
EmohawkVille: Towards Complex Dynamic Virtual Worlds

David Holaň, Jakub Gemrot, Martin Černý
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00, Prague 1, Czech Republic
E-mail: david.p.holan@gmail.com, gemrot@ksvi.mff.cuni.cz, cerny.m@gmail.com

KEYWORDS

Interactive 3D Virtual Worlds, Intelligent Virtual
Agents, Action Selection

ABSTRACT

Several recent successful computer games feature a large
3D open world where the player has a high degree of
freedom and may roam freely through the environment.
While graphical fidelity of contemporary open worlds is
stunning, the behavior of non-player characters (NPCs)
is kept rather simple. This is an opportunity for the
academia to develop novel techniques and tools that
would allow for easier creation of complex behaviors
that are interactively believable — i. e. that remain be-
lievable despite unpredictable world changes stemming
from player’s actions. However, state-of-the-art tech-
niques — both in academia and industry — are usually
deployed only in 3D game environments with low com-
plexity — i.e., the number of NPC actions is kept small.
We think that if this complexity is raised, the state-
of-the-art techniques will be challenged and will have
to be improved if not transformed totally. However,
no research-friendly complex 3D virtual world is pub-
licly available. In this paper, we present EmohawkVille:
an open-source first-person 3D virtual world that allows
for simulation of a day-to-day life of NPCs and com-
pare it with various environments already available. We
discuss general issues arising during developing behav-
iors for the EmohawkVille domain. We also present a
qualitative case study that confirms suitability of Emo-
hawkVille for experiments concerning NPC behaviors.

INTRODUCTION

Many contemporary computer games take a great effort
to achieve a high level of believability of their virtual
worlds. This is especially true for games with large open
world, where the user is free to discover the environment
on his own and is relatively unconstrained by the game.
Due to time and resource constraints and to the difficul-
ties neccessarily involved in behavior design, non-player
characters (NPCs) display complex behaviors only dur-
ing crucial game events. In between, the NPC behaviors
are rather schematic. The sole exception to this rule
is the combat behavior, which is usually well designed

and reasonably complex. But even recent and succesful
open-world games such as Skyrim (Bethesda Game Stu-
dios 2011) or Red Dead Redemption (Rockstar Games
2010) have resorted to severely limited non-combat NPC
behaviors.

The reason is that going beyond this simple behavior
and still maintaining the suspension of disbelief intro-
duces significant difficulties to the NPC behavior au-
thoring. The designer cannot just script a peasant to
go to a field and perform a harvesting animation — the
player would expect the harvest to progress and even-
tually end with an empty field. The progress of the
harvest cannot be scripted linearly because if a player
action causes the peasant to be delayed on his way to
the field or not to arrive at all, the harvest should not
continue.

Even a very simple task, such as the harvest scenario,
needs to take into an account many possible obstacles, if
it is to become beliavable. What if the player steals the
scythe from the peasant? What if a fight starts near the
field? How about seasonal changes? Even navigating
properly from a village to the field might be a challenge
if there are dynamic obstacles, e.g. a chariot or band of
villains. If such possibilites are not taken into account,
the NPCs are easy for the player to “break” and may
provide even worse illusion of a real world than rather
static NPCs.

The harvesting scenario is just a single example. For
a truly alive open world, dozens of different and often
much more complex scenarios are needed, which implies
that the world needs to be equipped with a rich ontology
of items and actions NPCs (as well as the player) can
perform.

As the world ontology grows, the number of meaning-
ful NPC action sequences increases and the behavior
complexity rises. Not only the means-ends analysis be-
comes more demanding, new problems emerge such as
transitional behaviors, joint behaviors, behaviors order-
ing or behaviors interleaving (Plch 2009). At the same
time, game studios usually cannot afford to let an expert
programmer design such day-to-day behaviors, because
that would be cost-prohibitive. Most of the NPC design
is usually carried out with the aid of some visual tool
by scripters with little programming experience.

At this place, academia could provide action selection
mechanisms (ASM) and accompanying tools that would



help inexpert scripters to create complex behaviors that
are interactively believable, that is, behaviors that sus-
tain their believability under non-determinism brought
by the player. However, most of the academic research
is carried out in environments that either have sim-
ple ontologies or are static or discrete. Games on the
other hand are dynamic, multi-agent environments that
can be for all practical purposes considered continu-
ous in both time and space. There are languages and
techniques that can be applied to such worlds either
from the multiagent community or the field of robotics
or automated planning. However, to our knowledge,
there is currently no 3D virtual world publicly available
that would provide rich ontology for NPCs out of the
box. This means that in this particular problem area,
academia is one step behind the industry — we do not
even have an environment to work with.

In this paper, we present our extension of the Pogamut
3 platform (Gemrot et al. 2009) called EmohawkVille1,
the first step towards an open-sourced complex simu-
lation of NPC everyday lifes in 3D virtual world. We
believe that creating a fully working, accessible and pol-
ished environment fosters academic progress. The large
amount of research work evaluated on our first envi-
ronment — Pogamut for Unreal Tournament 2004 —
supports this view. We have also exerted great effort to
make Pogamut and EmohawkVille a mature tool and we
have resolved a large part of the technical issues encoun-
tered during NPC behavior development (sensors and
actuators interface, navigation and pathfinding, charac-
ter animation support, etc.).

The structure of the paper is as follows. Firstly, we go
through available virtual worlds. Secondly, we present
our newly created virtual world EmohawkVille together
with a library that allows to create NPC behaviors in
Java. Thirdly, we present a concrete implementation of
complex behavior in EmohawkVille and report on an
user-case study of the library with four programmers.
Finally we discuss the suitability of the current version
of EmohawkVille for academical research.

RELATED WORK

To experiment practically with NPC behaviors means
to find a suitable virtual world first. Firstly, the world
should be extensible with new items, game mechanics
etc. as NPC behavior experiments typically require
unique settings. Secondly, the world should support hu-
man players which is especially important for interactive
storytelling or immersive projects. Thirdly, it should be
possible to code the NPC behavior in a standard pro-
gramming languages (such as C++, C#, Java etc.) ei-
ther directly or via a foreign function interface. It is
impractical to create behaviors in a sandboxed script-

1Can be downloaded at http://pogamut.cuni.cz/main/

tiki-index.php?page=EmohawkVille

ing language that is native to the chosen virtual world
(e.g. Papyrus of Elder Scrolls V: Skyrim) as the avail-
ability of 3rd party libraries (e.g. Prolog support) for
such languages is severly limited. Fourthly, the world
mechanics should be easy to understand even for peo-
ple with little gaming experience. Fifthly, we are not
concerned with virtual worlds that put an NPC into a
role of some disembodied entity such as a commander
of an army in the world of StarCtaft: Brood War —
the ASMs for such worlds are fundamentally different
from behaviors of emboddied NPCs. Sixthly, price of
the software should be considered. Finally, we are omit-
ting raw frameworks like Unity, Unreal Development Kit
or CryEngine, or even more basic 3D game engines such
as Ogre or Irrlicht, as it requires considerable amount of
time to build a virtual world from scratch.
We continue with the list of virtual worlds of interest and
conclude the section with comparison of their traits.
ADAPT. ADAPT (Shoulson et al. 2013) is a plat-
form for designing and authoring human characters. It
mainly focuses on animations so interactivity is not suf-
ficiently detailed. Furthermore, the tool relies on Unity
Pro (Unity Technologies 2005), which is not available
for free.
CAROSA. CAROSA (Allbeck 2010) models behaviors
of virtual agents and seems to be focused on crowd sim-
ulations. Actions are defined via Parametrized Action
Representation (PAR). The agent behavior is specified
by its schedule, groups and roles, i.e., a data-driven ap-
proach. Unfortunately the tool seems to be unavailable
outside the parent institution.
Bethesda games. Recent role-playing games by
Bethesda Softworks, such as The Elders Scrolls V:
Skyrim, feature somewhat detailed interaction. How-
ever, the scripting language Papyrus does not provide
foreign function interface and offers considerably less ex-
pressive power than modern programming languages.
MMOs. There is a long tradition of character control
software targeting popular MMO worlds, such as Sec-
ondLife or World of Warcraft. Unfortunately, usage of
such software is usually against the terms of service of
the respective game. MMO games also predominantly
use a client-server architecture with the server applica-
tion being unavailable.
The Pogamut platform. The Pogamut platform aims
at providing Java interfaces for various games. The most
prominent is the Unreal Tournament 2004 (UT2004)
module (Gemrot et al. 2009). UT2004 is a first-person
shooter (FPS) and as a such only actions related to com-
bar are available.
The Pogamut platform also provides bindings for a cus-
tom city-like environment for Unreal Engine 2: Runtime
developed for StoryFactory (B́ıda et al. 2011) project.
Our EmohawkVille uses many assets originally made for
StoryFactory. While UE2 is available for free, its license
effectively prohibits creation of virtual worlds support-
ing human players.



Table 1: Table of interesting features of various virtual worlds. EV stands for EmohawkVille. Availability is listed
with respect to academic and educational use.

Virtual World EV UT2004 UE2 ADAPT CAROSA Skyrim CTF

World Complexity High Average Empty Empty High High Low

Dynamicity High Average N/A N/A High High Average

Availability Free Paid Free Paid Restricted Paid Free

Extensible Yes Yes Yes Yes Yes Yes Yes

Setting
Everyday Armed

N/A N/A
Everyday

Fantasy N/A
Life Combat Life

NPC’s role Civilian Soldier N/A N/A Civilian NPC N/A

NPC’s Language Java Java Java C#
PAR, Sandboxed

Python
Tables Script

Human player Yes Yes Yes No No Yes No

The relevant properties of the aforementioned worlds are
shown in Table 1. Besides EmohawkVille, no virtual
world possesses all the qualities we seek.

EMOHAWKVILLE

EmohawkVille is a FPS virtual world with detailed
interactive elements of day-to-day life. For example,
an agent can pick up a cucumber, put it on a chop-
ping board and then start slicing it with a kitchen
knife. EmohawkVille is based on Unreal Development
Kit (UDK) (Epic Games Inc. 2009) and thus is capa-
ble of displaying the world in state-of-the-art graphics.
UDK is free for educational and non-commercial use and
EmohawkVille itself is available under GPLv3.

Architecture overview

Designing an environment for AI evaluation always (ex-
plicitly or implicitly) involves two parts: the actual me-
chanics that govern the virtual world and the interface
the AI uses to perceive the state of the world and is-
sue actions. In EmohawkVille the world mechanics are
implemented in UnrealScript - a proprietary language
deployed with the UDK toolkit. A low-level interface
to the world is exposed through TCP/IP communica-
tion with a derivation of the GameBots protocol (B́ıda
et al. 2012). The Pogamut platform provides a high-
level Java interface for writing the actual AI and takes
care of many common tasks (navigation, caching sen-
sory data, etc.). Both the UDK and the Java part have
been designed with possible further extensions in mind
and the basic NPC support is separated from the model
of the general EmohawkVille ontology which is in turn
separated from the implementation of the specific me-
chanics for our cooking scenario (explained later). The
UDK part also fully supports interaction with a human
user through the UDK visual client.

Ontology

In this section we explain various aspect of the Emo-
hawkVille ontology: it starts with general concepts and
continues with a brief introduction to specific objects,
actions and object-to-object interactions for our first
EmohawkVille scenario.

We have decided to describe the ontology in great detail,
as these “details” such as action durations or action in-
terruption make an NPC behavior specification difficult
in practice.

General Concepts

This section deals with generic concepts that govern
EmohawkVille: avatar, action, simulation, process, item
and container. A simplified class diagram is given in
Figure 1.

Avatar. An avatar is a physical representation of an
NPC or a human player in a virtual world.

Action. Actions performed by avatars either directly
alter state of one or more objects or start a process
that represents a durative action (see below). For ex-
ample, a player or an NPC can set the power of a stove
plate. EmohawkVille can be extended by providing cus-
tom character animation for any action.

Simulations and processes Simulations represent
spontaneous changes of the world state such as a phys-
ical process taking place.

A process is a simulation of a long running action per-
formed by an avatar. A process can be stopped by the
interrupt action, e.g., an NPC may stop chopping the
cucumber as soon as it chopped enough cucumber slices
or because the water starts boiling in the pot.

Item. Items are lifeless objects that are meaningful for
interaction. An item in EmohawkVille can either be di-
rectly present in the environment or it can be contained
in an inventory of a possessor. Items can be dynami-
cally created and destroyed. For example, the result of



Figure 1: Class diagram of EmohawkVille’s most important general concepts.

chopping a cucumber is the destruction of the cucumber
and the creation of cucumber slices.

Possessor and container. A possessor is an entity
that can own items. Possesors are either avatars or con-
tainers. In contrast to avatars that are active in the
world, containers are passive objects (a pot, a wardrobe,
etc.). Containers may constrain the amount/type of ob-
jects they store.

There are actions to pick up items, trade items with
another avater, drop items in the environment or store
them in a container.

Specific items and actions

The overall theme of EmohawkVille so far is cooking.

At this moment, EmohawkVille features 20 item types
and the stove. Interaction is provided by 14 actions,
of which nine are instant and four initiate a respective
process, e.g. chopping a vegetable or stirring the broth.
All actions can be performed both by an NPC and by a
human player.

The central complexity of the NPC behavior stems from
the simulation of cooking. Some ingredients can be
boiled, some fried. Water evaporates from pots and
ingredients may burn or char if not stirred or flipped.
Concrete details are not relevant for the paper but can
be found in (Holaň 2013).

CASE STUDY

To confirm that the EmohawkVille platform is suit-
able for NPC behavior experiments we performed a case
study with four human subjects. The motivation of the
evaluation was to 1) estimate overall usability of the
platform for experiments with NPC behaviors and 2) to
gain some insight on impacts of the increased complexity
of the virtual world. Moreover, the evaluation helped us

with identifying what parts of the virtual world and the
Pogamut module are particularly hard to understand.

Empirical studies concerning usability of frameworks for
NPC behavior development are scarce; we followed the
methodology from our previous research (Gemrot et al.
2012). We designed 5 hours long controlled experiment
with human subjects. Subjects were asked to solve
two assignments — program NPC behavior for cooking
tasks. Measurement of the subjects’ performance during
the task, questionnaires and structured interviews were
used to gather both quantitative and qualitative data
about the code subjects have written and their opinions
about the EmohawkVille framework.

The crucial part of an experiment design are the tasks
human subjects have to complete during the experiment.
To design experiment tasks with an appropriate level
of difficulty we firstly implemented a complex NPC for
EmohawkVille ourselves called the Chef NPC. Insights
gained from this implementation were then used to de-
sign tasks for the qualitative case study.

The Chef NPC

The Chef NPC was designed to use all items and actions
the EmohawkVille world offers. It can prepare food con-
sisting of multiple ingredients created by various cooking
procedures.

Also the Chef can react to sabotage or help in an in-
telligent, albeit emotion-less, way, e.g., if the user puts
water to the pot the Chef will not do it again. Addition-
ally, if the Chef is unable to find required ingredients it
may request them from other (human) players.

The action selection mechanism of the Chef NPC ex-
ploits a hierarchical goal-driven architecture similar in
principle to behavior trees (Champandard 2007). The
tasks of the chef NPC have the following functionality,



Figure 2: Dependency diagram of the implemented tasks
of the Chef NPC. Yellow tasks were left in the NPC
template for the case-study. Orange tasks were used as
assignments for subjects of the case-study.

1) tell whether the task was finished with the distinction
of success or failure to achieve the task goal, 2) execute
logic for current frame that progresses the NPC towards
fullfiling the task goal, 3) abort the task.

In every time step the agent executes its main task logic
which in turn may execute one or more subtask logics.
In the case of a static environment a task would sim-
ply execute a series of actions or subtasks in order. To
achieve reactivity, the subtask that is closest to the end
of the series and has its preconditions fulfilled is found
in every logic iteration and executed. Thus the agent
is both opportunistic and fault tolerant: it does not try
to achieve subgoals that are already met and upon a
hostile change in the environment it tracks back to the
last unfulfilled subgoal. For example, if the NPC is to
acquire cucumber slices and such slices already exist,
reactive implementation can skip steps of collecting a
whole cucumber and slicing it.

The examples of tasks used by our Chef are: acquire
a certain item, go to a certain place, do a certain task
(e.g. boil water or chop a cucumber), etc. See Figure 2
for the whole task hierarchy.

The implementation of all the tasks took about 10 man-
days (80 man-hours) and was done by the creator of
the Pogamut EmohawkVille module (the first author of
the paper). This hints us that the desired behavior, al-
though relatively simple at first glance is in fact fairly
complex as even with high-level tools it tooks a non-
trivial amount of time to implement. While the initial
sketch of the behaviors was done quickly, the majority
of the time was spent in determining possible points of
failure, debugging and testing the behaviors. For ex-
ample the relatively basic task of obtaining an item de-
composes into four subtasks: 1) if the NPC can directly
pickup the item, pick it up, 2) if the NPC knows a lo-

cation of the item, move to that location, 3) if the NPC
does not know of the item location search for the item
4) if the item cannot be found anywhere in the environ-
ment, find another avatar that possesses the item and
try to trade it. Subtasks 2-4 cannot be directly executed
in the environment and decompose further. Notice that
this is a lower-level task (Figure 2). This shows that it is
the complexity of the tasks and not user-unfriendliness
of the platform that caused the 10 man-days long work
and that better tools and techniques are needed for ac-
tual deployment of complex NPC behaviors in games.
Note that we have just described a single scenario that
is not backed, for instance, by buying ingredients or
cleaning the kitchen up afterwards. We furthermore
back this arguments with our experiences working on
an AAA game project and that to our knowledge there
is no larger scale commercial game that would involve
NPCs with non-combat behaviors comparable in com-
plexity to tasks on third level of our hierarchy not to
mention the higher levels.

Experiment Setting

The experiment started with a 45 minutes long introduc-
tory presentation, which covered the mechanics of the
EmohawkVille virtual world, the Pogamut module and
the goal-driven architecture. The evaluation consisted
of two assignments where the subjects were asked to
implement a particular task in an NPC template based
on the Chef NPC. Throughout the evaluation, the sub-
jects answered appropriate questionnaires. All subjects
had considerable previous experience with writing NPC
behaviors for the Pogamut UT2004 module, and as a
result, they could compare it with the Pogamut Emo-
hawkVille module. The evaluation took 5 hours to com-
plete (including the introductory presentation).

Assignments
As the implementation of the Chef NPC took days to
complete, we had to scale it down for the subjects. We
decided to create an NPC project template that was
based on the Chef NPC code, but with empty implemen-
tation of “Obtain item” and “Obtain a piece of an item”
tasks, which we asked subjects to implement. Tasks
that were used in the original task implementation as
sub-tasks were pointed out in the assignment.
The challenge of assignments lay in 1) learning how to
use sub-tasks, 2) designing task stages, 3) implementing
stage decision logic, 4) implementing the code executing
each stage.
The “Obtain item” assignment was chosen for its rela-
tive simplicity. The task was to collect an item matching
a given predicate.
The “Obtain a piece of an item” assignment was chosen
as a representative of a complex task. The task required
an NPC not only to produce slices obtained by chopping
appropriate vegetable but also to satisfy chopping pre-



conditions (obtaining knife, gathering vegetable, finding
a chopping board) and chop as many vegetables accord-
ing to the number of slices required by the task param-
eter. For reliable execution, the task decomposes into 9
stages, none of which can be left out.

Hypothesis
We had two hypothesis. 1) The EmohawkVille with its
Pogamut module is not hard to understand and use. 2)
It is particularly hard to write robust NPC behaviors in
a complex environment.
The first task was meant to produce data for the former
hypothesis, the second task was meant to produce data
for the latter hypothesis.

Subjects
We recruited four subjects for the evaluation. The first
two subjects were students who finished the course on
human-like agents (S1 and S2) and therefore had a con-
siderable experience with development of NPC behav-
iors for the Pogamut UT2004 module. The other two
subjects were researchers who developed parts of the
Pogamut platform itself (R1 and R2).

Questionnaires
Every subject received six questionnaires throughout
the evaluation. Questionnaires contained both ques-
tions with 5-point Likert scale (1 - “best/most”, 5 -
“worst,least”) as well as open-ended questions. Ques-
tions were designed to 1) assess programming experience
and skills of the subject, 2) check whether subjects un-
derstood the assignment and determine quality of their
solution, 3) investigate usability of EmohawkVille and
its Pogamut module, 4) report on the difficulty of the
assignment.

Results and Discussion

All subjects understood the assignments well; The ques-
tion “Have you understood the assignment?” was always
answered by the option 1 or 2.
Researchers required considerably less time to complete
the first assignment (Table 2). This can be explained
by greater experience with Java, libraries and associ-
ated design patterns. The times to complete second
assignment were similar for all subjects. One possible
explanation is that first two subjects learnt the relevant
skills during the first assignment, which would support
Hypothesis 1.
Let us take a look at subjective difficulties of the first
assignment (Table 3). The responses showed that the
EmohawkVille Pogamut module is not sufficiently intu-
itive yet. Subjects reported on the confusing concept of
observations and memorizations. This does not support
our Hypothesis 1. On the other hand, the mechanics
of the virtual world were found to be intuitive by all
subjects, which in turn supports it.

Table 2: Times subjects estimated and actual times re-
quired by subjects to complete the first two assignments.

Assignment 1 2
est. actual est. actual

R1 30m 47m 60m 91m
R2 25m 35m 45m 96m
S1 45m 62m 45m 95m
S2 20m 95m 60m 99m

Table 3: Reported difficulties of the first assignment,
1 - very easy, 5 - very hard. Subjects were asked what
they think about difficulty of 1) the assignment (Assgn),
2) understanding the EmohawkVille Pogamut module
(Module), 3) understanding the NPC template (Tmpl),
4) understanding the virtual world mechanics (Mechs),
5) formulating the NPC behavior (Form).

Difficulty of
Assgn Module Tmpl Mechs Form

R1 2 4 2 1 3
R2 3 3 2 2 2
S1 2 4 2 2 2
S2 4 3 4 2 4

For the second assignment (Table 4), the first question
was changed to be relative: ”What do you think about
the difficulty of the assignment in comparison with the
first assignment?” (1 - much easier, 5 - much harder).
Researchers reported increase in difficulty while stu-
dents considered the assignment to be of the same dif-
ficulty or even less difficult. It became clear from open-
ended questions, that this was because students had not
realized the full extent of the task. Researchers were
more aware about weaknesses in the code they have pro-
duced while students did not notice that some of their
behaviors could fail. This partially supports our Hy-
pothesis 2. It also provides ground for the research of
tools suitability, as less-experienced user were not aware
of problems with behaviors they produced; such as is the
situation within computer game industry, where NPC
behaviors are typically scripted by junior programmers
as senior programmers are working on the game engine
core.

CONCLUSION

In this paper we have presented the EmohawkVille vir-
tual world. The case-study has found the platform to
be suitable for experimenting with complex NPC behav-
iors.



Table 4: Reported difficulties of the second assignment,
1 - very easy, 5 - very hard. Subjects were asked what
they think about difficulty of 1) the second assignment
relatively to the first assignment (Assgn), 2) under-
standing the EmohawkVille Pogamut module (Module),
3) understanding the NPC template (Tmpl), 4) under-
standing the virtual world mechanics (Mechs), 5) for-
mulating the NPC behavior (Form).

Difficulty of
Assgn Module Tmpl Mechs Form

R1 5 3 1 1 4
R2 4 3 2 2 2
S1 3 4 3 2 2
S2 2 3 3 3 2

We have argued that the academia should focus on de-
signing novel tools and techniques that would ease the
burden of designing complex NPCs behavior, but such
research is infeasible due to the unavailability of open-
sourced 3D virtual environment. We have shown that
EmohawkVille overcomes this obstacle.

As a future work we plan to gamify the environment by
introducing a challenge inspired by the MasterChef TV
show. Subjects will be challenged to create a team of
cooperating NPCs that cook the maximum number of
specified dishes within a given timeframe. During this
experiment we aim to evaluate multiple behavior speci-
fication tools and guidelines to determine, which are the
best suited for a practical application. We believe that
testing tools on realistic tasks is a vital yet often un-
derestimated part of the academic research concerning
development of computer games.

ACKNOWLEDGEMENTS

Human data were collected with APA principles in
mind. This research is supported by the Czech Science
Foundation under the contract P103/10/1287 (GAČR),
by student grants GA UK No. 655012/2012/A-
INF/MFF (70%) and 559813/2013/A-INF/MFF (30%).
This research is partially supported by SVV project
number 267 314.

REFERENCES

Allbeck J.M., 2010. “CAROSA: a tool for authoring
NPCs”. In Proceedings of the Third international con-
ference on Motion in games. Springer-Verlag, Berlin,
Heidelberg, MIG’10, 182–193.

Bethesda Game Studios, 2011. “Elder Scrolls V:
Skyrim”. http://www.elderscrolls.com/. Last
checked: 2013-09-13.

B́ıda M.; Brom C.; Popelová M.; and Kadlec R., 2011.
“StoryFactory — a tool for scripting machinimas in
unreal engine 2 and UDK”. In Proceedings of the 4th
international conference on Interactive Digital Story-
telling. Springer-Verlag, Berlin, Heidelberg, ICIDS’11,
334–337.

B́ıda M.; Černý M.; Gemrot J.; and Brom C., 2012.
“Evolution of gamebots project”. In Proceedings
of the 11th international conference on Entertain-
ment Computing. Springer-Verlag, Berlin, Heidelberg,
ICEC’12, 397–400.

Champandard A., 2007. “Understanding behavior
trees”. AIGameDevcom. URL http://aigamedev.

com/open/article/bt-overview/.

Epic Games Inc., 2009. “Unreal Development Kit doc-
umentation”. http://www.unrealengine.com/udk/

documentation/. Last checked: 2013-07-01.

Gemrot J.; Brom C.; Bryson J.; and B́ıda M., 2012.
“How to compare usability of techniques for the spec-
ification of virtual agents’ behavior? an experimen-
tal pilot study with human subjects”. In Proceedings
of the 2011 international conference on Agents for
Educational Games and Simulations. Springer-Verlag,
Berlin, Heidelberg, AEGS’11, 38–62.

Gemrot J.; Kadlec R.; B́ıda M.; Burkert O.; Ṕıbil
R.; Havĺıček J.; Zemčák L.; Šimlovič J.; Vansa R.;
Štolba M.; Plch T.; and Brom C., 2009. “Agents
for Games and Simulations”. Springer-Verlag, Berlin,
Heidelberg, chap. Pogamut 3 Can Assist Develop-
ers in Building AI (Not Only) for Their Videogame
Agents. 1–15.

Holaň D., 2013. “Items and actions in 3D virtual envi-
ronment Emohawkville”. Faculty of Mathematics and
Physics, Charles University in Prague. Master Thesis.

Plch T., 2009. Action selection for an animat. Master’s
thesis, Charles University in Prague.

Rockstar Games, 2010. “Read Dead Redemp-
tion”. http://www.rockstargames.com/

reddeadredemption/. Last checked: 2013-09-13.

Shoulson A.; Marshak N.; Kapadia M.; and Badler N.I.,
2013. “ADAPT: the agent development and prototyp-
ing testbed”. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games.
ACM, New York, NY, USA, I3D ’13, 9–18.

Unity Technologies, 2005. “Unity documenta-
tion”. http://docs.unity3d.com/Documentation/

Manual/index.html. Last checked: 2013-07-02.


