Human-like artificial creatures

2. Reactive planning

Cyril Brom
Faculty of Mathematics and Physics
Charles University in Prague
brom@ksvi.mff.cuni.cz

(c) 2/2006

] 1

Qutline

1. Recapitulation
action selection problem, artificial mind,
architecture of a virtual being
Reactive planning

3. If-thenrules
simple reactive planning
simple hierarchical reactive planning
limitations
ENTs example
PyPOSH example
4. Finite state machines
basic
hierarchical
probabilistic

5. Conclusion 2

Action selection problem

+ Artificial mind is a piece of code that decides "what to do next"

+ The problem of deciding what to do next is called the action
selection problem

+ To decide what to do next, the creature must perceive its
environment

+ An action causes a change in the environment, and it usually has
a feedback on the creature

+ Typically, all possible actions are predefined

“
G

cook explore

environment
3

|

A virtual being vs. an avatar

a being
arr':cf;"c‘;al Odo| avirtual body envi?o\gﬁﬁllt
an avatar
O¢e| avitual body envierlo\:j;f:t
S !

Overall architecture of a symbolic beast

Agent Other || Script

/ modules library
i B \learnin
Sensor, Short-term

effector memory

Reasoning
....... Active

behaviors

Environment

7

Overall architecture of a
connectionist beast

decision

f+

Environment

7

(co000009)
]
(perception)

[DD W GUI}

An artificial environment

recapitulation

accessible/inaccessible

- an agent cannot obtain accurate up-to-date information about the whole environment
deterministic/non-deterministic

- the outcome of some actions is not uniquely defined
static/dynamic

- the environment changes in ways beyond the agent's control
discrete/continuous in time/space:

— finite number of discrete states is guaranteed
real-time/step-based

- the agent has theoretically infinite time to make a decision
interactive/non-interactive

- the user can alter the simulation [Russell and Norwig, 1995]

2 - Human-like artificial agents 7

Qutline

1. Recapitulation
+ action selection problem, artificial mind,
architecture of a virtual being
Reactive planning
3. If-thenrules
+ simple reactive planning
+ simple hierarchical reactive planning
+ limitations
+ ENTs example
+ PyPOSH example
4. Finite state machines
+ basic
+ hierarchical
+ probabilistic

] :

Reactive planning

An approach to action selection problem

Instead of calculating a plan in advance, the planner finds just the
next action in every instant

No unified definition

,Reactive planning ... chooses only the immediate next action, and
bases this choice on the current context. In most architectures
utilizing this technique, reactive planning is facilitated by the
presence of reactive plans. Reactive plans are stored structures
which, given the current context, determine the next act.”

[Bryson & Stein, 2000]

The choice must be made in a "timely fashion"

2 - Human-like artificial agents 9

Reactive planning

+ Areactive planner realizes a function: S x P — A
- S -the set of all possible internal states (including memory)
- P -the set of all possible actual percepts
- A-the set of all possible actions
+ notice: A vs. P(A)

+ Techniques
— production rules
« flat, hierarchical, heterarchical
— finite state machines
- fuzzy modifications, probabilistic modifications
- free-flow hierarchies (?)
- neural networks (?)

2 - Human-like artificial agents 10

Outline

1. Recapitulation
. action selection problem, artificial mind,
architecture of a virtual being
2. Reactive planning

3. [If-then rules
+ simple reactive planning
« simple hierarchical reactive planning
+ limitations
+ ENTs example
+ PyPOSH example
4. Finite state machines
+ Dbasic
+ hierarchical
« probabilistic

5. Corgson | "

[f-then rules

if p thenA

a precondition, an antecedent
an action, an effect, a consequent...

2 - Human-like artificial agents 12

[f-then rules

+ Arule fires if its condition holds
+ Areactive plan consist of tens of if-then rules
+ Allrules are "evaluated at once"

— think in parallel!

+ Technically, the parallelism must be
"transformed" to a serial program.

2 - Human-like artificial agents 13

A thermostat

The regulator is set on 220°C: 220°C

1. IF temperature > 225°C,
THEN switch the heater off.

2. IF temperature < 215°C,
THEN switch the heater on.

Why is the temperature tested for 225 / 215 instead of 220?

What to do when more rules fires in the same instant?

2 - Human-like artificial agents 14

Simple reactive planning

+ Assign a priority to each rule:

A robot picking up mushrooms:

When starts: not at home && be in picking state

if see obstacle then change_direction

if basketful of m. and picking then stop_picking
. if see mush. and picking then pick up_the mush.
if midday and picking then stop picking
if home then END
. if picking then move_random

S o s WN R

What does the robot do when it
sees a mushroom, but it is
returning home®

. if not_picking then move_home

subsumption architecture:

[Brooks, 1986; Wooldridge, 2 ! 5;

S o0 s

. if bla4 then SubGoal3

Simple hierarchical reactive planning

if blal and bla2 then SubGoall
if not blal and bla3 then SubGoal2

3.1 if A then Sub’Goalkh
3.2 if B then Sub’GoalB

3.3 if C then SKI

3.4 if D then Sub’GoalD

if not bla3 and bla2 then SubGoald

if blal and bla3 and bla8 then SubGoal5
if blabla then SubGoal6

if bla2 or (bla3 and not bla7) then
SubGoal7

» Think hierarchically!

[Bryson, 2001; Nilsson, 199k ete] | 16

-m

Simple hierarchical
reactive planning

+ Behaviour is decomposed hierarchically
- top-level goals, sub-goals, tasks, atomic actions

+ Every reactive plan is expressed by means of a set of
trees

+ Every root of a tree corresponds to a top-level goal
— AND trees, AND-OR trees

+ How to create a decomposition?

2 - Human-like artificial agents 17

Simple hierarchical reactive planning

(a hierarchical top-down decomposition)

Watering: goal:
>
Appetitive Taxis Consumatory —>| Clean
+ Find & take + Gonextto + Waterthe « Empty the
acan a dry bed bed can
+ Fill the can « Put down
the can

...cycles are pogsible!
...an ethology model

2 - Human-like artificial agents

Simple hierarchical reactive planning

a decomposition example (watering)

the highest priority has the goal condition, the second highest is the cleaning
order the task in the normal/the reverse order [Bryson, 2001]

if garden watered and cleaned then COMMIT
- lean

if garden_watered then subGoal_ Clean

if not_hold any can then subGoal_ FindTakeCan

if can_in_hands and empty then subGoal FillUpTheCan

if know_about_dry_bed & not_stand_nextTo_theBed

then subGoal_GoThere

if stand_nextTo_theBed and theBad dry then

Simple hierarchical reactive planning

top-level goals

+ How to select a top-level goal to perform?
- aschedule + interrupts
— drives + interrupts
— a drama manager (Fagade)
— planning and future-directed intentions (BDI)

2 - Human-like artificial agents

20

Simple hierarchical reactive planning

problems
+ Failures/impedances — AS memory
+ Perceptual aliasing problem — AS memory, timeout [Brooks]
+ Transition — hard-coding, if-then + FSM [Sengers]
+ Itbehaves in the same way — probabilistic approach
+ Rigid — fuzzy approach [Champandard, 2003]
+ Compromise action — free-flow, voting [Tyrrell, 1993]
+ Proscription — negative links, networks
+ Modification of a behavior —» metaparameters, floating priorities?
+ Integrating concurrent behavior — modifieres [Blumberg, 1995]
+ Interleaving — 777, perceptual motivation
+ Sharp timeout — BDI, fuzzy, perceptual motivation ???

+ Authoring vs. Learning
- perform a task in a new situation
- lean a new taks
- adapt a task to a modified situation

0

Outline

1. Recapitulation
. action selection problem, artificial mind,
architecture of a virtual being
2. Reactive planning

3. If-thenrules
+ simple reactive planning
« simple hierarchical reactive planning
+ limitations
+ ENTs example
+ PyPOSH example
4. Finite state machines
+ basic
+ hierarchical
« probabilistic

5. Cogson |

Implementation

+ How exactly does it work?

- it depends on the implementation...
+ Special-purpose languages
+ "Emulation”...

2 - Human-like artificial agents 23

ENTs

Chess-like topology, 2% D world
Discrete time (time-steps)
— astep =20 sec.
Embodied
20 internal drives
— hunger, thirst,...
60 atomic actions
- aWalk, aPickUp, aWater, aEat,...
Two hands + an inventory
Face no particular direction in the world
- aniillusion of orientation is caused by the GUI only
Understand a simplified version of Czech language

Driven by scripts in Elmguage——l

) anexample

[Bojar et al., 2002; 2005]

ENTs

system architecture

— + 3 independent programs for
aul aul Linux

- entiserver (ES): the server of a

Hurnan avatar 1 Human avatar 2

virtual world
- entiprohlizec: the graphical user
Environment ot interface
server - ent: the ent's control program
% (artificial mind)

‘World model
- s + ltis possible to instantiate
different world models

- we will use a model of a family

ENTSs - the control cycle
one time-step

1. Every ent sends one a-action to the ES at the
beginning of a time-step
ES waits till all a-actions are sent

3. ES computes the result of the time-step

Every ent receives “a world Aupdate” at the
end of the time step

2 - Human-like artificial agents 26

How to instruct an ent?
Watering a garden
+ A simple behavioral script (b-script) in E language:

waterTheBedByTheCanOnce(hBed, hCan):-

aWaterPlants (hBed, hCan \

input parameters —
an atomic instruction variables

2 - Human-like artificial agents 27

How to instruct an ent?
Watering a garden

+ Watering is a continuous action, it lasts about 10 time steps!
+ A b-script with a conditional cycle:

waterTheBedByTheCan(hBed, hCan) :-

if state(hBed, "already watered") then
commrT

£i,

aWaterPlants (ed, hCan),

RER X
AN it finishes the script

it runs the script % s

a memory query

A memory

+ The memory is a list of facts, e.g.:

to_be_what where_since(object, position, time)
Can the ent look at the world-map directly?
however,

"cheating" may
No, because the ent is an autonomous being! help a lot!

Virtual l—T Asensor
A mind
environment e
A memory
’7 29

How to query the memory?
Find a dry bed
a general handle

waterTheBedByTheCan(hBed, hCan):-

query_ObjectsAnywhere(["object" = "bed" :
"room" = "garden" :
"speciall" = "dry"],
a memory query 1,
sListDryBeds EXIST x : d(x) ?
.)) where d means
an output: a list of dry beds "a bed" &

"in the garden" &
"a dry object"”
returnTheClosestOne (hDryBed, sListDryBeds) ,

anouput [] "

How to come next to the bed?

We need subgoaling...

a set of scripts that

+ Assigning a subgoal
accomplish the subgoal

subGoal_goTo(hBed) OR { ... },

aWaterPlants (hBed, hCan), \ a script for

a fail-case

Think hierarchically!

+ Generally speaking, a task can be decomposed to subtasks recursively, until
some atomic actions are reached.

R ,

How to come next to the bed?

We need subgoaling...

a set of scripts that

+ Assigning a subgoal
accomplish the subgoal

subGoal_goTo(hBed) OR { ... },

aWaterPlants (hBed, hCan), \ a script for

a fail-case

What should an ent do if someone begins watering
the bed that the ent has just chosen? The bed might
be already watered when the ent comes next to it!

ereactive planning [] 2

A structure of a subgoal

+ Every subgoal has:
— prerequisites — a conjunction of atomic conditions
that must hold before the subgoal is executed
— a context — a conjunction of atomic conditions that
must hold until the subgoal is accomplished
- an effect — an expected result of the goal

T

How to test the context and prerequisites?
E language facilitates interrupts and conditions...

+ An action can be triggered by activating an interrupt
* Prerequisites can be test by means of if-then condition

the local priority of

setting the interrupt
the interrupt

if(nck\entNextTo(hBed)
{

localHook (not st (hBed, "already watered"),
"PRIO_MAX", the trigger

{ ... YV script

. interruptNotWatered
planning background
subGoal_goTo(hBed) OR { ... }, the id of the
2 Homa el sns 5)] inerrigt. 3¢
top-level goal top-level goal
The tree of The tree of

active subgoals

()/:] (in time)

accomplished sub-goal future subgoal
subgoal
(E interrupts
sub’-goal A stack of
Stack O
active
O : subgoals
sub3-goal

atomic
ool] »

active subgoals

()/:] (in time t+5)

accomplished sub-goal future subgoal
subgoal
(E interrupts
sub’-goal

interr

top-level goal

The tree of
active subgoals

(in time t+8)
accomplished sub-goal
subgoal

Sfuture subgoal

/ interrupted

/ interrupted \
/ i

top-level goal

The tree of
active subgoals

%] (intime t+12)
ac;omp[lixhed sub-goal future subgoal
subgoai
("""""""""""""""""""""
sub-goal accomplished

restored
behaviour

interrupted

atomic
instructio

Hierarchical reactive planning in E

(a template)

top_levelGoal WaterAllBeds :-
//if everything is watered, try to put the can and commit
if GOAL_COND then { try sgPutCan, COMMIT } fi,

//if you are not holding a can, find it and take it; then activate the local interrupt that tests whether
the can is still at hands -- if not, restart the watering
if ! holdCan then sgFindAndTakeCan fi,
localHook(! holdCan, localPrioMax-1, { RERUN }, idl),

//if you are not holding an empty can, fill it; then activate the local interrupt that tests whether the
can is not empty - if it is, restart the watering
if holdCan and canInHandEmpty then sgFillCan fi,
localHook (holdCan and canInHandEmpty, localPrioMax-2, { RERUN }, id2),

// the same follows for other subgoals.

+ When an interrupt fires, restart the current script

+ Perform the cleaninwn 3

A subgoal is not a b-script
What is the difference?

+ There may exist more ways of accomplishing a subgoal
+ When the subgoal is instantiated, one b-script from a set of b-
scripts is chosen to accomplish the task
- a utility function
+ If the b-script fails, another b-script is chosen
+ The subgoal fails if all of its variants fail
+ Remember: AND-OR trees vs. AND trees

2 - Human-like artificial agents 40

subGoalEat ‘ ‘

subGoalEat $-
if lunchTime or DinnerTime

subGoalEat $-
stateEnt("hunger", hunger),

if hunger > 15 return 2 return 1 .
else return 0 . /
subGoalEat :- subGoalEat :-

SubGoalEatInRoom . a utlhly
function

SubGoalEatWhateve:
FromTheFridge .

AND-OR tree for
one top-level goal

What will be performed
next in the case of a
success/failure? A, B, C

finished Jaitéd or nothing? "

Top-level goals

+ The roots of AND-OR trees

+ The purpose of an ent's life...

+ More top-level goals can be intended at a time
- only one is being accomplished

+ A new top-level goal can be intended in the course of the
simulation

+ Anold one can be removed from the intention-set

— The ent wants to visit a grandma in a hospital

All top-level goals have priority and eventually a trigger

2 - Human-like artificial agents 42

Top-level goals

Four intended top-level goals of the gardener...

What is on the top?

Three active goals

toilet _ toilet
(when | must go...) 70 "eating" script is stafwédn|l must go) 70
"watering" is interrupted
eating eating
(when I'm hungry) 50 (when I'm hungry) 50
watering watering \
(true) 2 (true) 3;\ 3 intended
[goals
bumming around bumming around
(true) 5 (true) 5
_ I 3 I 4
0 0
Bumming around
. 1. Recapitulation
toilet = Ents again + action selection problem, artificial mind,
(when | must go) 10 architecture of a virtual being
2. Reactive planning
eating 3. If-then rules
(when | am hungry) 50 + simple reactive planning
« simple hierarchical reactive planning
watering + limitations
(true) 30 trapezoidal priority: + ENTs example

timeout expired,
"bumming around" is started

/ bumming around
(true) 5

_ I 45

0

+ PyPOSH example
4. Finite state machines

+ basic

+ hierarchical

« probabilistic

5 Co “

POSH & BOD

+ Behavioural oriented design
- behavioural decomposition

+ POSH: Parallel-rooted, Ordered Slip-stack Hierarchical
- amethod that exploits hierarchical if-then rules

- several languages
+ POSH: in lisp or C++
+ PyPOSH: Python implementation
+ jyPOSH: Jython implementation (interoperates with Java)

[Bryson et al., 2001 - 2006]

2 - Human-like artificial agents 47

Behavioural oriented creature

Agent Control structure

I I
| Sensor‘l | Memory | | E‘ffector |

I I
1 1

| Sensor‘l | Memory | | E‘"ector |
! !

| Sensor‘l | Memory | | E‘ffeclor |

Environment

action selection mechanism,

[j.g. POSH reactive planning,g

Behaviours as objects

+ Object + Behaviour

- properties/variables - states/variables (memory)

- methods — primitive elements of the
reactive plan which present
the interface to the behaviour

* senses
+ acts
- learning

2 - Human-like artificial agents 49

PyPOSH in Unreal - architecture

Unreal PyPOSH

Gamebots
APl PyPOSH

creature

[Kwong, 2003]

[IGN Entertainment,

1996.2006] [Adobatti et al., 2000]

2 - Human-like artificial agents 50

POSH - control structure |

+ Action pattern
- asequence of actions
- e.g., "baa" and look at it (sheep)
A competence: { s; s is a competence step }

- steps that can be performed in different orders (i.e., a set of
sequences)

— one of the steps can be a goal step
— the competence returns a value: 1 if the goal is
accomplished, L if none of its steps fire
- acompetence step: <p, 1, a, [n]>
+ a priority, a releaser, an action, a number of retries
+ the action can be another competence
[Bryson, 2001]

2 - Human-like artificial agents 51

POSH - control structure Il

+ Adrive collection: { d; d is a drive element }

- the root of the hierarchy

- adrive element: <p, 1, a, A, [f]>
p—a priority
r—areleaser
a-a currently active element of the drive element (a sub-element)
A—the top element (i.e., a collection, action pattern, or an action) of the drive element
—> slip-stack
f—a maximum frequency at which this drive element is visited

- e.g., jump every five seconds
- forany cycle of the action selection, only the drive collection itself and at most one
other POSH element will have their releasers examined

+ One drive element can suspend temporarily another drive element

— acompetence step cannot interrupt another competence step
* When the suspending drive element terminates, the suspended drive element

continues
] o

def init_senses(self):
self.add_sense("see-player", self.see_player)

def init_acts(self):
self.add_act("move-player", self.move-player) Python

def see_player(self):

top-level

(RDC life (goal((fail))) Shecking period

(drives
prio: 1 ((hit(trigger (* ‘(hit-object) (is-rotating False))) avoid |)
2 ((follow(trigger((see-player))) follow-player))
3 ((wander(trigger((succeed))) wander-around))

))
timeout condition terminate condition

(C wander-around (minutes 10) (goal((see-player)))

(elements
((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

)) s
ij
53

PYPOSH

"Lisp"

def init_senses(self):

PYPOSH

self.add_sense("see-player", self.see_player)

def init_acts(self):
self.add_act("move-player", self.move-player)

def see_player(self):

(RDC life (goal((fail)))
(drives
((hit(trigger((hit-object) (is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
)))

((wander (trigger((succeed)

(minutes 10) (goal((see-player)))

(eTemer
((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

I .

init_senses(self):

self.add sense("see-player"

is-rotating False))) avoid))

(succeed)))

(c (minutes 10) (goal(
(eTements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

N .

def init_senses(self):

self.add sense("see-player"

) avoid))

trigger((succeed))

(minutes 10)

(goal(
STements

((close-enough(trigger((close-to—
((move(trigger((see-player)))

N .

)) stopzkBt))

Outline

1. Recapitulation
. action selection problem, artificial mind,
architecture of a virtual being
2. Reactive planning
3. If-thenrules
+ simple reactive planning
« simple hierarchical reactive planning
+ limitations
+ ENTs example
+ PyPOSH example
4. Finite state machines
+ basic = Softimage
+ hierarchical
« probabilistic

5. Corgson | o

Homework: [Isla, 2005]

FSM & HFSM (1)

Standard "finite-state machine" Hierarchical "finite-state machine"
(FSM) is a tuple: (HFSM) is a tuple:
<{<label, T, script>}, a > <{<label, T,sc>},A>

« <label, T, script> is a state ¢+ <label, T, sc> is a state
— alabelis a name of the state - alabelis aname of the state
— ascriptis a code associated with the - ascis either a code associated with the
state state (i.e. a script), or a set of the names
- Tisasetof rules that trigger of the state's substates .
transition to another state (i.e. - Tisasetof rules that trigger transition to
transition function) another state (.. transition function)

+ Aisasetof currently active states
- apath from a root-state to a leaf-state
58

+ aisacurrently active state

FSM & HFSM (2)

+ FSM and HFSM are computationally equivalent
- HFSM avoids "spaghetti design”

[Isla, 2005]

- . . [Champandard, 2003]
Are finite state machines computationally

equivalent to Touring machines?

2 - Human-like artificial agents 59

SRP vs. FSM

if a, or b, or d. then
if a, or ¢, or d, then
if b, or c, or d, then

if a, or b, or c, then

N N
O P w O

anote: z, also tests whether the FSM is in state Z

* priorities
+ "spaghetti design"

2 - Human-like artificial agents 60

HFSM example HFSM example

Quake bot Quake bot

« High level decision « High level decision ’ Observer‘ ’ Intermission ‘
control only control only
* Ineach FSM-node, * Ineach FSM-node,
a bot chooses ; a bot chooses —
among possible vy — L among possible L
goals associated Sogien |, [Sstiiin] | Sl goals associated S
with the node *\ R with the node
¥ — ¥ S~
+ Standard HFSM o — + Standard HFSM N\ —
+ Theif-then rules "in
. ~ each node" are . - 1\
.{ Batte Fight ‘ [Batte Chase. Battio Retioat R S written in C .{ Batte Fight ‘ [Batte Chase. ‘ Battio Retioat ‘ R S
ft ki T ¥ ft ki T ¥

[[

[van Waveren, 2001

van Waveren (c) 2001

Time Event or decision Current AL Current goal
HFSM example

8.1 The bot named Grunt enters the game. szana =

Quake bot Bot_spawns.
Bot_decides to retrieve item. S
8ot decides to retrieve nearby TEem: |
S
19.9 Picked up bulTets.
: s
+ In each FSM-node, a bot chooses among possible goals 0% ot decTaes € retrTeve ey Tem |
.) — 5 R
associated with the node TS ERemy Tn STghE Seek NoC E:mgvgz—jzmyw S—
fuzzy decision (how much do | want to pick this weapon up?) : PTERS Up SFOTgUn & BOT Wants gattle NG ;;‘\I thé eneny & retrieve
retr toun
long term-goals vs. short term goals < Gattle Retreat blzeueﬂz Fetrieve rocket
auncher .

R Bot decides to retrieve nearby item. | Battle Retreat | Retreat & retrieve rocket
auncher.

+ E.g. "battle fight"

.. 3 NS N Picked up armor shard. |
— acquiring enemy p =gt Eéi...i SUtoF STORT & bot decTdes o |

Battle N8G |

tile NeG i
tle Retreat

- selecting weapon atile Chase |
L . ——) ot decides to retrieve nearby tem. | Battle Chase |
- * * v Batt NBG R ErT shard.
aiming and approaching : PTeRed U SO Shard- [Battle N8| Retrieve armiorshard.
H | Battle Chase | Chase enemy. |
- E ittle Chase |
i ShOOtmg . . van Waveren (c) 2001 1.9 Enemy in sight. ::E{ 2 :.'asi {Idse(enegném -
+ Different techniques can be used in each node z L A L P — -1 L P —
. ey s : —
low-level navigation k! Enemy in_STQRT. S%-E%r}j;—-
. =) Enemy out of sight. Battle Fight
- ERemy OE OF SINE. | B thaee—
voting system 157 ey T ST Sactle chase

int. AThode_sattle Fight (bot state.t *bs) {
int_areanum;

vecs'r target

aas_antityinfo_t entinfo HH H
Botnoveresul ot moveresyts ro a I IS IC mo e S
// if the bot is in observer mode
if (BotIsobserver(bs)) {
ter_observer(bs, "battle fight: observer");

return afalse:

if in the intermission
if (BotIntermission(bs)) {

AIEnter_intermission(bs, "battle fight: intermission");
return gfalse:

o

3/ respaun 1% desd

i (BotIspead(bs)) {
axenter respmmnChs, “battle Fight: bot desd);
return afalse

}4 zgov{herigws a?glhell; better sneny
b e g + Probabilistic "finite-state machine" (PFSM) is a tuple:
A thas ﬂnemxxéntgr{seeLLTG(bs, “battle fight: no enemy"); < { <|abe| TP SCri t>} a>
§ return gfalse) , P)
SRR T * <label, T¢, script> is a state
77 I the. eneny)
T S Inepeaih:kime < Floatrins(- Hit) 1 ~ alabelis aname of the state
5-: >enemydea(h time = 0; L . .
) return qfalse — ascriptis a code associated with the state
: - Ti f rules that tri transition t ther state with a gi
else { is a set of rules tha rigger a transition to anotner state with a given
;’ e ioh tine = FloatTine(): probability
F1 11 ctoeneny 5 e S R0 G SISBE e TS R Ty + ais the currently active state
if (Er\utylsmvu'\Lﬂe(&enhnia) && lentityIsShooting(&entinfo)) {
a8 Seg LTG(bs, battle fights invisivle’); §
return gfalse 2 - Human-like artificial agents 66

van Waveren (c) 2001

Qutline

1. Recapitulation
+ action selection problem, artificial mind,
architecture of a virtual being
2. Reactive planning

3. If-thenrules
+ simple reactive planning
+ simple hierarchical reactive planning
+ limitations
+ ENTsexample
+ PyPOSH example
4. Finite state machines
+ basic
+ hierarchical
+ probabilistic

5. Conclusion

67

Recapitulation

Reactive planning is a bunch of methods of driving behaviour of
virtual beings

Each method determines the next action in every instant in "a
timely fashion"

SHRP

- if-then rules

- priorities

— AND-OR trees

FSM

- states

- ftransitions

2 - Human-like artificial agents 68

Implementation

Main limitations (SHRP + pHFSM)

rationale:
Special-purpose languages: S meone-shoot-at-me do | .. « Transition OK? ~ SHRP +FSM
~ rules [pomeoneraskenne do [+ Itbehaves in the same way OK? probab.
if I-need-toilet do { .. iqi -
« JAM [Hubber, 1999] o A * Rigid
+ E[Bojaretal., 2002] IT Bomeone-shoot-at-ne do { .. * Compromise action i i
+ PyPOSH [Kwong, 2003] 16 someone-askedne do (..) * Proscription -)
) if I-am-hungry do { .. R . .
+ ABL [Mateas, 2002] if I-need-toilet do { .. + Modification of a behavior OK? BOD
! f I-am-sleepy do { .. } .
* (Soar) pick-upmazk + Concurrent behaviour - -
if someone-shoot-at-me do { .. : - -
- FSM if someone-asked-me do { .. } * lnterleavmg
if I-am-hungry do { .. } i - -
o Al |mp|amm if Liesdizl{u do { .. * Sharp timeout
.+ Softimage ren ey e e + Adaptive (authoring vs. - -
if someone-shoot-at-me do . Time.consuming design learning) - -
2 - Human-like artificial agents 69 2 - Human-like artificial agents 70
+ BOD, POSH
- Joanna Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. In:
of Age ols, and for E-Services,
Q t' ’? pages 61-79, Sprmger LNCS 2592, Berlin, Germany, 2003
UeS |OnS H - Kwong, A. A Fi for Reactive i through Agile Ct -Based
Behaviours. Master thesis, University of Bath (2003)
- Joanna Bryson. Intelligence by Design: Principles of Modularity and Coordination for
ggg%neerfng Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology,
+ Gamebots:
— Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world test-
bed for multi- -agent research. In: Proceedln?s of the 2% Interational Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Canada (2001)
+ ENTs
- 0.Bojar, C. Brom, M. Hiadik, V. Toman: The Project ENTs: Towards Modeling Human-like
Artificial Agents. In SOFSEM 2005 Communications, pages 111-122, Liptovsky Jan, Slovak
Republic, January 2005.
- Project Enthomepage: http://ckl.ms.mff.cuni.cz/~bojar/enti/
2 - Human-like artificial agents 7 2 - Human-like artificial agents 72

References

FSM
- Waveren, J. M. P. van: The Quake Ill Arena Bot. Master thesis. Faculty ITS, University of
Technology Delft (2001)
Cli AJ.: Al Game D Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)
- Softimage, Bahavior: http://www.softimage.com/products/behavior
Fagade, ABL
- Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Camegie Mellon University (2002)
Other
- Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney (1991) 569-595
- Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd
International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243
- Soar project: http://www.eecs.umich.edu/~soar/
- Isla, D.: Handling Complexity in the Halo 2 Al. Game Developers Conference, GDC 2005,
http:/www. Ires/20050311/isla_01.shtml

2 - Human-like artificial agents 73

References

+ Al &agents
- S.J.Russell and P. Norvig: Artificial Intelligence: a Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ.
- M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons, 1995
¢« Other

Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991

Intemagonal Joint Conference on Artificial Intelligence, Sydney (1991)

- Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous
Agents (Agents'99). Seatle (1999) 236-243

2 - Human-like artificial agents 74

