction of BDI-Based Agents.
Proceedings of DALT 2008, Springer Verlag, pp. 161-178.
(2008).

[12]K. Han, M. Veloso. Automated robot behavior recognition
applied to robotic soccer. In: Robotics Research: the Ninth
International Symposium, John Hollerbach and Dan
Koditschek, editors, pp. 199-204. Springer-Verlag, London.
(2000).

[13]N. Blaylock, J. Allen. Hierarchical instantiated goal
recognition. In: AAAI Workshop on Modeling Others from
Observations, Boston, (2006).

[14]M. E. Bratman. Intentions, Plans, and Practical Reason.
Harvard University Press: Cambridge, MA. (1987).

[15]J. J. Gibson. The Theory of Affordances. In: Perceiving,
Acting, and Knowing, Eds. Robert Shaw and John
Bransford. (1977).

[16]M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
I. H. Witten. The WEKA Data Mining Software: An
Update. In: SIGKDD Explorations, Volume 11, Issue 1.
(2009).

Proceedings of the Remembering Who We Are – Human Memory for Artificial Agents Symposium, Mei Yii Lim and Wan Ching Ho (Eds.),
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

30

