
Unreal Engine 4 – Platform Independence

MFF UK
NPGR033
23th March 2016

Jakub Gemrot

Based on “various sources”

 Unreal Engine 1 – May 1998
 Unreal Engine 2 – January 2001
 Unreal Engine 3 – March 2003
 Unreal Development Kit – November 2009
 Unreal Engine 4 – May 2012

~ 20 years of experiences
~ ,,No one knows every corner of UE4 sources.’’

 -- Gerke Max Preussner, UE4 Senior Engineer

 Software
 renderer and
 Glide API (3Dfx)
 Later Direct3D,

OpenGL
 Easy to mod using

UnrealScript
 Networking later on

Unreal

 Software
 renderer and
 Glide API (3Dfx)
 Later Direct3D,

OpenGL
 Easy to mod using

UnrealScript
 Networking later on

Tactical Ops

 Rewritten
renderer

 PS2, Xbox,
GameCube

 Karma Physics
SDK

 64-bit later on

 America’s Army

 DX 9/10
 XBox 360, PS3
 Ported for Stage3D
 Many updates later

on

Gears of War

 UE3 made “public”
 99$ upfront, after

5000$ sales 25%
royalties

 Changed to free and
no royalties under
50000$ sales

 The Ball

 Major rewrite
 Modularization
 UnrealScript

dropped
 New Blueprint

system
 …

 AQP City

 Complete platform abstraction
 Many (cutting edge) rendering & anim. Features
 Landscape features, Level streaming, 8192x8192

terrains
 Physics (no soft bodies yet), Audio, Networking
 UI system (also as in-game textures)
 Extensible editor
 2D Plugin, Blueprints
 Own Game module

 No game specific stuff (inventories, weapons, …)

 Complete platform abstraction
 Many (cutting edge) rendering & anim. Features
 Landscape features, Level streaming, 8192x8192

terrains
 Physics (no soft bodies yet), Audio, Networking
 UI system (also as in-game textures)
 Extensible editor
 2D Plugin, Blueprints
 Own Game module

 No game specific stuff (inventories, weapons, …)

 Complete platform abstraction
 Windows, Mac, Linux, Android, iOS, HTML5, XBox One, PS4

 Custom build tool chain (your solution is a lie)

 Unreal Build Tool (UBT)
 Unreal Header Tool (UHT)
 Unreal Automation Tool (UAT)
 And a few others…

 Modules
 Whole engine is modularized
 Many interfaces, which are then implemented for

respective platforms

 Plug-ins
 Works with the abstraction only
 You can slip in custom plugins into your compiled editor

and export them with your game

 Modules
 Module Types
▪ Developer – Used by Editor & Programs, not Games
▪ Editor – Used by Unreal Editor only
▪ Runtime – Used by Editor, Games & Programs
▪ ThirdParty – External code from other companies
▪ Plugins – Extensions for Editor, Games, or both
▪ Programs – Standalone applications & tools

 Module Dependency Rules
▪ Runtime modules must not have dependencies to Editor or Developer

modules
▪ Plug-in modules must not have dependencies to other plug-ins

 Modules

Module Type Editor App Game

Runtime √ √ √
ThirdParty √ √ √
Plugins √ √ √
Developer √ √ X

Editor √ X X

 Plug-ins
 Loaded dynamically on startup
 Should not depend on other plugins
 Own source, binaries, content, config files

 Plug-ins

 Paper2D

 Custom build tool chain (your solution is a lie)

 Unreal Build Tool (UBT)
▪ Written in C# (may convert to C++ in the future)
▪ Scans solution directory for modules and plug-ins
▪ Determines all modules that need to be rebuilt
▪ Invokes UHT to parse C++ headers
▪ Creates compiler & linker options from .Build.cs & .Target.cs
▪ Executes platform specific compilers (VisualStudio, LLVM)
▪ Auto-generates DLL on Windows
▪ Solution file generation
▪ Remote compilation (iOS, MacOS)

 Custom build tool chain (your solution is a lie)

 Unreal Header Tool (UHT)
▪ Written in C++
▪ Parses all C++ headers containing UClasses
▪ Generates glue code for all Unreal classes & functions
▪ Preprocess specific macros (RTTI, network replication, in-editor

exposure)

▪ Generated files stored in Intermediates directory

 Custom build tool chain (your solution is a lie)

 Unreal Automation Tool (UAT)
▪ Written in C# (may convert to C++ in the future)
▪ Automates repetitive tasks through Automation Scripts
▪ Build, cook, package, deploy and launch projects
▪ Invokes UBT for compilation
▪ Distributed compilation (XGE) & build system integration
▪ Generate code documentation
▪ Automated Testing of code and content
▪ Configurable

 Speaking UE4 Language
 Fundamental types (primitives + a few others)
 Containers
 Delegates
 Common game domain related structures
 Smart pointers (UE4 is not using Boost…)
 Strings
 Macros
 UObjects
 Design principles in general

 Fundamental types
 Custom typedef’s for ints & strings
 GenericPlatform.h

…

 Fundamental types
 Numeric type traits
 NumericLimits.h

…

 Containers
 TArray, TSparseArray – Dynamic arrays
 TLinkedList, TDoubleLinkedList
 TMap – Key-value hash table
 TQueue – Lock free FIFO
 TSet – Unordered set (without duplicates)
 More in Core module

 Delegates
 Single / Multicast / UObject
▪ ExecuteIfBound (as opposed to C#)

 Limited signature
▪ Up-to 4 parameters
▪ Can be with / without return value

 More info in Delegate.h

 Common structures
 FBox, FColor, FGuid, FVariant, FVector, TBigInt,

TRange

 Box.h

 Smart pointers (~ garbage collection)

 TSharedPtr, TSharedRef – for regular C++ objects
 TWeakPtr – for regular C++ objects
 TWeakObjPtr – for UObjects
 TAutoPtr, TScopedPtr
 TUniquePtr
 Also thread-safe variants
 Similar to boost:: & std:: implementations

 Smart pointers

Benefit Description

Clean syntax You can copy, dereference, and compare shared pointers just like regular
C++ pointers.

Prevents memory leaks Resources are destroyed automatically when there are no more shared
references.

Weak referencing Weak pointers allow you to safely check when an object has been
destroyed.

Thread safety Includes thread safe version that can be safely accessed from multiple
threads.

Ubiquitous You can create shared pointers to virtually any type of object.
Runtime safety Shared references are never null and can always be de-referenced.

No reference cycles Use weak pointers to break reference cycles.
Confers intent You can easily tell an object owner from an observer.

Performance Shared pointers have minimal overhead. All operations are constant-
time.

Robust features Supports const, forward declarations to incomplete types, type-casting,
etc.

Memory Only twice the size of a C++ pointer in 64-bit (plus a shared 16-byte
reference controller.)

 Smart pointers (~ garbage collection)

 Various helper functions ~ MakeSharable(void*)

 Up-casting is implicit, just like with C++
pointers
 Dynamically-allocated arrays are not

supported yet
 Related documentation

http://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/SmartPointerLibrary/index.html

 String Types
 FString – Regular string
 FText – Localized string, used heavily in Slate UI
 FName – String hash, used heavily in UObjects, case-insensitive!

 String Literals
 TEXT()

▪ Creates a regular(!) string, i.e. TEXT(“Hello”);
 LOCTEXT()

▪ Creates a localized string, i.e. LOCTEXT(“Namespace”, “Name”, “Hello”);
 NSLOCTEXT()

▪ LOCTEXT with scoped namespace, i.e. NSLOCTEXT(“Name”, “Hello”);

 Macros (heavily used!)
 Logging
▪ UE_LOG, also GLog->Logf()

 Assertions
▪ check(), checkSlow(), ensure()

 Localization
▪ LOCTEXT_NAMESPACE, LOCTEXT, etc.

 Slate (UI Framework)
▪ SLATE_BEGIN_ARGS, SLATE_ATTRIBUTE, etc.

 And many others

 UObject
 Run-time reflection of class properties and functions
 Serialization from/to disk and over the network
 Garbage collection
 Meta data
 Also: Blueprint integration

 Decorated regular C++ Classes with UHT Macros
 UCLASS – for class types
 USTRUCT – for struct types
 UFUNCTION – for class and struct member functions
 UPROPERTY – for class and struct variables

 UObject
 No dynamic allocation
UMyObjClass* DynamicObj = NewObject<UMyObjtClass>(this);

 Prototype-like
▪ Using a class default object for initialization of “new UObject”

 Can be root-set (won’t be auto-GCed)
YourObjectInstance->SetFlags(RF_RootSet);

 Always need to be checked for existence
if(!MyGCProtectedObj) return;
if(!MyGCProtectedObj->IsValidLowLevel()) return;

 UObject and INI files
 Hold class default properties
 Will be loaded into CDOs on startup
 Organized in a hierarchy
 Higher INIs override lower ones
 Organized in sections
 Key-value pairs within sections
 Important ones exposed in Editor UI
 Low-level access with FConfig

Class Constructor

BaseXXX.ini

DefaultXXX.ini

XXX.ini

 UObject and INI files

Sections for UObjects
• [/Script/ModuleName.ClassName]
Sections for Custom Settings
• [SectionName]
Supported Value Types
• Numeric values, strings, enums
• Structured data
• Static and dynamic arrays
Automatic serialization for UObject properties

 UObject and INI files

 Principles
 KISS, YAGNI
 Composition vs. inheritance
 Avoid tight coupling of code and modules
 Many trivial instead of few complicated components

 Design Patterns
 SOLID
 Hollywood Principle (especially for Slate & game code)
 GOF, EIP

Initial Stands for Concept

S SRP
Single responsibility principle

a class should have only a single responsibility (i.e. only one potential change in the software's
specification should be able to affect the specification of the class)

O OCP
Open/closed principle

“software entities … should be open for extension, but closed for modification.”

L LSP

Liskov substitution principle

“objects in a program should be replaceable with instances of their subtypes without altering the
correctness of that program.” See also design by contract.

I ISP
Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”

D DIP
Dependency inversion principle

one should “Depend upon Abstractions. Do not depend upon concretions.”

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

 Prefixes for All Types
 U – UObject derrived class, i.e. UTexture
 A – AActor derrived class, i.e. AGameMode
 F – All other classes and structs, i.e. FName, FVector
 T – Template, i.e. TArray, TMap, TQueue
 I – Interface class, i.e. ITransaction
 E – Enumeration type, i.e. ESelectionMode
 b – Boolean value, i.e. bEnabled

 PascalCase
 Function names and function parameters, too
 Even local and loop variables!

 Concurrency
 Atomics
 Locking
 Signaling & Waiting
 Waiting
 Containers

 Atomics
 FPlatformAtomics
▪ InterlockedAdd
▪ InterlockedCompareExchange (-Pointer)
▪ InterlockedDecrement (-Increment)
▪ InterlockedExchange (-Pointer)
 FPlatformAtomics is “typedefed by platform”

 Atomics

 Locking

 Critical Sections
▪ FCriticalSection implements synchronization object
▪ FScopeLock for scope level locking using a critical section
▪ Fast if the lock is not activated

 Spin Locks
▪ FSpinLock can be locked and unlocked
▪ Sleeps or spins in a loop until unlocked
▪ Default sleep time is 0.1 seconds

 Signaling & Waiting
 FEvent
▪ Blocks a thread until triggered or timed out
▪ Frequently used to wake up worker threads

 FScopedEvent
▪ Wraps an FEvent that blocks on scope exit

 Containers
 General Thread-safety
▪ Most containers (TArray, TMap, etc.) are not thread-safe
▪ Use synchronization primitives in your own code where needed

 TLockFreePointerList
▪ Lock free
▪ Used by Task Graph system

 TQueue
▪ Uses a linked list under the hood
▪ Lock and contention free for SPSC
▪ Lock free for MPSC

 Parallelism
 Threads
 Task Graph
 Processes
 Messaging

 Threads
 FRunnable
▪ Platform agnostic interface
▪ Implement Init(), Run(), Stop() and Exit() in your sub-class
▪ Launch with FRunnableThread::Create()
▪ FSingleThreadRunnable when multi-threading is disabled

 FQueuedThreadPool
▪ Carried over from UE3 and still works the same way
▪ Global general purpose thread pool in GThreadPool
▪ Not lock free

 Threads
 Game Thread
▪ All game code, Blueprints and UI
▪ UObjects are not thread-safe!

 Render Thread
▪ Proxy objects for Materials, Primitives, etc.

 Stats Thread
▪ Engine performance counters

 Threads
 Task Based Multi-Threading

▪ Small units of work are pushed to available worker threads
▪ Tasks can have dependencies to each other
▪ Task Graph will figure out order of execution
▪ Used by an increasing number of systems

 Animation evaluation
▪ Message dispatch and serialization in Messaging system
▪ Object reachability analysis in garbage collector
▪ Render commands in Rendering sub-system
▪ Various tasks in Physics sub-system
▪ Defer execution to a particular thread

 Threads

 Processes
 FPlatformProcess
▪ CreateProc() executes an external program
▪ LaunchURL() launches the default program for a URL
▪ IsProcRunning() checks whether a process is still running
▪ Plus many other utilities for process management

 FMonitoredProcess
▪ Convenience class for launching and monitoring processes
▪ Event delegates for cancellation, completion and output

 Messaging
 Unreal Message Bus (UMB)
▪ Zero configuration intra- and inter-process communication
▪ Request-Reply and Publish-Subscribe patterns supported
▪ Messages are simple UStructs

 Transport Plug-ins
▪ Seamlessly connect processes across machines
▪ Only implemented for UDP right now (prototype)

THAT’S IT FOR TODAY!

LABS => HLSL Part III (last one)

Some interesting stuff:

	Game Engines – Part II
	Unreal Engine�History
	Unreal Engine 1 �May 1998
	Unreal Engine 1 �May 1998
	Unreal Engine 2 �January 2001
	Unreal Engine 3 �March 2002
	Unreal Development Kit�November 2009
	Unreal Engine 4 �May 2012
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Game Engine�Thank you for you attention!
	Unreal Engine 4 �Solution Structure
	Game Engine�Thanks you for you attention!

