
1

2 - Human-like artificial agents 1

Human-like artificial creatures
2. Reactive planning

Cyril Brom
Faculty of Mathematics and Physics

Charles University in Prague
brom@ksvi.mff.cuni.cz

(c) 2/2006

2 - Human-like artificial agents 2

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion

2 - Human-like artificial agents 3

Action selection problem
• Artificial mind is a piece of code that decides "what to do next"
• The problem of deciding what to do next is called the action

selection problem
• To decide what to do next, the creature must perceive its

environment
• An action causes a change in the environment, and it usually has

a feedback on the creature
• Typically, all possible actions are predefined

environment

agent
see act read

cook
draw

watering

explore

eat
sleep

2 - Human-like artificial agents 4

a virtual
environment

A virtual being vs. an avatar

a virtual body a virtual
environment

artifical
mind

a virtual bodyhuman
brain

a being

an avatar

2 - Human-like artificial agents 5

Other
modules

Overall architecture of a symbolic beast

Sensor,
effector

Short-term
memory

Script
library

Active
behaviors

Reasoning

Other
modules

Body

Environment

Agent

"can_27"

"plate_02"

"bread_12"
"door_47"

Image GUI

learning

2 - Human-like artificial agents 6

decision

+ -

perception

Overall architecture of a
connectionist beast

Body

Environment

Agent

"can_27"

"plate_02"

"bread_12"
"door_47"

Image GUI

2

2 - Human-like artificial agents 7

An artificial environment
recapitulation

• accessible/inaccessible
– an agent cannot obtain accurate up-to-date information about the whole environment

• deterministic/non-deterministic
– the outcome of some actions is not uniquely defined

• static/dynamic
– the environment changes in ways beyond the agent's control

• discrete/continuous in time/space:
– finite number of discrete states is guaranteed

• real-time/step-based
– the agent has theoretically infinite time to make a decision

• interactive/non-interactive
– the user can alter the simulation [Russell and Norwig, 1995]

2 - Human-like artificial agents 8

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

2 - Human-like artificial agents 9

Reactive planning
• An approach to action selection problem
• Instead of calculating a plan in advance, the planner finds just the

next action in every instant
• No unified definition

• „Reactive planning ... chooses only the immediate next action, and
bases this choice on the current context. In most architectures
utilizing this technique, reactive planning is facilitated by the
presence of reactive plans. Reactive plans are stored structures
which, given the current context, determine the next act.“
[Bryson & Stein, 2000]

• The choice must be made in a "timely fashion"
2 - Human-like artificial agents 10

Reactive planning
• A reactive planner realizes a function: S × P → A

– S – the set of all possible internal states (including memory)
– P – the set of all possible actual percepts
– A – the set of all possible actions

• notice: A vs. P(A)

• Techniques
– production rules

• flat, hierarchical, heterarchical
– finite state machines
– fuzzy modifications, probabilistic modifications
– free-flow hierarchies (?)
– neural networks (?)
– ...

2 - Human-like artificial agents 11

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion 2 - Human-like artificial agents 12

If-then rules

if p then A

a precondition, an antecedent
an action, an effect, a consequent...

3

2 - Human-like artificial agents 13

If-then rules

• A rule fires if its condition holds
• A reactive plan consist of tens of if-then rules
• All rules are "evaluated at once"

– think in parallel!
• Technically, the parallelism must be

"transformed" to a serial program.

2 - Human-like artificial agents 14

A thermostat

220oCThe regulator is set on 220oC:

1. IF temperature > 225oC,
THEN switch the heater off.

2. IF temperature < 215oC,
THEN switch the heater on.

Why is the temperature tested for 225 / 215 instead of 220?

What to do when more rules fires in the same instant?

2 - Human-like artificial agents 15

Simple reactive planning
• Assign a priority to each rule:

When starts: not at home && be in picking state
1. if see_obstacle then change_direction
2. if basketful_of_m. and picking then stop_picking
3. if see_mush. and picking then pick_up_the_mush.
4. if midday and picking then stop_picking
5. if home then END
6. if picking then move_random
7. if not_picking then move_home

A robot picking up mushrooms:

What does the robot do when it
sees a mushroom, but it is

returning home?subsumption architecture:
[Brooks, 1986; Wooldridge, 2002]

2 - Human-like artificial agents 16

Simple hierarchical reactive planning
1. if bla1 and bla2 then SubGoal1

2. if not bla1 and bla3 then SubGoal2

3. if bla4 then SubGoal3

4. if not bla3 and bla2 then SubGoal4

5. if bla1 and bla3 and bla8 then SubGoal5

6. if blabla then SubGoal6
7. if bla2 or (bla3 and not bla7) then

SubGoal7

3.1 if A then Sub2GoalA
3.2 if B then Sub2GoalB

3.3 if C then Sub2GoalC

3.4 if D then Sub2GoalD

.

.

.

• Think hierarchically!
[Bryson, 2001; Nilsson, 1994; etc.]

2 - Human-like artificial agents 17

Simple hierarchical
reactive planning

• Behaviour is decomposed hierarchically
– top-level goals, sub-goals, tasks, atomic actions

• Every reactive plan is expressed by means of a set of
trees

• Every root of a tree corresponds to a top-level goal
– AND trees, AND-OR trees

• How to create a decomposition?

read

cook
draw

watering

explore

eat sleep

2 - Human-like artificial agents 18

Simple hierarchical reactive planning
(a hierarchical top-down decomposition)

Appetitive ConsumatoryTaxis Clean

• Find & take
a can

• Fill the can

• Go next to
a dry bed

• Water the
bed

• Empty the
can

• Put down
the can

Watering:

...cycles are possible!

...an ethology model

the garden is
wateredgoal:

4

2 - Human-like artificial agents 19

Simple hierarchical reactive planning
a decomposition example (watering)

1. if garden_watered and cleaned then COMMIT

2. if garden_watered then subGoal_Clean

3. if not_hold_any_can then subGoal_FindTakeCan

4. if can_in_hands and empty then subGoal_FillUpTheCan

5. if know_about_dry_bed & not_stand_nextTo_theBed
then subGoal_GoThere

6. if stand_nextTo_theBed and theBad_dry then
atomicWatering

App.

Clean

Taxi

Cons.

• the highest priority has the goal condition, the second highest is the cleaning
• order the task in the normal/the reverse order [Bryson, 2001]

2 - Human-like artificial agents 20

Simple hierarchical reactive planning
top-level goals

• How to select a top-level goal to perform?
– a schedule + interrupts
– drives + interrupts
– a drama manager (Façade)
– planning and future-directed intentions (BDI)

2 - Human-like artificial agents 21

Simple hierarchical reactive planning
problems

• Failures/impedances
• Perceptual aliasing problem
• Transition
• It behaves in the same way
• Rigid
• Compromise action
• Proscription
• Modification of a behavior
• Integrating concurrent behavior
• Interleaving
• Sharp timeout

• Authoring vs. Learning
– perform a task in a new situation
– learn a new taks
– adapt a task to a modified situation
– how long to try to perform a task

→ AS memory
→ AS memory, timeout [Brooks]
→ hard-coding, if-then + FSM [Sengers]
→ probabilistic approach
→ fuzzy approach [Champandard, 2003]
→ free-flow, voting [Tyrrell, 1993]
→ negative links, networks
→ metaparameters, floating priorities?
→ modifieres [Blumberg, 1995]
→ ???, perceptual motivation
→ BDI, fuzzy, perceptual motivation ???

2 - Human-like artificial agents 22

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion

2 - Human-like artificial agents 23

Implementation

• How exactly does it work?
– it depends on the implementation...

• Special-purpose languages
• "Emulation"...

2 - Human-like artificial agents 24

• Chess-like topology, 2½ D world
• Discrete time (time-steps)

– a step = 20 sec.
• Embodied
• 20 internal drives

– hunger, thirst,...
• 60 atomic actions

– aWalk, aPickUp, aWater, aEat,...
• Two hands + an inventory
• Face no particular direction in the world

– an illusion of orientation is caused by the GUI only
• Understand a simplified version of Czech language
• Driven by scripts in E language

ENTs an example

[Bojar et al., 2002; 2005]

5

2 - Human-like artificial agents 25

ENTs
system architecture

• 3 independent programs for
Linux
– entiserver (ES): the server of a

virtual world
– entiprohlizec: the graphical user

interface
– ent: the ent's control program

(artificial mind)
• It is possible to instantiate

different world models
– we will use a model of a family

house 2 - Human-like artificial agents 26

ENTs – the control cycle
one time-step

1. Every ent sends one a-action to the ES at the
beginning of a time-step

2. ES waits till all a-actions are sent
3. ES computes the result of the time-step
4. Every ent receives “a world ∆update” at the

end of the time step

2 - Human-like artificial agents 27

How to instruct an ent?
Watering a garden

• A simple behavioral script (b-script) in E language:

waterTheBedByTheCanOnce(hBed, hCan):-

aWaterPlants(hBed, hCan)
.

input parameters –
variablesan atomic instruction

2 - Human-like artificial agents 28

How to instruct an ent?
Watering a garden

• Watering is a continuous action, it lasts about 10 time steps!
• A b-script with a conditional cycle:

waterTheBedByTheCan(hBed, hCan):-

if state(hBed, "already watered") then
COMMIT

fi,
aWaterPlants(hBed, hCan),

RERUN

.
it finishes the script

it runs the script once again

a memory query

2 - Human-like artificial agents 29

A memory
• The memory is a list of facts, e.g.:

to_be_what_where_since(object, position, time)

Can the ent look at the world-map directly?

No, because the ent is an autonomous being!

Virtual
environment

A sensor
A mind

A memory

however,
"cheating" may

help a lot!

2 - Human-like artificial agents 30

How to query the memory?
Find a dry bed

waterTheBedByTheCan(hBed, hCan):-
query_ObjectsAnywhere(["object" = "bed" :

"room" = "garden" :
"special1" = "dry"],

[],
sListDryBeds

) ,

returnTheClosestOne(hDryBed, sListDryBeds) ,

EXIST x : d(x) ?
where d means

"a bed" &
"in the garden" &
"a dry object"

an output: a list of dry beds

a memory query

an output

a general handle

6

2 - Human-like artificial agents 31

How to come next to the bed?
We need subgoaling…

• Assigning a subgoal

subGoal_goTo(hBed) OR { ... },

aWaterPlants(hBed, hCan), a script for
a fail-case

a set of scripts that
accomplish the subgoal

Think hierarchically!

• Generally speaking, a task can be decomposed to subtasks recursively, until
some atomic actions are reached.

2 - Human-like artificial agents 32

How to come next to the bed?
We need subgoaling…

• Assigning a subgoal

subGoal_goTo(hBed) OR { ... },

aWaterPlants(hBed, hCan), a script for
a fail-case

a set of scripts that
accomplish the subgoal

What should an ent do if someone begins watering
the bed that the ent has just chosen? The bed might
be already watered when the ent comes next to it!

• reactive planning!!!

2 - Human-like artificial agents 33

A structure of a subgoal

• Every subgoal has:
– prerequisites – a conjunction of atomic conditions

that must hold before the subgoal is executed
– a context – a conjunction of atomic conditions that

must hold until the subgoal is accomplished
– an effect – an expected result of the goal

planning background

2 - Human-like artificial agents 34

How to test the context and prerequisites?
E language facilitates interrupts and conditions…

• An action can be triggered by activating an interrupt
• Prerequisites can be test by means of if-then condition

if(not entNextTo(hBed)
{
localHook(not state(hBed, "already watered"),

"PRIO_MAX",
{ ... },
interruptNotWatered)

subGoal_goTo(hBed) OR { ... },
},

the trigger
script

the local priority of
the interrupt

the id of the
interrupt

setting the interrupt

2 - Human-like artificial agents 35

The tree of
active subgoals

(in time t)

top-level goal

atomic
instruction

future subgoalaccomplished
subgoal

interrupts

sub-goal

sub2-goal

sub3-goal

A stack of
active

subgoals

2 - Human-like artificial agents 36

The tree of
active subgoals

(in time t+5)

top-level goal

atomic
instruction

future subgoalaccomplished
subgoal

interrupts

sub-goal

sub2-goal

sub3-goal

interrupted

7

2 - Human-like artificial agents 37

The tree of
active subgoals

(in time t+8)

top-level goal

atomic
instruction

future subgoalaccomplished
subgoal

99

98

96

97

interrupts

sub-goal

sub2-goal

sub3-goal

interrupted
interrupted

2 - Human-like artificial agents 38

The tree of
active subgoals

(in time t+12)

top-level goal

atomic
instruction

future subgoalaccomplished
subgoal

99

98

96

97

interrupts

sub-goal

sub2-goal

sub3-goal

interrupted

accomplished

restored
behaviour

2 - Human-like artificial agents 39

Hierarchical reactive planning in E
(a template)

top_levelGoal_WaterAllBeds :-
// if everything is watered, try to put the can and commit

if GOAL_COND then { try sgPutCan, COMMIT } fi,

// if you are not holding a can, find it and take it; then activate the local interrupt that tests whether
the can is still at hands -- if not, restart the watering

if ! holdCan then sgFindAndTakeCan fi,
localHook(! holdCan, localPrioMax-1, { RERUN }, id1),

// if you are not holding an empty can, fill it; then activate the local interrupt that tests whether the
can is not empty -- if it is, restart the watering

if holdCan and canInHandEmpty then sgFillCan fi,
localHook(holdCan and canInHandEmpty, localPrioMax-2, { RERUN }, id2),

// the same follows for other subgoals...

• When an interrupt fires, restart the current script
• Perform the cleaning also as a transition 2 - Human-like artificial agents 40

A subgoal is not a b-script
What is the difference?

• There may exist more ways of accomplishing a subgoal
• When the subgoal is instantiated, one b-script from a set of b-

scripts is chosen to accomplish the task
– a utility function

• If the b-script fails, another b-script is chosen
• The subgoal fails if all of its variants fail
• Remember: AND-OR trees vs. AND trees

2 - Human-like artificial agents 41

subGoalEat

subGoalEat $-
stateEnt("hunger", hunger),
if hunger > 15 return 2
else return 0 .

subGoalEat :-
subGoalEatWhatever-

FromTheFridge .

a utility
function

subGoalEat $-
if lunchTime or DinnerTime
return 1 .

subGoalEat :-
subGoalEatInRoom .

AND-OR tree for
one top-level goal

performedfailedfinished

A B C

What will be performed
next in the case of a
success/failure? A, B, C
or nothing? 2 - Human-like artificial agents 42

Top-level goals

• The roots of AND-OR trees
• The purpose of an ent's life…
• More top-level goals can be intended at a time

– only one is being accomplished
• A new top-level goal can be intended in the course of the

simulation
• An old one can be removed from the intention-set

– The ent wants to visit a grandma in a hospital
• All top-level goals have priority and eventually a trigger

read

cook

draw
watering

explore

eat
sleep

8

2 - Human-like artificial agents 43

Top-level goals
Four intended top-level goals of the gardener…

watering
(true)

eating
(when I'm hungry)

toilet
(when I must go...)

bumming around
(true)

70

50

5

0

30

2 - Human-like artificial agents 44

What is on the top?
Three active goals

watering
(true)

eating
(when I'm hungry)

toilet
(when I must go)

bumming around
(true)

70

50

5

0

30

"eating" script is started
"watering" is interrupted

3 intended
goals

2 - Human-like artificial agents 45

What is on the top?
Bumming around

watering
(true)

eating
(when I am hungry)

toilet
(when I must go)

bumming around
(true)

70

50

5

0

30 trapezoidal priority:
timeout expired,

"bumming around" is started

Ents again

2 - Human-like artificial agents 46

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion

2 - Human-like artificial agents 47

POSH & BOD
• Behavioural oriented design

– behavioural decomposition
• POSH: Parallel-rooted, Ordered Slip-stack Hierarchical

– a method that exploits hierarchical if-then rules
– several languages

• POSH: in lisp or C++
• PyPOSH: Python implementation
• jyPOSH: Jython implementation (interoperates with Java)

[Bryson et al., 2001 - 2006]
2 - Human-like artificial agents 48

Control structure

Behavioural oriented creature

Body

Environment

Agent

"can_27"

"plate_02"

"bread_12"
"door_47"

Image GUI

Sensor EffectorMemory

Sensor EffectorMemory

Sensor EffectorMemory

action selection mechanism,
e.g. POSH reactive planning

9

2 - Human-like artificial agents 49

Behaviours as objects

• Object
– properties/variables
– methods

• Behaviour
– states/variables (memory)
– primitive elements of the

reactive plan which present
the interface to the behaviour

• senses
• acts

– learning

2 - Human-like artificial agents 50

PyPOSH in Unreal - architecture

Unreal

Gamebots
API

PyPOSH

PyPOSH
creature

[Kwong, 2003][IGN Entertainment,
1996-2006] [Adobatti et al., 2000]

2 - Human-like artificial agents 51

POSH - control structure I
• Action pattern

– a sequence of actions
– e.g., "baa" and look at it (sheep)

• A competence: { s; s is a competence step }
– steps that can be performed in different orders (i.e., a set of

sequences)
– one of the steps can be a goal step
– the competence returns a value: ┬ if the goal is

accomplished, ┴ if none of its steps fire
– a competence step: <p, r, a, [n]>

• a priority, a releaser, an action, a number of retries
• the action can be another competence

[Bryson, 2001]
2 - Human-like artificial agents 52

POSH - control structure II
• A drive collection: { d; d is a drive element }

– the root of the hierarchy
– a drive element: <p, r, a, A, [f]>

• p – a priority
• r – a releaser
• a – a currently active element of the drive element (a sub-element)
• A – the top element (i.e., a collection, action pattern, or an action) of the drive element

→ slip-stack
• f – a maximum frequency at which this drive element is visited

– e.g., jump every five seconds
– for any cycle of the action selection, only the drive collection itself and at most one

other POSH element will have their releasers examined
• One drive element can suspend temporarily another drive element

– a competence step cannot interrupt another competence step
• When the suspending drive element terminates, the suspended drive element

continues

2 - Human-like artificial agents 53

PyPOSHdef init_senses(self):
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see_player(self):
...

(RDC life (goal((fail)))
(drives

((hit(trigger(* (hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

))

top-level

prio: 1
2
3

terminate conditiontimeout condition

Python

"Lisp"

if then

checking period

2 - Human-like artificial agents 54

PyPOSHdef init_senses(self):
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see_player(self):
...

(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

))

10

2 - Human-like artificial agents 55

PyPOSHdef init_senses(self):
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see_player(self):
...

(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

))

2 - Human-like artificial agents 56

PyPOSHdef init_senses(self):
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see_player(self):
...

(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

))

2 - Human-like artificial agents 57

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion

Homework: [Isla, 2005]

Softimage

2 - Human-like artificial agents 58

FSM & HFSM (1)

• <label, T, script> is a state
– a label is a name of the state
– a script is a code associated with the

state
– T is a set of rules that trigger

transition to another state (i.e.
transition function)

• a is a currently active state

• <label, T, sc> is a state
– a label is a name of the state
– a sc is either a code associated with the

state (i.e. a script), or a set of the names
of the state's substates

– T is a set of rules that trigger transition to
another state (i.e. transition function)

• A is a set of currently active states
– a path from a root-state to a leaf-state

Standard "finite-state machine"
(FSM) is a tuple:

< { <label, T, script> }, a >

Hierarchical "finite-state machine"
(HFSM) is a tuple:

< { <label, T, sc> }, A >

a
a

2 - Human-like artificial agents 59

FSM & HFSM (2)

• FSM and HFSM are computationally equivalent
– HFSM avoids "spaghetti design"

a a

Are finite state machines computationally
equivalent to Touring machines?

b

[Isla, 2005]
[Champandard, 2003]

2 - Human-like artificial agents 60

SRP vs. FSM

1. if ac or bc or dc then C
2. if ab or cb or db then B
3. if ba or ca or da then A
4. if ad or bd or cd then D

a note: zx also tests whether the FSM is in state Z

A B

C D

ab

ac ad

da

dc

db

ba

bc bd

ca cb

cd

• priorities
• "spaghetti design"

11

2 - Human-like artificial agents 61

HFSM example
Quake bot

• High level decision
control only

• In each FSM-node,
a bot chooses
among possible
goals associated
with the node

• Standard HFSM

[van Waveren, 2001]
van Waveren (c) 2001 2 - Human-like artificial agents 62

HFSM example
Quake bot

• High level decision
control only

• In each FSM-node,
a bot chooses
among possible
goals associated
with the node

• Standard HFSM
• The if-then rules "in

each node" are
written in C

Observer Intermission

van Waveren (c) 2001

2 - Human-like artificial agents 63

HFSM example
Quake bot

• In each FSM-node, a bot chooses among possible goals
associated with the node
– fuzzy decision (how much do I want to pick this weapon up?)
– long term-goals vs. short term goals

• E.g. "battle fight":
– acquiring enemy
– selecting weapon
– aiming and approaching
– shooting

• Different techniques can be used in each node
– low-level navigation
– voting system
– planning

van Waveren (c) 2001

2 - Human-like artificial agents 64
van Waveren (c) 2001

2 - Human-like artificial agents 65

van Waveren (c) 2001
2 - Human-like artificial agents 66

Probabilistic FSM models

• Probabilistic "finite-state machine" (PFSM) is a tuple:
< { <label, Tp, script> }, a >

• <label, Tp, script> is a state
– a label is a name of the state
– a script is a code associated with the state
– Tp is a set of rules that trigger a transition to another state with a given

probability
• a is the currently active state

i
0,9[a]

0,1[a]
0,7[a]
1[b]

0,3
[a]

1
[c]

1[c, d]

0,8[e]

0,2[e]1[a]

12

2 - Human-like artificial agents 67

Outline
1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning
• simple hierarchical reactive planning
• limitations
• ENTs example
• PyPOSH example

4. Finite state machines
• basic
• hierarchical
• probabilistic

5. Conclusion 2 - Human-like artificial agents 68

Recapitulation

• Reactive planning is a bunch of methods of driving behaviour of
virtual beings

• Each method determines the next action in every instant in "a
timely fashion"

• SHRP
– if-then rules
– priorities
– AND-OR trees

• FSM
– states
– transitions

2 - Human-like artificial agents 69

Implementation

• Special-purpose languages:
– rules

• JAM [Hubber, 1999]
• E [Bojar et al., 2002]
• PyPOSH [Kwong, 2003]
• ABL [Mateas, 2002]
• (Soar)

– FSM
• AI. Implant...
• Softimage

step
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
step
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
pick-up-mark
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
pick-up-mark
if someone-shoot-at-me do { .. }
...

rationale:

2 - Human-like artificial agents 70

Main limitations (SHRP + pHFSM)

• Transition
• It behaves in the same way
• Rigid
• Compromise action
• Proscription
• Modification of a behavior
• Concurrent behaviour
• Interleaving
• Sharp timeout
• Adaptive
• Time-consuming design

OK?
OK?
-
-
-

OK?
-
-
-
-
-

SHRP + FSM
probab.
-
-
-

BOD
-
-
-
-
-

(authoring vs.
learning)

2 - Human-like artificial agents 71

Questions?

2 - Human-like artificial agents 72

References
• BOD, POSH

– Joanna Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. In:
Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services,
pages 61-79, Springer LNCS 2592, Berlin, Germany, 2003.

– Kwong, A. A Framework for Reactive Intelligence through Agile Component-Based
Behaviours. Master thesis, University of Bath (2003)

– Joanna Bryson. Intelligence by Design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology,
2001.

• Gamebots:
– Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world test-

bed for multi-agent research. In: Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Canada (2001)

• ENTs
– O. Bojar, C. Brom, M. Hladík, V. Toman: The Project ENTs: Towards Modeling Human-like

Artificial Agents. In SOFSEM 2005 Communications, pages 111–122, Liptovský Ján, Slovak
Republic, January 2005.

– Project Ent homepage: http://ckl.ms.mff.cuni.cz/~bojar/enti/

13

2 - Human-like artificial agents 73

References
• FSM

– Waveren, J. M. P. van: The Quake III Arena Bot. Master thesis. Faculty ITS, University of
Technology Delft (2001)

– Champandard, A.J.: AI Game Development: Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)

– Softimage, Bahavior: http://www.softimage.com/products/behavior
• Façade, ABL

– Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Carnegie Mellon University (2002)

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint

Conference on Artificial Intelligence, Sydney (1991) 569-595
– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd

International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243
– Soar project: http://www.eecs.umich.edu/~soar/
– Isla, D.: Handling Complexity in the Halo 2 AI. Game Developers Conference, GDC 2005,

http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml

2 - Human-like artificial agents 74

References
• AI & agents

– S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ.

– M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons, 1995

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991

International Joint Conference on Artificial Intelligence, Sydney (1991)
569-595

– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous
Agents (Agents'99). Seatle (1999) 236-243

