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Abstract. Recently there has been an increased attention to the 
episodic memory research in the community studying intelligent 
virtual agents. An episodic memory can exploit a hierarchical 
representation, in which higher layers present increasingly more 
abstract tasks. During storage, an agent with episodic memory 
can directly access these abstractions from its own behavioral 
representations or from behavioural representations of agents 
being observed, provided the representations in question are 
hierarchical. However, the abstractions are lacking when 
observing behaviour of human users. In this paper we propose a 
way in which our already existing computational model of 
episodic memory can be extended by an ability to incorporate 
knowledge about abstract tasks of human users. We have tested 
ID3 classification algorithm and hidden Markov model for 
reconstructing these tasks from observations. Our approach was 
tested in a simple scenario with one agent situated in a 3D 
environment of the game Unreal Tournament that is being 
observed and its tasks are then inferred. 

1 INTRODUCTION 
Episodic memory [1] (EM) is a memory for personal history of 
an entity. It was proposed that it enhances believability of life-
like intelligent virtual agents (IVAs) [2].1 

Compared to other published computational models of EM 
(see [2] for overview), our model [3] has some unique features 
capitalizing on the fact that IVAs’ behaviour is often expressed 
in a hierarchical fashion. Today, models like hierarchical 
behaviour trees or hierarchical finite state automata are de facto 
standards in computer games industry [4]. The behavioural 
hierarchies present in the program controlling the IVA can be at 
the same time used for storing the IVA’s history in EM, making 
the EM representation also hierarchical.  

 We are developing our model in an incremental way. First, 
we have implemented a central module for remembering history 
of one IVA [3] in a hierarchical tree-like structure. An IVA’s 
behaviour is represented by a forest of AND-OR trees where 
each tree corresponds to one top-level task. The inner nodes of 
the tree represent tasks or sets of alternative tasks that the IVA 
has to complete in order to satisfy the top-level task. Leafs of the 
tree are atomic actions that can be executed in the environment. 
Figure 1 shows an example of such tree. 

In the central module of our EM, the IVA’s remembered 
history is represented as a sequence of executed tasks preserving 
their hierarchical structure. Upon this central module we have 
implemented gradual forgetting [2, 3] that is driven by emotional 
response to the remembered event and also by its age. Lower 
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levels of the hierarchy can be forgotten first, thus preserving at 
least an abstract summary of agent’s actions. Other implemented 
extensions of the central module include abilities to use socially 
established time patterns [5] and more plausible spatial 
representation [2]. 

So far the model was able to store only an IVA’s own actions. 
Theoretically this approach can be also used for other computer 
controlled agents because the behavioural hierarchy is 
represented in their “minds” and can be disclosed to an 
observing IVA. However, human users cannot be treated this 
way since their abstract tasks are not directly accessible by the 
program, an observer can see only a stream of atomic actions. 
The hierarchy has to be inferred from the available data – that is 
from that stream of atomic actions and from a state of the world. 
In other words, we have to reconstruct the AND-OR tree from 
observations to store it in the episodic memory.  

In order to deduce the actual AND-OR tree, we have to: 1) 
Find a suitable representation of an IVA’s state. 2) Find out the 
concrete task that most probably produced the observed state (we 
mean by a concrete task the tasks from the first layer upon the 
atomic actions – see Fig. 1 – and, for brevity, when the context 
makes it clear, we will use the term task for concrete tasks).      
3) Then reveal more abstract levels in the tree based on already 
known lower level tasks (layers 2 and 3 in Fig. 1). 

We have taken the first step towards this goal by inferring the 
concrete tasks from streams of atomic actions. To this end we 
have tested two machine learning algorithms. First of the 
selected approaches has taken a naïve assumption that only one 
observation of an agent’s current state is needed in order to 
deduce the concrete task. ID3 [6] classifier was used in this 
stage. The other approach used hidden Markov model (HMM) 
[7] and operated with sequences of observations. ID3 was taken 
as a simple solution that served as a baseline for comparison 
with the HMM that is better suited for temporal inference. 

Performance of the algorithms was tested in a scenario with 
an IVA whose behaviour was classified by both algorithms. The 
IVA was used for generating training data that consisted of 
atomic actions, state of the agent’s surrounding and the agent’s 
current concrete task. Then, testing data, only atomic actions and 
the agent’s surrounding, were generated by the same agent. The 
agent’s program was not deterministic. Behaviour of human 
users was not classified yet. Both the agent and the classification 
mechanism were implemented in Java. Agent was coded using 
Pogamut [8], which is a middleware for interfacing with the 
virtual environment of Unreal Tournament 2004 [9]. 

The rest of the paper continues as follows: Sect. 2 presents 
possible alternative solutions, Sect. 3 describes our IVA’s 
architecture, Sect. 4 formalizes the problem, Sect. 5 presents our 
scenario, Sect. 6 describes the experiments, and Sect. 7 discusses 
the results and possible future directions. The last section 
concludes the paper. 

Proceedings of the Remembering Who We Are – Human Memory for Artificial Agents Symposium, Mei Yii Lim and Wan Ching Ho (Eds.), 
at the AISB 2010 convention, 29 March – 1 April 2010, De Montfort University, Leicester, UK

27



 

 
Figure 1. An example of a tree representing behaviour of an 

IVA. The top-level task ToEatSomething on the highest level can 
be realized by the task CookByMyself or by the task 

GoToRestaurant. Each of these tasks is further decomposed into 
several concrete tasks. Atomic actions, shown on the lowest 

level, are the only output that can be observed when behaviour is 
generated by a human user’s avatar. 

2 POSSIBLE ALTERNATIVES 
In general the problem of determining an agent’s motivation, 
based on the observed state is referred to as a “keyhole plan 
recognition problem”. There exist many approaches to solving 
this issue; here is a non exhaustive list of these methods. 

Case based plan recognition (CBPR) used for example in [10] 
originates from the case based reasoning (CBR) paradigm. 
CBPR works with a library of cases/plans, each case is a 
sequence of observed states. Another possibility is to use mental 
state abduction [11]. This technique supposes that the decision 
mechanism can be described by a set of implications. Switching 
antecedents and consequents then makes it possible to reason 
what rules may have caused current state of the IVA. Both the 
abduction and the CBPR are symbolic approaches and it is 
questionable how they would deal with noise and uncertainty.  

The other branch of techniques follows the probabilistic 
approach. Majority of these algorithms use a form of HMM, for 
example [12]. Algorithm for hierarchical probabilistic plan 
recognition is proposed in [13]. For HMM’s ability to cope well 
with uncertainty, we decided to employ this approach to our 
purpose as well. To our knowledge, HMM was not used 
previously for the problem of high level task recognition in 
domain of computer games. 

3 OUR AGENT’S ARCHITECTURE 
Our IVA’s architecture is a reminiscence of a classical cognitive 
AI architecture, by which many virtual agents have been 
inspired. Our IVA is driven by hierarchical reactive planning 
with behaviour represented by AND-OR trees. The AND-OR 
tree metaphor works with abstract goals representing what shall 
be achieved, and tasks representing how to achieve the goals. 
Typically, every goal can be accomplished by several tasks, 
while every task can be achieved by adopting some sub-goals. In 
Figure 1, goals were intentionally omitted for parsimony. As said 

in Introduction, in this paper, we are interested only in concrete 
tasks; thus, the higher layers of the hierarchy, including goals, 
are of no importance here.  

The tasks that cannot be decomposed are atomic actions, i.e. 
action primitives. Every task may need several resources to be 
performed, i.e. objects. Every top-level goal has its activity level 
based on drives, external events, and a schedule. The goals 
compete among themselves and the winning goal chooses the 
most appropriate task (e.g. “to eat” goal can chose “take 
something from the fridge”) and passes its template to the task 
field of the visual short term memory. From the AI standpoint, 
this mechanism capitalises on the BDI framework [14]. 

The visual short-term memory holds templates of objects seen 
that passed through a simple threshold-based attention filter. 
Every object is regarded as a tool for action, i.e. it is a set of 
“affordances” [15], meaning it possesses pointers to the tasks it 
can be used as a resource for. These pointers are perceived 
directly by the IVA when observing his environment. Objects in 
experiments we have been running are state-less for the sake of 
simplification, though our simulations allow the objects to have 
states as well.  

4 FORMALISATION 
In this section, we will formalize previously presented agent 
architecture in the context of task recognition problem.  

Suppose that the IVA is controlled by a decision making 
system (DMS), which can be formalised by function DMS: P× S 
→ A× S where P is the IVA’s perception, A actions that can be 
performed in the environment and perceived by other IVAs and 
S is the agent’s internal state. A part of S is also the IVA’s 
motivation M. M provides an explanation of the agent’s actions; 
it can be for example currently running procedure or a plan 
speaking in terms of BDI [14] or a trace in AND-OR tree going 
from last issued atomic action to the root of the active tree or an 
emotion state. For purposes of our experiments, M will contain 
only concrete tasks. In case of IVAs, both A and S can usually be 
disclosed for observing agents (with some exceptions such as an 
agent going to raid a bank). In case of human users, S and thus M 
is usually unobservable.  

The representation of the set P can be fairly complicated. 
Considering domain of computer games, there can be positions 
and states of all observed objects, information about geometry of 
the level and virtually any feature of the simulation engine that 
can be accessed by the DMS. To reduce the dimensionality of P 
we have mapped it to a new space P = {0, 1}n where each vector 
component means presence of a salient feature in an agent’s 
surrounding. Detected features have to be selected by a designer 
with respect to the agent’s DMS. P also has to contain only 
features that can be observed by an external observer because it 
will be used for external task inference. 

With this notation, the classification of IVA’s motivation, i.e. 
the inference of concrete tasks, is a job of constructing the 
sequence m1, m2, … mT; mt ∈ M given the sequence x1, x2, … xT; 
xt ∈ P × A. This means inferring motivation based only on the 
external observation of actions issued by the agent and on 
current state of the environment. 
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5 PROBLEM DOMAIN 
In our example scenario the IVA have 5 top-level tasks: 
Cooking, Training, GoToToilet, PlayComputerGames, Hygiene.. 
Those were decomposed into 20 concrete tasks. All the concrete 
tasks and their associated top-level tasks are listed in Table 1. As 
can be seen there are generally two types of concrete tasks: tasks 
that usually control the IVA’s interaction with some world 
objects (e.g. WashHands) and tasks executed when the IVA is 
looking for some objects/places with which/where he can 
execute another desired tasks (eg. Search_PlaceToWashHands).  
 

Concrete task names Top-level intention 
the concrete task 
belongs to 

Idle NONE 
Search_InPocket All top-level tasks 

Search_PlaceToWashUp Cooking, GoToToilet, 
Hygiene 

WashHands Cooking, GoToToilet, 
Search_Ingredients,  
GatherIngredients, Search_ToCookIn, 
Cook, Search_PlaceToEat, 
EatTheFood 

Cooking 

Search_Toilet, UseToilet GoToToilet  
Search_InternetAccess, 
ConfirmTraining, 
Search_SportGround, Play 

 
Training  

Search_Computer, PlayVideogames PlayComputerGames 
BrushTeeth, WashFace Hygiene 

Table 1. List of all concrete tasks and their top-level tasks. 

In our experiments, M was a set of all concrete tasks from 
Table 1. Set A consisted of atomic actions {USE, EAT, TAKE, 
IDLE, WALK}.  In simplified perception P, each component of 
the vector was associated with one affordance. If an object with 
this affordance was near the agent, the component was assigned 
value 1, otherwise it was set to 0. Affordances specified in the 
scenario were COOK_IN, EAT_IN, STUDY_AT, WASH_UP, 
FOOD_STORE, PLAY_ON, HAS_INTERNET, 
GO_ON_TOILET, WORK_OUT_AT. As you can see, P has 9 
dimensions. Actions were coded similarly as perception. Each 
atomic action has been associated with a dimension: if the agent 
was performing an action, the vector component corresponding 
to this action was assigned value 1; otherwise it was set to 0. 

6 EXPERIMENTS 
In this section, we describe two classification methods we have 
used for inferring motivations of IVA’s in our scenario. 

In the first instance we tested a naïve classification method 
that have no access to the observed history – ID3 tree classifier.  
Hidden Markov model that was tested in the second experiment 
was chosen because it is well suited for temporal reasoning. 

In the training phase the IVA was executed for approximately 
12 hours of the simulated time. This resulted in 1200 data 
samples. Then we tested the algorithms on 650 samples obtained 
from the second simulation run. 

6.1 Reasoning about one observation - Tree based 
classification 
Motivation. In our first experiment we have used tree based ID3 
[6] classifier to serve us as a baseline in assessing performance 
of the HMM based classification. We choose ID3 because it is 
one of the well known algorithms suitable for classification of 
vectors with nominal attributes without many parameters that 
has to be fine tuned to get the best performance.  

Method. Input to the ID3 was just the current snapshot of the 
agent’s perception and its action (P × A), not the previous time 
steps. The target class was the current task. We used ID3 
implementation from Weka 3.6 [16]. 

Results. Error of the classification was 47%. The classification 
was successful in cases where the perceivable context implied 
the task, as in the cooking example (error in all non Search_* 
tasks was only 9%), but failed when the context was insufficient 
(error in Search_* tasks was 78%). This happened because P 
contained neither the current location of the IVA nor its past 
actions, all states when the agent was walking were perceived as 
the same. There are more ways of how to overcome this 
problem. For instance, we can aggregate several last states into 
one vector and run the ID3 on that vector, but this does not seem 
as a scalable solution. Instead, we have adopted a solution 
employing hidden Markov model. 

6.2 Reasoning about sequence of observations - 
Hidden Markov model based classification 
Motivation. HMM is well suited for reasoning under uncertainty 
that is why we decided to test it also in our domain. We 
hypothesize that HMM will outperform ID3 results from the 
previous experiment. 

Method. HMM works with an assumption that the observed 
process is driven by some probabilistic finite automata whose 
current state Si∈S can be observed only indirectly via symbols 
from an observation alphabet V={v1,v2, .. vm}. The HMM  is 
then defined by = <A, B, > where A is a matrix of 
probabilities of transition between every two states; B is an 
observation symbol probability distribution, that is, probability 
of observing symbol vj given the automata is in state Si; and  is 
an initial state probability. 

If we have a sequence of observations O=O1O2…Ot , Oi∈V 
we can compute the most probable sequence of inner states 
Q=q1q2…qt, qi∈S that generated this observation. This sequence 
can be found efficiently by the Viterbi algorithm [7]. 

If we put S equal to set of all tasks and V equal to P × A then 
we have translated our plan recognition problem into finding the 
most probable sequence Q given the set O and HMM . For 
practical reasons, the set of all observations V was simplified by 
k-means clustering to just 20 possible symbols. Observation 
space clustering is a standard technique used in HMM [7]. 

In the training phase, matrices A and B were estimated from 
the data logged through the IVA’s execution,  was set to equal 
value for all states since we do not know which state will be the 
initial. When some conditional probability was 0 according to 
the data we set it to 0.001, this expresses the fact that even 
events that were not observed in the training data may happen. 
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In the testing phase, the Viterbi algorithm was executed with 
the whole testing sequence as an input. Implementation of the 
Viterbi algorithm was taken from the Jahmm3 library. 

Results. Resulting error in prediction was 20%. Error in 
Search_* tasks was 30%, error in non Search_* tasks was only 
7%.  Compared to the ID3 the improvement was in sequences 
when the IVA was mostly walking between locations. The 
information that was missing in the context of the current state 
was compensated by context of previous states. Most of the 
remaining error in Search_* tasks is caused by situations when 
the IVA was looking for some object A but then changed its 
mind and started looking for some other object B. When the B 
object was later used in some recognized task then the whole 
previous searching sequence was classified as Search_B instead 
of Search_A and then Search_B. 

7 DISCUSSION AND FUTURE WORKS 
A positive result of this paper is that the experiments with HMM 
from previous section suggest that this technique can be used for 
classification of concrete tasks. Thus the first level of the 
behavioural hierarchy upon atomic actions can be reconstructed 
and then stored in EM. However, the current model of task 
inference is only a proof of concept. We have used the same 
agent for both training and testing. The next step will be to 
extend the scenario and explain actions of one IVA by another 
IVA controlled by different tasks which in turn determine the 
HMM  used for inference. This means that an IVA with 
different “vocabulary” of known tasks determined by its own 
behavioural representation will try to explain behaviour of other 
IVA. However, our major focus is on testing the performance of 
our model on explaining tasks of human players. We will have to 
obtain sequences of users’ actions in a virtual scenario of similar 
complexity to the current scenario. Then we will annotate these 
sequences by a hierarchy of tasks and finally test the HMM 
model on inferring this hierarchy. 

The current experiments were focused on determining only 
the concrete tasks, i.e. the first level upon leaves of the 
behavioural hierarchy. To infer higher levels of the tree, we aim 
at trying to construct a second HMM that will have already 
discovered concrete tasks on its input and the top-level tasks will 
be its states.  

8 CONCLUSION 
In this paper we have presented our existing computational 
model of episodic memory, proposed how it can be extended to 
represent actions of other IVAs and humans whose internal state 
cannot be accessed by the EM module. Finally we have 
proposed, implemented and tested two solutions in a simple 
virtual scenario. One solution used the ID3 classifier and one 
used the HMM. As we have expected the HMM outperformed 
the ID3 in revealing the task hierarchy. 
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