Environment map lighting
a.k.a. Image-based lighting
a.k.a. Reflection mapping

Jaroslav Krivanek, KSVI, MFF UK
Jaroslav.Krivanek@mff.cuni.cz

CG for Game Development - J. Kiivanek
2016

mailto:xkrivanj@fel.cvut.cz

Acknowledgement

= Some material based on Ravi Ramamoorthi’s slides
available from http://inst.eecs.berkeley.edu/~cs283/1al0

= Make sure to check out Paul Debevec’s “The Story of
Reflection Mapping” at

http://www.pauldebevec.com/ReflectionMapping/

CG for Game Development - J. Kfivanek
2016

http://inst.eecs.berkeley.edu/~cs283/fa10
http://www.pauldebevec.com/ReflectionMapping/

Goal

= Real-time rendering with complex lighting, shadows, and
possibly also global illumination

= Infeasible in real-time game graphics — too much
computation for too small a time budget

= Approaches
o Lift some requirements, do specific-purpose tricks
= Environment mapping, irradiance environment maps
= SH-based lighting
o Split the effort
= Offline pre-computation + real-time image synthesis
= Baked light (light maps), pre-computed radiance transfer

CG for Game Development - J. Kfivanek
2016

Environment mapping (a.k.a. image-
based lighting, reflection mapping)

S N7

Miller and Hoffman, 1984

Later, Greene 86, Cabral et al, Debevec 97, ...
CG for Game Development - J. Kfivanek
2016

Assumptions

= Distant illumination (infinite sphere around the scene)

= For real-time rendering we often assume
2 No shadowing
o No interreflections

CG for Game Development - J. Kfivanek
2016

Image-based lighting

* Illuminating CG objects using measurements of
real light (=light probes)

-

© Paul Debevec

© Paul Debe .

Point lighting

ge-based lighting

© Paul Debe

© Paul Debe

Image-based lightir

N
\

|

ik

© Paul Debe

* Video

— Rendering with natural light
e http://www.pauldebevec.com/RNL/

— Fiat Lux

e http://www.pauldebevec.com/FiatLux/movie/

http://www.pauldebevec.com/RNL/
http://www.pauldebevec.com/FiatLux/movie/

Mapping

Eucaliptus grove

Grace cathedral

Debevec’s spherical

“Latitude —longitude” (spherical coordinates)

Cube map

Mapping

Uffizi gallery

St. Peter’s Cathedral

Debevec’s spherical

“Latitude —longitude” (spherical coordinates)

Cube map

Mapping

* Mapping from direction in Cartesian
coordinates to image UV.

float d = sqrt(dir.x*dir.x + dir.y*dir.y);

float r=d>0? 0.159154943*acos(dir.z)/d : 0.0;
u=o0.5+dirx*r;

v=o0.5+diry *r;

Quote from “http://ict.debevec.org/~debevec/Probes/”
The following light probe images were created by taking two pictures of a mirrored ball at ninety degrees of
separation and assembling the two radiance maps into this registered dataset. The coordinate mapping of
these images is such that the center of the image is straight forward, the circumference of the image is
straight backwards, and the horizontal line through the center linearly maps azimuthal angle to pixel
coordinate.

Thus, if we consider the images to be normalized to have coordinates v=[-1,1], v=[-1,1], we have
theta=atanz2(v,u), phi=pi*sqrt(u*u+v*v). The unit vector pointing in the corresponding direction is
obtained by rotating (o0,0,-1) by phi degrees around the y (up) axis and then theta degrees around the -z
(forward) axis. If for a direction vector in the world (Dx, Dy, Dz), the corresponding (u,v) coordinate in the
light probe image is (Dx*r,Dy*r) where r=(1/pi)*acos(Dz)/sqrt(Dx"2 + Dy"2).

Rendering with environment
maps

CG for Game Development - J. Kiivanek
2016

Shading due to an environment map

= Almost the same reflection equation as before

= The incident radiance L; is due to the env. map. emission L,
modulated by the EM visibility V.,

Lr (X1a)o) — ILem (X!a)i)'vem (X1a)i)' fr (X!a)i — a)o) 'COSQi da)i
H (x)

image plane

Li

]
1 [] '

-
ks

-
ﬁﬁﬁﬁ
-

CG for Game Development - J. Kfivanek
2016

Offline rendering — Monte Carlo
sampling

CG for Game Development - J. Kfivanek
2016

Real-time rendering

= MC is general, but too slow for real-time
= Real-time

o Mirror surfaces easy
(Just a texture look-up)

o What if the surface is rougher... %

-~

o Or completely diffuse?

CG for Game Development - J. Kfivanek
2016

Environment map pre-filtering

CG for Game Development - J. Kiivanek
2016

Environment map pre-filtering

= Phong model for rough surfaces

o lHlumination function of reflection direction R

s Lambertian diffuse surface

o lllumination function of surface normal N

Matte Sphere

Chrome Sphere

Ly

"

= Pre-filter (= blur) the EM [Miller and Hoffman, 1984]
o Irradiance (indexed by N) and Phong (indexed by R)

‘ Environment map pre-filtering

CG for Game Development - J. Kfivanek
2016

Environment map pre-filtering

= Can’t do dynamic lighting
o Slow blurring in pre-process

CG for Game Development - J. Kfivanek
2016

Spherical harmonics-based
Irradiance environment maps

CG for Game Development - J. Kiivanek
2016

Spherical harmonics-based irradiance
environment maps

Incident Radiance Irradiance Environment Map
(Ilumination Environment Map)

= Diffuse (Lambertian) surfaces only!!!

Analytic irradiance formula in SH
basis

Lambertian surface acts like
low-pass filter

EIm — A1 Im
/ \

SH coefficients of SH coefficients of
the irradiance EM the original EM

A =2 D~ [I } | even

T
(1+2)(1-1)

2' (L1)°

[Ramamoorthi and Hanrahan 01] -

[Basrl and JaCO bS Ol] CG for Game Devzeé(;gment - J. Kivanek

O-parameter approximation

Order O
1 term

1

CG for Game Development - J. Kfivane
2016 -

O-parameter approximation

Order 1

Exact image
J 4 terms

RMS Error = 8%

Xy yz
CG for Game Development - J. Kfivane

2016 - -1 0 1 2

O-parameter approximation

1order 2

Exact image
J O terms

RMS Error = 1%

For any illumination, average
error < 3% [Basri Jacobs 0O1] 2

CG for Game Development - J. Kfivane

2016 -1 0 1 2

Real-Time Rendering

E(n) =n"Mn

= Can be encoded in a 4x4 matrix and evaluated as above
= Simple procedural rendering method (no textures)

o Requires only matrix-vector multiply and dot-product

o In software or NVIDIA vertex programming hardware

= Widely used in Games (AMPED for Microsoft Xbox),
Movies (Pixar, Framestore CFC, ...)

surface floatl irradmat (matrix4 M, float3 v) {
floatd n ={v, 1} ;

return dot(n , M*n) ;

Algorithm

= Preprocess (whenever the EM changes)

Q

Q

Q

Project the EM onto 9 SH bases functions
Calculate the matrix M from previous slide
Upload to the GPU

= During rendering in fragment shader

Q

Q

Fetch surface normal and the matrix M

Exec the code from previous slide to get the diffuse
Irradiance

Multiply by diffuse texture to get final diffuse color due to
the EM

CG for Game Development - J. Kfivanek
2016

‘ SH-based Irradiance environment
maps

Standard Our Method
Grace Cathedral

| . .

Standard Our Method
Eucalyptus Grove

CG for Game Development - J. Kfivanek
2016 . .
Imgges courtesy Ravi Ramamoorthi & Pat Hanrahan

= Video — Ramamoorthi & Hanrahan 2001
o http://graphics.stanford.edu/videos/envmap/

= Further information

o http://http.developer.nvidia.com/GPUGems2/gpugems2__
chapter10.html

CG for Game Development - J. Kfivanek
2016

http://graphics.stanford.edu/videos/envmap/
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter10.html

Spherical harmonics-based
arbitrary BRDF shading

CG for Game Development - J. Kiivanek
2016

SH-based shading of arbitrary BRDFs

= Motivation

o Irradiance EM’s could only handle diffuse surfaces

o Can we use SH for shading surfaces with arbitrary (even
anisotropic) BRDFs
= Yes

CG for Game Development - J. Kfivanek
2016

SH-based shading of arbitrary BRDFs

= [Kautz et al. 2003]
= Arbitrary, dynamic env. map
= Arbitrary BRDF
= No shadows

L S H rep resentatl on (a) point light (b) glossy (c) anisotropic
o Environment map (one set of coefficients)
o Scene BRDFs (one coefficient vector for each discretized

viewing direction)
projected
lighting
environment (' . ' /

n=9 n=25% n=49

original lighting environment

‘ SH-based shading of arbitrary BRDFs

= Rendering: for each vertex / pixel, do

L (%,@) = [Ly (x,0) Vbl 1, (x, 0, > @,) -c0s 6, 4

H (x)

Environment map

= coeff. dot product

I—o (a)o) — Z/II fi (a)o)

SH-based shading of arbitrary BRDFs

= BRDF Representation

o BRDF coefficient vector [f;],
for a given o,, looked up
from a texture (use e.g.
paraboloid mapping to map
o, to a texture coordinate)

o BRDF coefficients pre-
computed for all scene
BRDFs (SH projection)

CG for Game Development - J. Kfivanek
2016

SH-based shading of arbitrary BRDFs

= BRDFisinlocal frame
= Environment map in global frame
= Need coordinate frame alignment -> SH rotation

[
<
-]
-
o..
-]
-]
-]
-’

= SH closed under rotation OX -----------------------------------
o Rotation matrix 0 X
o Fastest known procedure is 0 X

the zxzxz-decomposition
[Kautz et al. 2003]

Ry =

CG for Game Development - J. Ktivindk
2016

Algorithm

= Preprocess

a

For each BRDF in the scene
= For each viewing direction
0 Project the BRDF lobe onto SH basis (49-100 coefficients)

o Whenever the EM changes

= Project the EN onto SH basis (as many coefficients as for the
“sharpest”, i.e. most specular BRDF)

= Rendering in fragment shader

u
u
u

Fetch SH coefficients for the EM
Fetch SH coefficients for the BRDF (current viewing direction)

Bring the BRDF representation to the global frame using SH
rotation

Calculate the dot product of coefficients = final pixel color

CG for Game Development - J. Kfivanek
2016

‘ SH-based shading of arbitrary BRDFs

L Bk
)

(a) varying exponent (b) varving anisotropy

Figure 4: Spatiallv-Varving BRDFs.

Filtered importance sampling

CG for Game Development - J. Kiivanek
2016

Filtered importance sampling

= Arbitrary BRDF shading

2 no SH needed

o BRDFs can be dynamic (used for material design)
= References

o Colbert and Krivanek 2006

= Practical implementation
o Krivanek and Colbert 2008, EGSR
= Theory

= Video

a

CG for Game Development - J. Kfivanek
2016

http://http.developer.nvidia.com/GPUGems3/gpugems3_ch20.html
https://www.youtube.com/watch?v=_-WTOGg3M0A

Filtered importance sampling

= Monte Carlo BRDF
Importance sampling

o leaves noise

CG for Game Development - J. Kfivanek 2016

Filtered importance sampling

(a) () (<)
Deterministic Monte Carlo Filtered
sampling sampling Importance sampling

CG for Game Development - J. Kfivanek
2016

Filtered importance sampling

= Filter width depends on probability of sampling a given
direction
o Narrow filter in the main BRDF lobe

o Wide filter outside the lobe
= MIP maps used for filtering

Image 0
Plane !

Ex"'."\-\."‘-\—-
o

ol
%

(a)

CG for Game Development - J. Kfivanek
2016

‘ Filtered importance sampling

= Dual paraboloid mapping used to represent envmaps
o Fast to look up, fairly low distortion

\\“// ‘

. \

\:{/\/'
\

-
=
-

il

-

| .

.///\ !' g
ST
direction.xy .

texcoord.st =

direction.z +1

Filtered importance sampling —
Algorithm

= Preprocess
o Convert EM into dual paraboloid map
o Create MIP map for the two halves of the EM

o Pregenerate a low-discrepancy set of “random” tuples to be used
for BRDF sampling

= Rendering in fragment shader
o fori=1toN

Generate a direction with BRDF importance sampling using
pregenerated random tuple[i]

Calculate the probability density (pdf) for that direction
Based on the BRDF, determine the MIP map level
Look-up the EM, add to the average over all samples

CG for Game Development - J. Kfivanek
2016

(]
File

P g A QNG

i Y

Filtered importance sampling

= Used in substance painter
o Check out video:

Edit View Help

Document Settings

Undo stack Y
b v
Document i ;
Size 1024 2 x| i = 4
Channels + b
i 3
Diffuse SsRGBE ¥ = 1 |
Height ER=yd | L = r
Roughness L8 -
Metallic L8 Zi:
—- | . |
. l,‘ Y,
: f ot f o e . g
: i i X
Viewer Settings T i]
s - s
Mod= PBR $. - = . < > .
PER . , @ h‘,]
Quality Medium auality 16 so0) 3 = F 4 v
Environment panorama ' i j ,
i, 5 - .
Opacity 100 A f / .
Height force 1 4 .. ’\\\T' ‘» "y 7
Meshnormal o TR I 5
Exposure (EV) 0 / M = ' R o
Stencil opacity 25 < 3 - | # i 2
+/ Hide stendl when painting " -
Wireframe opacity 70 P = y r
h 7@' 1 [: = v
i g .

Presets = * Shelf
Brushes | Partidebrushes Tooks Paintmaterials Stencl materials / Synctool | Brushes Stencls Masks Textwres Emitters Recid B Medium
P ooy A a
L ey e |
A
: A y.C 5
fracture heavy leaking laser impact R black dift biiinp bt ke, Hymial, kot G StEw ol
o
” -
r (Rl S 1 OP1;
L -101
leaks organic spread bk gold

Layers
iffuse # +mS -
@ - Layer 1 Nf'urom
@ | BaseColor “fgg

Tool
. brush
e
diff rough metal mask B
u Brush - advanced
Size 2 4
Flow 50 £
Size Jitter i} Fa
Flow Jitter 10 A
Alignment uv =
Size Space Obiect -
L | Mask - basic
® shape/shape -
| Material - advanced
Separate channels mode =
diff height rough metal
Diffuse - uniform color L=
|==-+]

Roughness - uniform color

EERE
Metallic - uniform color
R]

a2 2§
Physics - advanced
Glnhal

https://www.youtube.com/watch?v=-fpW9C5il_U

Environment mapping summary

= Very popular for interactive rendering
= Extensions handle complex materials

= Limited to distant lighting assumption

CG for Game Development - J. Kfivanek
2016

	Environment map lighting�a.k.a. Image-based lighting�a.k.a. Reflection mapping
	Acknowledgement
	Goal
	Environment mapping (a.k.a. image-based lighting, reflection mapping)
	Assumptions
	Image-based lighting
	Point Light Source
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Mapping
	Mapping
	Mapping
	Rendering with environment maps
	Shading due to an environment map
	Offline rendering – Monte Carlo sampling
	Real-time rendering
	Environment map pre-filtering
	Environment map pre-filtering
	Environment map pre-filtering
	Environment map pre-filtering
	Spherical harmonics-based irradiance environment maps
	Spherical harmonics-based irradiance environment maps
	Analytic irradiance formula in SH basis
	9-parameter approximation
	9-parameter approximation
	9-parameter approximation
	Real-Time Rendering
	Algorithm
	SH-based irradiance environment maps
	Slide Number 33
	Spherical harmonics-based arbitrary BRDF shading
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	SH-based shading of arbitrary BRDFs
	Algorithm
	SH-based shading of arbitrary BRDFs
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling
	Filtered importance sampling – Algorithm
	Filtered importance sampling
	Environment mapping summary

