
Programmer documentation

Programmer documentation

iv

Table of Contents
1. Overview of Pogamut .. 1
2. Modules overview of Pogamut .. 2

Main modules .. 2
Support modules .. 2
Tools and resources .. 2

3. Gamebots 2004 .. 3
Introduction ... 3
UnrealScript basics ... 3

States ... 3
Event Functions ... 3
Native Functions .. 3
Spawning .. 4

Overview .. 4
Servers and connections ... 4
Bots ... 5
Mutators and the rest .. 5
Ini file .. 6

Class description .. 6
Class Overview .. 6
Game type classes .. 7
Server and client classes .. 9
Bot and player classes ... 11
Mutator classes ... 13
Other classes .. 14

4. Parser module ... 15
Overview ... 15
Class overview ... 15

Package cz.cuni.pogamut.Parser ... 15
Package cz.cuni.pogamut.communication .. 15

Usage ... 15
Parser schema .. 16
Text messages types .. 17
Class MessageObject and Java message types .. 17
Unreal ID, int ID .. 17
Synchronous message batch, delta messages .. 17
Text message handling routine .. 18
End of communication ... 19
Embedding Parser to a Client .. 19
JFlex grammar, bot_msg.flex file ... 19
Adding new message type .. 20

5. Client .. 21
Architecture ... 21
Description of the communication with Parser ... 22

Handshake with Gamebots ... 22
Messages from Gamebots ... 22
Optimization of network communication ... 22
Commands ... 23
Detailed communication description ... 23
Communication states .. 23

Map representation, navigation .. 25
Items and Inventory .. 26

Programmer documentation

v

Items .. 26
User-defined items .. 27
Inventory ... 27

Memory .. 28
Action selection mechanism and Client ... 29
Typical use of the Client .. 30
Known Issues ... 30
JavaDoc .. 30

6. IDE module ... 31
Overview ... 31
Class overview ... 31

Package cz.cuni.pogamut.netbeansplugin ... 31
Package cz.cuni.pogamut.netbeansplugin.exceptions .. 31
Package cz.cuni.pogamut.netbeansplugin.experiments .. 32
Package cz.cuni.pogamut.netbeansplugin.introspection ... 32
Package cz.cuni.pogamut.netbeansplugin.logging .. 32
Package cz.cuni.pogamut.netbeansplugin.options .. 33
Package cz.cuni.pogamut.netbeansplugin.project ... 33
Package cz.cuni.pogamut.netbeansplugin.project.templates 33

7. Mediator .. 35
Overview ... 35
Class Overview .. 35
Class Mediator ... 35
Usage ... 36

8. Experiment ... 37
Idea .. 37
JBoss Rules (Drools) ... 37
Package cz.cuni.pogamut.experiments ... 37
Class Experiment .. 37

Initialization of the object .. 37
Problems with class loader during evaluation of the rules ... 38
runExperiment() .. 38
Handling of the agents ... 39
Evaluating the rules ... 39
Saving logs to hard drive ... 39
Termination of the experiment .. 39

Running Experiment from command line .. 39
9. Introspection ... 41

Package cz.cuni.pogamut.netbeansplugin. project.introspection.java 41
10. Bot samples .. 42

Simple bot ... 42
Prey .. 42
Hunter .. 43

Has better weapon .. 44
Engage .. 44
Stop shooting ... 44
Hit ... 44
Pursue ... 45
Walking .. 45
Grab item .. 45
Medkit .. 45
Run around weapons and armors ... 45
Conclusion ... 45

SPOSH bot .. 45

Programmer documentation

vi

Khepera-like bot ... 47

vii

List of Figures
4.1. Local parser - everything is run on one machine ... 16
4.2. Remote parser – parser runs on the different machine then the Agent itself 16
4.3. Parser schema .. 16
4.4. Message handling flow chart .. 18
5.1. Client architecture ... 21
5.2. Command example ... 23
5.3. Communication states and it's order during handshaking with GameBots2004 25
5.4. Scheme of the flow of the messages in the Body. ... 27
5.5. History is a list of HistoryBatches. Each batch contains a hash map in which are stored lists
of messages of each type (key is a type of message, value is a hash map of messages (indexed by
unique ID)). ... 28
5.6. : Example of iteration through Player messages up to 3 batches to past. 29
7.1. Typical usage of the Mediator, one thread is transporting messages from the Parser to the
Client, another one from the Client to the Parser .. 36

1

Chapter 1. Overview of Pogamut
Pogamut is a team software project conducted by a group of students on faculty of mathematics and
physics, Charles University, Prague, Czech Republic. It emerges from the necessity of the platform suitable
for a fast development of virtual human-like agents.

Its main concern is to create the connection between complex virtual environment and development
tools. The chosen environment is Unreal Tournament 2004 (UT2004). The platform is connected to the
environment through Gamebots 2004 (GB2004) which are a server built into UT2004. This connection
is tended by the Parser which transforms string-based API of GB2004 to Java objects. Those objects are
accepted by the Client or more specifically the Agent which includes the library of methods and structures
to facilitate the development – e.g. action primitives, memory, navigation and inventory of the agent. Over
all of this spreads the IDE – NetBeans plug-in – which implements log viewers, server control, projects,
manual navigation, etc.

Structure of the programming documentation is therefore following. First there is an introduction to the
platform architecture and short description of main modules. Then follows chapter devoted to Gamebots
2004 which are responsible for the export of information from UT2004. It contains the detailed description
of functionality of all classes, mutators and game types.

Chapter 4 is about the Parser. It outlines its main responsibilities and the idea of a remote and local parser,
that relate to the optimization of the network communication which is described there as well.

Chapter 5 is dedicated to the Client. It contains an overview of internal compounds of the top-level
class Agent (memory, inventory, navigation, body), summary of usefull methods and description of the
mechanisms that are under those methods (like how it handles items or navigation).

Chapter 6 presents the IDE. After the description of single packages follows characterization of
introspection.

Chapter 7 is devoted to auxiliary module Mediator which is responsible for flawless communication
between the Parser and the Agent.

Chapter 8 is about experiments.

The last chapter contains description of all the sample bots, with all relevant information.

2

Chapter 2. Modules overview of
Pogamut

Pogamut consists of several modules. The main modules are IDE, Client, Parser, GameBots2004. There
are also two supporting modules – Mediator, Experiments, which we will cover later on.

Main modules
Each module is named after it's usage or a role.

GameBots2004 is part of UT2004 and acts as a server offering clients the service of creation and control
of the bot inside UT2004. It facilitate a text-based protocol which client must implement in order to be
able to control the bot inside the game. To work over the text messages is hard – therefore the module
Parser exists.

Parser translates text messages from GB2004 and creates Java objects out of them. This is used by a
module Client.

Client module is really a client of GB2004 using Parser to translate text messages over which it works.
It's purpose is to allow a Java programmer to create Java API for creating and controlling the bot inside
UT2004. The main class of this module is Agent which wraps a few other classes representing a bot inside
UT2004.

Finally there is an IDE. IDE serves for implementation, debugging and evaluation of user-created bots. It
uses Client's API for creating and running new instances of created agents. It also using Experiments API
allowing user to evaluate the bots and to experiment with them.

Support modules
Mediator. This module handles sending messages from one side to another. It's used for sending back and
forth messages between Parser and Client (more specifically between Parser and Agent).

Tools and resources
Module Experiment serves for running experiments. That means setting the UT2004 environment, creating
agent instances and observing them.

Introspection provides access to some of the agent's variables at the runtime.

Sample bots are example code to demonstrate features of the platform and provide a lead to the user.

3

Chapter 3. Gamebots 2004

Introduction
GameBots 2004 (GB, GameBots) are a modification (mod, more information in chapter 2) for the game
Unreal Tournament 2004 (UT04). GameBots are written in UnrealScript (UT04 scripting language).
GameBots provide network text protocol for connecting to UT04 and controlling in-game avatars (bots).
With GameBots user can control bots with text commands and at the same time, he is receiving information
about the game in defined format.

GameBots main purpose is to make available rich environment of UT04 for virtual agent development by
allowing easy connection to UT04 through its text protocol. More information about GB text protocol can
be found in GameBots 2004 user documentation. This documentation is organized as follows: First there
will be brief introduction to UnrealScript, which is followed by general overview of GB architecture and
most important mechanics and second we will describe every class of GB in detail.

UnrealScript basics
UnrealScript is a scripting language created especially for the game Unreal Tournament 2004. It is
somehow similar to Java or C++. The game UT04 itself is written in UnrealScript except of the engine,
which is written in C++. All classes written in UnrealScript can be inherited and modified or modified
directly - although it is not recommended to do it that way. UT04 supports so called game modifications
(mods). Mod is some package, that modifies the game in some way without touching the game internal
classes.

In this chapter I want to discuss four features of UnrealScript. Namely special construct state, then event
functions, native functions and spawning.

For more information about UnrealScript visit UnrealWiki site or http://unreal.epicgames.com/
UnrealScript.htm for a quick reference and examples.

States

States are groupings of functions, variables, and code which are executed only when the actor is in that
state. One state is usually divided in a few sub states by simple tags. For moving between states and sub
states, UnrealScript has function gotoState. Their purpose is to support AI and to facilitate programming.

Event Functions

Event function is called by engine automatically, when particular event is triggered in the environment.
UnrealScript features a lot of preprepared events, which can be used when programming the bots.

Native Functions

UnrealScript features large number of so called native functions. These functions are written in C++ and
are part of the game engine (we cannot see their code, or modify them). Their headers are defined in
UnrealScript with special word native (we can call these functions from UnrealScript). These functions
handles movement, ray tracing, etc. But mostly important, they handle spawning of objects in the game.

Gamebots 2004

4

Spawning
Spawning of objects is handled by native function Spawn. With this function we can spawn Actor class
and all classes inherited from Actor class - that means for example the majority of classes we have in
GameBots. Actor is anything that moves or is visible in the game, but Actors are not limited to this. Some
actors can be invisible and can be used just for handling some special situation in the game.

Overview
GameBots are built on UT04 classes, which are inherited and then modified. Thanks to this, we don't
need to change the code of original classes, so we leave the code of the game intact. In this section we
will provide basic GameBots overview. We will start with most important mechanics - the servers and
connections, this will be followed by bots, where will be said how is the controlling of the bot handled,
then we will speak about mutators and last we say something about GB ini file.

Servers and connections
UT04 features a lot of different game types. Each game type can have different rules and different goals,
which have to be completed, when our bots want to win. First thing that the GameBots do is, they inherit
UT04 class DeathMatch. This class handles game type DeathMatch and all other game type classes, that
are supported in GB, are inherited from it. GB class BotDeathMatch accepts connections to defined ports
by creating two servers (BotServer and ControlServer more info below). It also modifies some mechanics
for the purposes of GB. Game rules remains the same (in DeathMatch this means, that player who kills
pre-selected number of opponents - fraglimit - wins).

As there are two types of connections to GameBots, there are two classes that handles this. First one is the
class BotServer, which accepts connections used for spawning and controlling the bots (one connection
can spawn and control one bot). Second one is the class ControlServer, which accepts connections on
different port than BotServer and provides control of game mechanics (changing map, kicking players from
the server, pausing the game, etc.). Usually there will be just one control connection, although GameBots
supports multiple control connections.

For every accepted connection a class will be created that will handle the connection. Connections accepted
by BotServer are handled by class BotConnection, connections accepted by ControlServer are handled
by class ControlConnection. All the commands that can be sent to GameBots are processed in these two
classes.

Because classes BotServer and ControlServer and classes BotConnection and ControlConnection does
basically the same kind of things, they are inherited from a common ancestor. BotServer and ControlServer
inherit GBServerClass and BotConnection and ControlConnection inherit GBClientClass. GBServerClass
and GBClientClass are abstract and consists of basic client and server functionality and some common
functions for handling certain commands. The hierarchy looks as follows:

Object->Actor->Info->GameInfo->UnrealMPGameInfo->DeathMatch-
>BotDeathMatch
Object->Actor->Info->InternetInfo->InternetLink->TcpLink-
>GBServerClass-> BotServer, ControlServer
Object->Actor->Info->InternetInfo->InternetLink->TcpLink-
>GBClientClass-> BotConnection, ControlConnection

As you see UT04 features classes that handles TCP/IP connections with standard functionality of sending
and receiving text and/or binary data. As was already mentioned GameBots uses pure text protocol for
inbound and outbound communication.

Gamebots 2004

5

Bots
UT04 features its own bots written in UnrealScript. The bots in UnrealScript (US) are finite-state machines
(US has got special syntax that handles states). Every bot in US needs to have spawned two classes - the
Controller class, which controls the bot behavior (in this class bots artificial intelligence is stored) and the
Pawn class, which represents bot avatar in the game, handles animations, etc.

The bots in UT04 features nice behavior and their artificial intelligence is on higher level compared to
other first person shooter games. However, in GameBots we don't want our bots to act autonomously. We
want to control them by text commands. For this reason there is a class RemoteBot, that modifies standard
UT04 bot controller class. It makes bots controllable, disables built-in AI and sends information about bot
surroundings outside the game.

Class RemoteBot is spawned by class BotConnection (BotConnection requests spawning, the actual
spawning is done in BotDeathMatch class). Text commands are received by class BotConnection and then
the right methods and functions are called in the class RemoteBot. For the export of in-game information
class RemoteBot uses socket maintained by class BotConnection. GameBots inherits xPawn class of
UT04 and so created GBxPawn class modifies xPawn in a way we can set the bot skin (bot appearance
in the game). So far just original UT04 skins are supported. List of them is in GameBots 2004 user
documentation.

The hierarchy looks as follows:

Object->Actor->Controller->AIController->ScriptedController-> Bot-
>RemoteBot Object->Actor->Pawn->xPawn->GBxPawn

Mutators and the rest
GameBots features also functionality, that should facilitate development of behavior of bots by
visualization of additional information in the game. For this purpose GameBots uses mutator classes
and xEmitter classes. Mutators can modify (mutate) the game by adding or removing functionality,
adding or removing game rules, modifying the map or even adding information to the environment.
In GameBots there are two mutators - PathMarkerMutator and GBHudMutator. PathMarkerMutator
visualize navigation points in the game by spawning a little cube over every navigation point in the
map. Navigation points are spread across the map in UT04 and are used by bots for navigation in the
environment.

GBHudMutator spawns a name of every navigation point in the map on the HUD in a way, that it appears
the name is above the NavPoint (HUD is the screen with information about game status, we look on the
game "through" this information screen). Also the player current location is displayed on the HUD.

GBHudMutator can be combined with PathMarkerMutator - then we can see all navigation points also
with their names. Hierarchy looks like this:

Object->Actor->Info->Mutator->PathMarkerMutator, GBHudMutator

GB features one xEmitter class - it is TraceLine class. This class is used for the visualization of automatic
ray tracing feature of GB. For every automatic ray, one green ray is spawned in the game. Hierarchy is:

Object->Actor->xEmitter->TraceLine

Rest of the classes in GameBots

The rest of the classes in GameBots are overall less important. They add three more game types
BotTeamGame - players fight in a teams, BotCTFGame - players fight and teams and tries to steal a flag

Gamebots 2004

6

of opponent team and BotDoubleDomination - players fight in a teams and try to control two points in a
map simultaneously. They override additional UT04 classes to make sure all required information from
the environment are sent outside (GBxBot, GBxPlayer). They can set up our bots with some defaults
(RemoteBotInfo) or they can help our bots to fulfill some commands (FocusActorClass, PauseFeed).

Ini file
GameBots have got one ini file BotAPI.ini. In this file a lot of features of GameBots can be configured.
The game rules can be also modified (time limit, goal score, etc.). Each GameBots class can be configured
separately here. More information can be found in GameBots 2004 user documentation.

Class description
In this chapter we will describe all GameBots classes in detail. First we will provide general overview
of all used GB classes, then we will speak about game type classes, afterwards server and client classes,
followed by bot and player classes, next mutator classes and last few words about the rest of the classes.

Class Overview
Here is a short description of every class in GameBots.

• GBServerClass - abstract server class, list of all received connections is created here

• GBClientClass - abstract client connection class, universal code for receiving and storing GameBots
commands is here. Some functionality that is common for all connection classes is here.

• BotServer - class where we listen on defined port and accept bot connections

• ControlServer - class where we listen on defined port and accept control connections

• BotConnection - class that handles bot connection, parsing of bots commands is here, from here we
control our remote bots.

• ControlConnection - class that handles control connection, parsing of control server commands is here

• RemoteBot - main bot class, exporting information from the game, executing commands called by
BotConnection class, overriding default UT04 bot AI

• RemoteBotInfo - sets some defaults for bot, got this class from old gamebots, now it is not used in GB
(may be used in future)

• BotDeathMatch - main GameBots game type class, BotServer and ControlServer are spawned here,
RemoteBot class and original UT04 bots are spawned here, features default DeathMatch rules (by
inheritance)

• BotTeamGame - adding bots to teams handled here, features default TeamGame rules (by inheritance)

• BotCTFGame - features default CTFGame rules (by inheritance)

• BotDoubleDomination - features default DoubleDomination rules (by inheritance)

• TeamGameCopy - copy of an original UT04 class TeamGame - because of inheritance

• CTFGameCopy - copy of an original UT04 class CTFGame - because of inheritance

Gamebots 2004

7

• xDoubleDomCopy - copy of an original UT04 class xDoubleDom - because of inheritance

• FocusActorClass - helper class, so our bots can focus on location in the game

• PauserFeed - helper class, so we can pause the game even if no player is in it.

• PathMarker - class that hold StaticMesh used for NavPoints visualization

• PathMarkerMutator - class that spawns PathMarker over NavPoints in the map

• GBHudMutator - class that adds GBHudInteraction class to all players in the game

• GBHudInteraction - class where GBHud is created and where we handle key inputs and draw NavPoints
grid

• GBHud - class that extends default HUD without modifying class with additional information

• TraceLine - this xEmitter class lets us spawn the visualization of automatic ray tracing

• GBxBot - class that overrides standard UT04 bots, so they send information to our remote bots

• GBxPlayer - class that overrides standard UT04 player controller class, so players can now travel
through walls when spectating and send information to our bots

• GBxPawn - we override standard xPawn class, so we can set the bot appearance in the game

Game type classes
These classes modify original UT04 game types classes and provide them with all the functionality
needed to connect to the environment through TCP/IP and spawn and control remote bots. In GameBots
there are four different types of game with somewhat different rules and different goals. They are
BotDeathMatch, BotTeamGame, BotCTFGame and BotDoubleDomination. The names of UT04 original
classes are DeathMatch, TeamGame, CTFGame and xDoubleDom. The hierarchy of original UT04 game
type classes looks like this:

Object->Actor->Info->GameInfo->UnrealMPGameInfo->DeathMatch->
TeamGame-> CTFGame, xDoubleDom

As you see, TeamGame is a child of DeathMatch and CTFGame and xDoubleDom are children of
TeamGame. In GameBots we wanted to preserve this hierarchy to avoid to have same code in multiple
classes. Because of this we created GameBots hierarchy, which looks like this:

Object->Actor->Info->GameInfo->UnrealMPGameInfo->DeathMatch->
BotDeathMatch->TeamGameCopy->BotTeamGame->CTFGameCopy, xDoubleDomCopy

Object->Actor->Info->GameInfo->UnrealMPGameInfo->DeathMatch->
BotDeathMatch->TeamGameCopy->BotTeamGame->CTFGameCopy->BotCTFGame

Object->Actor->Info->GameInfo->UnrealMPGameInfo->DeathMatch->
BotDeathMatch->TeamGameCopy->BotTeamGame->xDoubleDomCopy->
BotDoubleDomination

The classes with suffix "Copy" are exact copies of original UT04 classes. Thanks to this we don't have
any redundant code in our GB classes. Everything important for client connections and bot spawning is
handled in class BotDeathMatch and then is inherited by other GameBots game types (BotTeamGame,
BotCTFGame, BotDoubleDomination). Although this might not look well on the first glance, it helps
greatly to maintain the code of GB.

Gamebots 2004

8

BotDeathMatch

This is the main GameBots class inherited from UT04 DeathMatch class. All other GameBots game type
classes are inherited from BotDeathMatch. The BotServer and the ControlServer are created here. In this
class we handle also spawning of the RemoteBots in the map, spawning of the original UT04 bots in the
map and special events such as new player joining or leaving the server.

The rules of BotDeathMatch are standard DeathMatch rules. That means the goal of the game is to survive
and to kill as much opponents as possible. DeathMatch has time limit and goal score. If somebody reaches
the goal score, the game ends and the player wins. Otherwise the game ends according to its time limit and
the winner will be the player with highest score (with most killed opponents).

The main functions of this class are:

• function PostBeginPlay

• function RemoteBot Add RemoteBot

• function SpawnPawn

• function bool AddEpicBot

• function SpawnEpicBot

function PostBeginPlay This function is automatically called after beginning of the game.
Here we spawn classes BotServer and ControlServer, which are
then used for accepting connections to defined ports.

function RemoteBot
AddRemoteBot

This function spawns a class RemoteBot, which is a controller class
for one remote bot. We set here the Id of the bot, correct number of
players currently on the server and set variables affecting bot skills
(accuracy, etc.). When we have our controller class ready we call
SpawnPawn function, which spawns bots Pawn class, which results
in the bots avatar appearing in the game.

function SpawnPawn Function for spawning and respawning the bots Pawn (thats the
visible avatar of the bot in the game). Here we set the bots Pawns
peripheral vision.

function bool AddEpicBot and
function SpawnEpicBot

This functions spawns Controller class and Pawn class for original
UT04 bots. We needed to do this by ourselves because we wanted
to set some bots variables (name, team, skill, etc.), which would be
otherwise inaccessible.

BotDeathMatch has other functions - they handle sending of the game status to bots, special events as
joining or leaving the server by player or bot, respawning of the bots and overriding functions that would
otherwise cause the UT04 bots to join our server automatically.

In a special construct of UnrealScript - defaultproperties - we set what classes will be used for player
controller (variable PlayerControllerClassName), if the game will be pauseable and other stuff needed
for our game to start and run properly.

BotTeamGame

This class features UT04 TeamGame rules. It is inherited from class TeamGameCopy (here are the
rules of UT04 TeamGame stored, as it is the exact copy of TeamGame class), which is inherited from
BotDeathMatch.

Gamebots 2004

9

TeamGame rules are: All players and bots in the game are divided into two teams and the goal is to beat
the other team. The score is again the number of killed opponents. Game has its time limit and goal score.

The main function here is function bool AddRemoteBotToTeam. It overrides function from
BotDeathMatch and it assures our bot will be added to (a) desired team or (b) to some available team, when
desired team is not set or cant be joined. Other functions here handle getting game status and player scores.

BotCTFGame

This class features UT04 CTFGame rules. It is inherited from CTFGameCopy (exact copy of UT04
CTFGame class). CTFGameCopy is inherited from BotTeamGame.

CTFGame rules are: All players and bots in the game are divided into two teams and the goal is to steal
the flag owned by other team. Game has its time limit and flag limit (how many times can be ones team
flag stoled until the other team wins).

Functions here handle getting game status and player scores.

BotDoubleDomination

This class features standard UT04 DoubleDomination rules. It is inherited from xDoubleDomCopy (exact
copy of UT04 xDoubleDom class). xDoubleDomCopy is inherited from BotTeamGame.

DoubleDomination rules are: All players and bots in the game are divided into two teams. In the map there
are two control points. The goal is to capture both of the control points and hold them for a few seconds.
Then the team scores. Game has its time limit and goal score.

Functions here handle getting game status and player scores.

Server and client classes
Here we will describe in detail server and client classes.

GBServerClass

This is an abstract class and should never be instantiated Any connection accepting class in GameBots
needs to be inherited from GBServerClass and spawned in the class BotDeathMatch.

In this class we are creating a list, where we have stored every accepted connection. US features two events
- GainedChild and LostChild that are used for this.

BotServer

Class BotServer extends GBServerClass. This class is instantiated once in class BotDeathMatch. We have
one server for the bots, but we can have multiple connections to it. The class BotConnection is spawned
by BotServer for the connections.

In defaultproperties we set what class will be spawned for the connections in the variable AcceptClass.
Port where we will wait for the connections is set in ListenPort variable and maximum connections in
MaxConnections variable.

The only function here - BeginPlay, which is called automatically when the game starts, binds our
connections to desired port and starts listening (waiting for new connections).

Gamebots 2004

10

ControlServer

Class ControlServer extends GBServerClass. It is very same as the BotServer class, except the listening
port and the classes it spawns for the connections. Here it is ControlConnection class.

GBClientClass

This is an abstract class and should never be instantiated From this class classes BotConnection and
ControlConnection are inherited. In these two classes we process GameBots commands.

In GBClientClass we have some universal code for client connections. It is mainly some configure
variables, variables and functions for storing and parsing incoming messages and function for sending
messages outside the UT04. GBClientClass features also some functions used by both child classes -
BotConnection and ControlConnection (exporting lists of objects in a map for instance).

For receiving there are functions ReceivedText and ReceivedLine and variables ReceivedArgs,
ReceivedVals and ReceivedData. For parsing messages we have functions ParseVector, ParseRot and
GetArgVal. And for sending messages we have function SendLine. Main function for handling text
commands is ProcessAction function. It is called by ReceivedLine function and is not implemented in
GBClientClass. It should be implemented by children of GBClientClass. In ProcessAction we define,
what should be done when we receive certain command.

BotConnection

Class BotConnection extends GBClientClass. This class is spawned by BotServer. Each connection
to BotServer has spawned its own BotConnection class (one BotConnection class handles one bot
connection). In this class GameBots commands for bots (RemoteBots) are processed. One BotConnection
class can spawn one RemoteBot class and control one RemoteBot (actual spawning is handled in
BotDeathMatch class, but functions are called from here).

This class has two states - waiting and monitoring. In waiting state, the class waits for INIT command -
by this command the bot will be created in the game (bot controller and afterwards the bot pawn). In state
monitoring we are periodically calling functions on RemoteBot that exports synchronous messages with
information about the game (viz. GameBots 2004 user documentation).

In this class there are functions and structures for automatic ray tracing of the bot (LaunchRay, AutoTrace,
AddDefaultRays, AddCustomRay and RemoveCustomRay). In AutoTrace function the class for ray
visualization is created.

The main function here is function ProcessAction, where commands for RemoteBot are parsed and
executed. For complete list of GameBots command see GameBots 2004 user documentation. More details
about how the GameBots bots commands are executed can be found in this documentation in chapter
RemoteBot class.

ControlConnection

Class ControlConnection extends GBClientClass. This class is spawned by ControlServer. Each
connection to ControlServer has spawned its own ControlConnection class (one ControlConnection class
handles one control connection). In this class GameBots commands for control server are processed. (in
fact each instance of ControlConnection is independent of each other).

This class has one state running - with two sub states waiting and running. In sub state running we are
periodically exporting info about location of all players in the game. This can be used for visualization
of players position in mini map.

Gamebots 2004

11

Functions in this class handle exporting of information about the map and about the game. Main function
here is function ProcessAction, where commands are parsed and executed. For more information about
ControlServer command see GameBots 2004 user documentation.

Bot and player classes
Here we will speak about classes for our bots and players. We will start with most important class
RemoteBot, which will be followed by GBxPlayer class, GBxBot class and GBxPawn class.

RemoteBot

Class RemoteBot extends UT04 class Bot. The bots in UnrealScript are finite-state machines, that react
to events in the game (events are special types of functions called by engine, when particular situation
appears in the game). In RemoteBot class we override original bots states, functions and events, so no
autonomous behavior will be executed.

Class RemoteBot has got three states. It is StartUp state, Dead state and GameEnded state (we override
also two more states - MoveToGoal and TakeHit, but it seems they are never called in our class). StartUp
state is the main state here. In StartUp state bot movement and turning is executed. Every time the bot is
killed, we end up in the Dead state. From Dead state we respawn the bot. State GameEnded is active, when
the game ends - because of time limit or reached goal score. There are few seconds, when the winner is
showed and then the map is changed.

Functions and events in this class controls the bot (shooting, aiming) and exports information through
BotConnection class (exporting events in the game, checking surroundings periodically, etc.). Now we
will speak about bot variables and control basics.

Variables

Important inherited variable in this class is Pawn. Pawn represents our bots avatar in the game. When we
want to get location or rotation of our bot, we need to look at our bots Pawn variables. Other important
variables are FocalPoint (vector), Focus (actor) and Target (actor). These variables have got influence on
bots turning and shooting. See below.

Bot movement

For moving the bot we call native engine latent functions MoveTo and MoveToward. We support them
with location or object where to go (vector in case of MoveTo, Actor in case of MoveToward), what actor
we want to focus on and if we should use walking speed. Functions MoveTo and MoveToward resets
FocalPoint variable to location we supported them with (if we leave the focus input of these functions
unspecified).

Bot turning

Bot turning is done automatically by the engine. Only thing we need to do is to set FocalPoint variable.
We can also turn to Actors, for this we set Focus variable. If we call function FinishRotation afterwards,
the function will end when we will be facing the spot. If we have some Actor targeted, we will continue
to turn to face him if he moves (if no other commands will be received by bot).

Bot shooting

For shooting these functions are important: RemoteFireWeapon, WeaponFireAgain, StopFiring and
AdjustAim. With RemoteFireWeapon our weapon starts to fire. BUT! It would fire just one shot if we
wont have function WeaponFireAgain overridden to return true. Now our weapon will continue to fire
until we call StopFiring function (called by STOPSHOOT), or run out of ammo, or our bot dies. Function
AdjustAim does aiming for us. It is called by the firing routines. This function provides aiming correction.

Gamebots 2004

12

In AdjustAim function: We are firing on Target (Actor class) - that is inherited variable. If Target is not
set, it is get from Enemy variable - also inherited, also Actor class. We made a slight change to code in
AdjustAim function, so it is now possible to fire even on location (we set FireSpot variable in AdjustAim
to our location target).

So when we want to fire on someone we set Target variable. If we want to shoot on the location,
we set FocalPoint variable (and myFocalPoint variable, as the FocalPoint is changed by MoveTo and
MoveToward functions) and set Target and Enemy variables to None.

Reachability and paths

For reachability information and path finding we use native engine functions. Namely actorReachable,
pointReachable and FindPathTo. Functions are self-explanatory, FindPathTo function fills array
RouteCache with ordered list of NavPoints we should follow, when we want to get to our goal.

CanSee and LineOfSightTo

These two functions are preprepared functions for getting information if we can see some actor and if some
line of sight exists to desired location or point from our bot. CanSee is influenced by Pawns peripheral
vision.

GBxPlayer

This class extends standard UT04 player controller class - in this class commands from player are processed
and are executed in a game. These commands are keyboard and mouse inputs. In this class we have code
for player moving with his avatar, for player moving as the spectator and so on.

We changed a code for spectating a bit, so now it is possible for spectators to go through walls in the game.
Also we modified a bit functions for sending messages to other players in a game so now also RemoteBots
can receive this messages (functions ServerSay, TeamSay). Moreover HIT message is now sent to bots
properly also from players (function NotifyTakeHit).

In our GameBots game types we spawn GBxPlayer class instead of standard xPlayer class for UT04
players. It is set in game types variable PlayerControllerClassName.

GBxBot

This class extends standard UT04 bot class. We override here one function, so our bots can receive HIT
message also from UT04 bots properly (function NotifyTakeHit). In our GameBots game types we spawn
GBxBot class instead of standard xBot class for original UT04 bots.

GBxPawn

This class overrides standard UT2004 xPawn class. This class represents bot virtual body. That means -
bots appearance, bots animations and the way of handling movement etc. Bot skins are loaded here.

In GameBots we override Setup function of xPawn class, so we make possible to set bot skin (bot
appearance) in the game.

RemoteBotInfo

This class is taken from the old GameBots for UT2000 and is spawned in BotDeathMatch at the beginning
of the game. In UT2000 it was probably needed for configuring some variables needed by engine for
spawning the bot correctly. In GB04 we don't use this class at this time.

Gamebots 2004

13

In this class the skins, bot difficulty, bot names, accuracy and so on are configured.

Mutator classes
Here we discuss mutator classes in detail.

PathMarkerMutator

This Mutator spawns at the beginning of the game on every navigation point without inventory item
PathMaker class, which will visualize the otherwise invisible NavPoint.

PathMarker

This class is a part of NavPoint visualization. StaticMesh used for the visualization is loaded by exec
command in this class. After spawning of this class in the map on the desired location, the object specified
in the variables of PathMarker class appears in the game.

GBHudMutator

This Mutator causes, that for every player in the game class GBHudInteraction will be spawned.
GBHudInteraction class is necessary for adding additional functionality for player HUD and for the
GameBots key commands.

GBHudInteraction

GBHudInteraction extends Interaction class, which is special type of UT04 class for the purposes of adding
additional functionality to key events, player HUDs (and so on) without modifying the classes, that are
normally responsible for this.

In this class we create special GameBots HUD for players (GBHud class, we call its function PostRender
from here - without this we wouldn't be able to draw on the HUD) and we catch GameBots key
commands here. Also we draw NavPoints grid (NavPoints reachability graph) in this class (function
DrawNavPointsGrid). GBHud and NavPoints grid is controlled by key events (function KeyEvent).

GBHud

GBHud extends HudBase (original UT04 HUD base class). We draw here NavPoints names above the
NavPoints in the game and current location of the player in UT units. This class is controlled by key events
(they are processed by GBHudInteraction class).

TraceLine

This class is based on xEmitter class. xEmitter classes are used in UnrealScript for creating various visual
effects, that can be later seen in the game. TraceLine class spawns beam effect, that is used for the
visualization of automatic ray tracing. Each automatic ray has got one beam associated with it. Colour
of the beams is green (in the future we plan to implement changing colours of the beams according to
whether the ray hits something or not).

Most important function here is Tick. This function is called regularly many times per second by the
engine. In this function we are creating the desired beam and here we also change its location according
to bot movement. Function Tick is simulated that means, that it is called not only on game server, but also
on all the clients. If it were not simulated, we couldn't see the rays on the clients - that means spectators
connected to our game would be unable to see the rays. Also all the other functions here are simulated.

Gamebots 2004

14

The replication construct defines some additional variables that are replicated to the client. Otherwise, the
variables wouldn't change their value on the clients - just on the server.

Other classes
The rest of the classes that did not fall into preceding categories.

FocusActorClass

This class extends UT04 Actor class (Actor is an abstract class and cannot be spawned, but we want
to spawn it for special purpose). Normally bots in UT04 cannot focus on a location1, when they are
running toward location2, which is different. They can focus on some other Actor, but not on location.
For GameBots purposes we wanted to make our bots able to focus also on the location. For this we use
FocusActorClass. We set the location of FocusActorClass to desired location and then we set our focus
to FocusActorClass. FocusActorClass is normally invisible, but can be made visible, so we can see the
spot, the bot is currently heading or looking. Position of FocusActorClass is updated in Tick function of
RemoteBot class, if we have set it to be visible (otherwise it is used just for setting the focus on location).

PauserFeed

This class is used to pause the game even without no players in it. The problem is that UnrealScript
requires us to support some PlayerReplicationInfo class, when we want to pause the game. PauserFeed
class inherits PlayerReplicationInfo class, so it can be used for this purpose. Class is created at the start
of the game.

15

Chapter 4. Parser module
Overview

Parser is a module of Pogamut, it is middleware between GameBots2004 and Client. It is used by the
Client to communicate with GameBots2004. Its purpose is to simplify handling messages from GameBots
and to lower network bandwidth. Simplification is done by translating messages from text messages
(ASCII format, sent by GameBots) to Java objects (MessageObject class). Objects are then sent to the
Client (another module of Pogamut2, where AI is). Parser is lowering data bandwidth by transmitting only
informations that has changed like position of the bot, visibility etc., not the position of items that can't
move - delta messages.

There are two different kinds of view on a Parser. The first is Parser as a Java class. Strictly speaking
Parser as a class just translates text messages to Java objects. It does not contain any mechanisms to
receive or to send messages via TCP/IP for instance. Sending messages are done by Mediator (see chapter
MEDIATOR).

The second view is Parser as a module. The Parser module covers both parsing the text messages and the
usage of Mediators for sending/receiving messages to/from the Client.

The Parser itself is implemented using JFlex, specification of the JFlex grammar can be found in the file
bot_msg.flex file.

Class overview
Almost everything is in package cz.cuni.pogamut.Parser. The Parser class also implements two interfaces
from package cz.cuni.pogamut.communication. The Parser returns messages that are instances of
class from package cz.cuni.pogamut.MessageObjects. There are class for each type of message the
GameBots2004 can send in this package.

Package cz.cuni.pogamut.Parser
class GameBotConnection - wrapper for GameBots2004 socket
class Parser - translates text messages into Java objects
class ParserConnection - wrapper for the RemoteParser socket, used by Client (class Agent) when
RemoteParser is used
class RemoteParser - class wrapping RemoteParserServer, allowing to run it as a program
class RemoteParserServer - acts as a server for Client (default port 4000), which connects to the GB2004
and applying delta compression to messages
class UnrealIDMap - class which maps Unreal ID strings to a numbers which are used to identify objects
in the game thus saving the network bandwidth
class Yylex - generated class by Jflex (Java version of Flex) from bot_msg.flex file

Package cz.cuni.pogamut.communication
class MediatorParserInterface- interface for receiving messages from Parser for the Client
class MediatorGBInterface - interface for sending messages to the GameBots2004

Usage
There are two types of usage of the Parser module – Local Parser and Remote Parser.

Parser module

16

The Local Parser is meant to be run on the same machine as the Client (specifically Agent class). It should
be used when the UT2004 server is running on the same machine as the Agent because there is no gain in
delta compression in such a case (see Figure 4.1, “Local parser - everything is run on one machine”).

Figure 4.1. Local parser - everything is run on one machine

The Remote parser is meant to be run on the machine as the UT2004 server that is different from the
machine where the Client runs. Therefore the communication between Client and Remote Parser goes via
TCP/IP. See Figure 4.2, “Remote parser – parser runs on the different machine then the Agent itself”. If
the user is running UT2004 server on different machine then it's advised to prefer Remote Parser over
Local Parser to lower the data bandwidth due to the delta compression.

Figure 4.2. Remote parser – parser runs on the different machine then the Agent
itself

Parser schema
Each Parser instance is configured by GameBotConnection that is used for receiving text messages from
GB2004. See Figure 4.3, “Parser schema”. During the construction of the Parser an Yylex instance is
also created that uses GameBotConnection's socket (BufferedReader input) to receive text messages from
GameBots2004.

Figure 4.3. Parser schema

Parser module

17

The Parser class implements interface MediatorParserInterface that contains method
receiveParsedMessage(). Whenever that method is called by the Mediator, the text message handling
routine is iterated through. The final product of the routine is MessageObject that is returned. This scenario
is different when message END is received. This will be explained later on.

Text messages types
Text messages from GameBots2004 are of two types. Synchronous and asynchronous (for more
informations see chapter GAMEBOTS). Asynchronous messages came at random and can't be delta-ed
as they don't have any ID and are usually quite unique. Synchronous messages are always delta-ed before
they are returned by the Parser.

Class MessageObject and Java message types
There is a class for each message the GameBots2004 protocol defines. All these classes are descendants
of MessageObject class, which defines two key methods diff() and update().

Diff() method takes as an argument a message object of the same class and has to tell whether the argument
differs from object or not, also nullify every property which has the same as an argument.

Update() method writes also takes as an argument message object of the same class and writes all non-
null properties to current object (used by the Client).

Those two methods realize the delta compression that will be explained later on.

Unreal ID, int ID
Each synchronous message also has an ID attribute. This attribute is filled by GameBots2004 with string
that supplies UT2004. This Unreal ID string is unique for each object existing in the game. This ID is quite
long and it would waste the bandwidth if sent every time with the message. In spite of this, there has to
exist some ID for every object in the game so the Client can recognize it. Therefor the class UnrealIDMap
exists. It assigns an unique number to each Unreal ID string so the messages will be processed according
to int ID not the string ID thus saving the communication bandwidth.

Synchronous message batch, delta messages
The key concept of the GameBots2004 protocol are synchronous message batches, which comes in
frequency about 10 batches per second. Information about what bot sees (navigation points, items, other
players, etc.) comes in batches. Each batch can be viewed as a camera picture of what bot sees in a specific
time. The Parser always have two batches stored. The last one and the current one. The Parser needs to
know, which messages is the Client aware of, allowing him to create delta messages and notice the Client
in case that something disappear from it's field of view.

Usually when bot sees some player (for instance) it is visible to the bot for some time. That means the
player stays in the bot's field of view for several batches. The player's name usually don't change therefore
it's no use to send it's name over and over again. This is a part where delta messages steps in. The Parser
takes the message (in this case Player object) and updates the message so it contains only information
which changes using diff() method and returns that. In case of Player message it will probably be player's
location.

The batch's end is marked with EndMessage. Upon receiving such a message – the Parser must check
the current batch against the last batch. For each message in last batch that is not present in the current

Parser module

18

one, the Parser must send the DeleteFromBatch message to the Client so the information about what the
Client sees is correct.

There is a possibility that many objects disappeared from the Client's field of view therefore the
EndMessage should produce many DeleteFromBatch messages. In this case the Parser saves those
messages to a queue and when asked for another message it takes message from the queue rather then
calling Yylex.

Text message handling routine
Figure 4.4. Message handling flow chart

The handling begins with the question if there is a message in a queue waiting for delivery (produced by
some EndMessage in the past). If so, remove one message from the queue and return it. If not, call Yylex.
Yylex class then reads and parses one text message from GameBots2004. It returns MessageObject to the

Parser module

19

Parser and the Parser will process the message according to it's type. Asynchronous messages are returned
immediately and synchronous messages are delta-ed and stored to a current batch.

If EndMessage arrives, compare current batch with last one and produce DeleteFromBatch messages if
necessary. Also write current batch as the last one and begin new one.

The only difference in this behavior is when the list of map's NavPoints or items is received. In this case
there is no need to create delta messages and the message is returned immediately.

End of communication
The communication can end either normally, when the MapFinished message is received from
GameBots2004 or abnormally - network communication problem, socket closed on the remote side, etc.

When the Client receives MapFinished it has to terminate itself and shouldn't be requesting any other
messages from Parser.

When an error occurs, which means the data can't be read from the socket by Yylex a message Disconnected
is created and sent to the Client. The Client has to terminate itself after that.

Embedding Parser to a Client
The Parser as described above can be used by a Client as a local instance (Local Parser), or can be run on
a different machine as a Remote Parser. These two kinds of usage Local Parser / Remote Parser reflects
two scenarios.

The first scenario is when everything is run on one machine. Everything means UT2004 + GameBots2004
and the Client. In this case there is no need to run the parser as a different process and can be embedded
right into the Client.

The second scenario is when UT2004 + GameBots2004 is running on a different machine (machine A)
then the Client (machine B). In this case the Client needs to connect to a different machine using network
protocols. If the Client will use Local Parser it will waste the network bandwidth as GameBots2004 always
sends everything (doesn't do delta compression). Thus is advised to run RemoteParser process on machine
A, which the Client will connect to.

JFlex grammar, bot_msg.flex file
The file bot_msg.flex contains specification for the JFlex that tells how to parse the text messages from
GameBots. JFlex takes this file and transforms it into finite-state machine that parses incoming strings.
The file contains support functions, state definitions and respective actions (Java code) that should be done
when a part of the message is recognized.

The file was created according to the GameBots2004 API. It parses all messages that are specified there.
For every message type exists a special Java class that encapsulate it. If the message is not simple - that
means if it contains attributes - then a special state inside JFlex is created to handle it. For instance, the PLR
GameBots2004 message looks like this: PLR {UnrealID RemoteBot2.bot} {Position x,y,z} ... So inside the
flex file you will find the definition of the state STATE_PLR inside which the attributes are parsed.

For more information about the JFlex grammar please refer to the JFlex manual [http://jflex.de/
manual.html]

http://jflex.de/manual.html
http://jflex.de/manual.html
http://jflex.de/manual.html

Parser module

20

Adding new message type
Because the message is processed by few modules of the Pogamut, you have to alter several places to add
new message type.

First you have to add new message to GameBots2004 and push it into UT2004 server (for more information
about this topic refer to GameBots documentation).

Then you have to create a new class in package cz.cuni.pogamut.MessageObjects that is derived from
class MessageObject and implements interface Serializable. Define properties of class (in most cases are
just taken from GameBots message). The class has to implement few methods:

• Constructor without parameters has to call super() (constructor of MessageObject) with type of message,
every message has a type. Add new type of message to the enum MessageType. There are others
constructors of MessageObject accepting other parameters as well, but in most cases we don't know
the other parameters.

• toString() method should be overridden, since we print these messages for debugging.

• In case the message represents game entity (is synchronous message):

• Override method hasID() to return true and add it to the constructor of SynchronousMessages class

• Override methods update() and diff(), for details see JavaDoc of class MessageObject

• Class has to implement interface Clonable and override method clone to return deep copy

• bot_msg.flex has to implement support for new message from GB (for more details about bot_msg.flex
see JFlex documentation):

• to state list of states add another state (e.g. MSG_FLOWER)

• add to state YYINITIAL pattern for the name of message and to the code for the pattern put
initialization of message handling. In most cases it means

actObj = new FlowerMessage(); state_go(MSG_FLOWER);

• in state MSG_FLOWER parse rest of message

• use JFlex to create new yylex.java file from bot_msg.flex, replace current one and run parser

• in new yylex.java find the row 'return YYEOF;' and change it to 'return null;', otherwise you will
get compilation error

The last point will be handling of messages in the Client module, but that depends on a kind of message
you're adding.

21

Chapter 5. Client
Architecture

Client is composed of Body, Memory, Inventory and Game Map modules. Each module is responsible for
a part of services which are provided by Client. Those services are:

• memory – storage of sensory data

• inventory – item related issues

• notion of map – navigation

• commands – for the control of agent body in the environment

Figure 5.1. Client architecture

Now there will be a brief resume of functions of the modules.

Body (AgentBody) is a bridge between Client itself and Unreal Tournament 2004 (UT) (ergo Parser).
It processes messages (Java objects) from Parser and fire events to notify listeners (at least Memory,
Inventory). It implements interface Commands and therefore enables user to call predefined methods for
agent control.

Memory (AgentMemory) contains History, which is the storage of all sensory data coming from Body.
Memory implements interfaces WorldView, RecentMemory, Knowledge and Inventory, hence it includes
all predefined methods for decision making system (DMS) to obtain sensory information (e. g. visible
navigation points, players, weapons, etc.) and for work with inventory.

Inventory (AgentInventory) is basically an array of weapons. Agent in UT does not have any inventory
and thus does not know about other weapons he picked up. Inventory gives the agent information about
weapons he possesses, about available ammunition etc.

Game map (GameMap) is a module for navigation. It operates over a map representation and built-in
A* algorithm. Map representation is initialized at the beginning of the simulation. Game map provides

Client

22

methods for obtaining path to desired location, for run along specified objects in the map (e. g. navigation
points, weapons), etc.

Description of the communication with Parser
Communication is handled by the Body. It starts with the handshake with the Gamebots server. After that
the Gamebots start sending messages – strings according to Gamebots API. Parser parses those messages
to message objects – MessageObject descendants. Those messages are delta compressed and sent to Client.
Client (Body) receives them, complete the compressed ones and fire event. Registered listeners are notified
about the message and perform designated actions.

More detailed descriptions of the communication follows.

Handshake with Gamebots
When the Agent requests connection to parser, parser creates new copy of itself and this parser is assigned
to the Agent. Then it tries to establish connection with Gamebots. When ready, Gamebots send HELLO
to Client. It responds READY. After that the Gamebots sends all navigation points and inventory items
located in the location which is on the Unreal server. Those information are used for initialization of
module Map (necessary for proper function of built-in A*) and Knowledge in Memory (known items,
navigation points).

After that Gamebots sends the message which concludes game information (like name of the map, limit of
points to win the match, type of the game etc.). After this message user can initialize agent’s logic and after
that Agent sends INIT which indicates to Gamebots that they can spawn the avatar to the environment
and start sending messages about agent’s surroundings.

Messages from Gamebots
All information about the information carried by messages from Gamebots can be found in Gamebots
documentation. There are two main categories: synchronous and asynchronous messages. Synchronous
messages are sent approximately every 100 ms and cover environment information (navigation points,
players, etc.). Asynchronous messages are expressing events (damage, noises, pickup of an item, kill, etc.).
Each message type sent from Parser to Client has its object type (subclass of MessageObject).

Optimization of network communication
Synchronous messages are delta compressed. They include information that client can remember and
therefore Parser doesn't have to send. Those information are omitted when the message is send again.

But that is not the only optimization of the network communication. The other is again focused on
synchronous messages. Synchronous messages create batches. They are bordered by BEGIN, END
messages. Information in neighboring batches are quite similar and therefore it is not necessary to send
all messages in them over again. Parser keeps its own copy of actual batch and than sends only updated
messages (properties changed or are new). At the end of each batch Parser checks whether some of the
messages disappeared and send message to notify Client about it.

And the last optimization is that every object (message) with unique UT identifier got assigned unique
integer identifier and therefore the delta compression can save some network capacity using couple Bytes
for integer instead of tens of Bytes for long string which is used as identifier in UT.

Example of optimization: navigation point is originally in GB a string with about 90 characters. In our
version of communication Parser sends object with 3 doubles (for location of the navigation point), String

Client

23

with identifier – about 20 characters, some Boolean values and the integer identifier. The next time the
same navigation point is sent, Parser sends only the integer identifier and Boolean values (those stands for
visibility and reach ability of the navigation point).

Commands
Commands are messages sent by Client to Gamebots, which specify what the agent will do. They are
represented by simple strings wrapped by an object and are composed in Body according to specified
parameters. As there are not many commands sent per second, they are not optimized at all.

When a command is sent an event is fired, so anyone can observe the flow of commands (used in IDE).

Detailed communication description
Parser – Client communication:

• Parser creates full MessageObject from GB string message and takes old MessageObject of the
same UnrealID from its database of known objects (KnownObjects: HashMap – UnrealID =>
MessageObject). Then it uses method Diff, which makes delta object from full one (set all unchanged
properties to null). If there is anything different from old object, it sends it to the Client.

• Client receives a message, which is usually not completely initialized. There are three possibilities:

• Message doesn't have ID (messages which are not compressed, mostly asynchronous messages) –
pass it along without any processing

• Message has ID, but it is new (not in KnownObjects) – add it to the them and pass it along as well

• Message has ID and it has got old one in KnownObjects – use Update method of MessageObject
(called on old one, accepts new as parameter), this will update old object. Than send the updated
object to further processing (like processing items). Than pass it along – fire event.

Sending commands to Parser:

• Methods for creation of all commands specified in Gamebots API are parametrized only by objects
which are easily accessible using methods of AgentMemory, AgentInventory, etc.

• Those methods compose proper string, which is then send to Parser which propagate it to Gamebots
and to the server of the game.

Figure 5.2. Command example

Void runToLocation(Triple location){
 sendCommand(“RunTo {Location ” + location.toString() + “}”;
}

Communication states
During the handshake with GameBots2004 the agent goes through a different communication states that
reflects the flow of the communication (namely handshake) with GameBots2004.

There are three types of states: Handshaking, Running, Final

Handshaking communication states:

Client

24

• START - the Agent object has been just created and connected to GameBots2004

• MAP_RECEVIVE_NFO - the Agent recognize the remote side as GameBots2004 and expecting NFO
message with basic informations about the current map (name, gametype, time limit, etc.)

• MAP_RECEIVE_NAVPOINTS_EXPECTED - NFO message has been received and now the Agent is
expecting the beginning of the NavPoints list that are placed in current map as well as their connection
informations (edges between them)

• MAP_RECEIVING_NAVPOINTS - GameBots2004 are sending informations about the NavPoints in
the map, the Agent is storing them into the AgentMemory

• MAP_RECEIVE_ITEMS_EXPECTED - NavPoints were received, now the Agent expects the list of
items that are available in the map and their respective locations

• MAP_RECEIVING_ITEMS - GameBots2004 are sending informations about the items in the map, the
Agent is storing them into the AgentMemory

• AWAITING_LOGIC - handshake with GameBots2004 is complete, now we're waiting for logic to
initialize, namely the postPrepareAgent() method is called, that can be altered by the user of the bot
(hook for initialization of planners, engines, etc.

Running communication states:

• BOT_RUNNING - server is running and the bot in the UT2004 as well

• PAUSED - the bot is paused - either because the server is paused or the user has paused the bot using
RemoteControl panel inside IDE

Final communication states:

• TERMINATED - the Agent was terminated using IDE

• FAIL - error during the handshaking phase occurred, probably due to the wrong GameBots2004 protocol
or the exception

• EXCEPTION - an exception occurred during the execution of the Agent's logic

• MAP_FINISHED - the map on the server has finished and the connection has been lost

The first communication state is START - after that it will switch to the other ones in the order as described
in the list above. Those states closely reflects the handshaking phase with GameBots2004 therefore they
are called handshaking types. When the state is switched to AWAITING_LOGIC, the method from
Agent object postPrepareAgent() is called and the Agent waits for it's end. The state is then switched to
BOT_RUNNING or PAUSED depending on the state of the server.

The problems may happen anywhere during the communication. When the problem is encountered the
communication switches to one of the final state. When the state is switched to any of the final state, the
agent is terminated. Reasons are:

• agent is terminated from the IDE

• GameBots2004 is of older or newer version and communication with different protocol

• exception occurred

Client

25

• map on the server

Figure 5.3. Communication states and it's order during handshaking with
GameBots2004

Map representation, navigation
Map representation and corresponding methods are covered in the class GameMap. GameMap has access
to navigation points sent at the beginning of the communication from Gamebots. Those points include their
neighbors and therefore there is a full representation of graph which represents the map agent is playing in.

The built-in A* algorithm can be used by agent’s logic for reasoning about static objects on the map (it is
not working with dynamic game entities – e. g. Players and dropped items).

Client

26

There are couple frequently used methods. First is nearestItem. It uses A* to find out the distance from
current agent location to all items of specified type and returns the closest one. Its extension nearestHealths
returns specified number of health items of at least specified strength.

Another very useful method is runAlongPath. This method covers running along a list of navigation
points. It is capable to handle lifts which are almost in every map. It simply navigates agent from one
node to another using MOVE command. Anytime it come across navigation point with “Lift” in the unreal
identifier it starts sequence for lift. First wait for lift to come down if necessary (message MOV), then enters
the lift and waits till the top and then resumes normal running along.

RunAroundItemsInTheMap takes care about a continuous move of agent along specified items in the
map. It uses previous method for running between them. Moving along some points is frequently used in
behaviors like patrolling behavior or just movement along weapons in DeathMatch mode. It is responsible
for all necessary steps for run along items – pick a path to item, run along it, when close to the item, switch
to the next item in the list.

SafeRunToLocation can lead an agent along path to the provided location. It cares about all related
background work – obtaining path to the location and running along it.

As an agent can be disturbed during running along by some higher level task it is necessary to keep variables
used by runAlongPath up-to-date. As it could become a complicated task as agent has many paths to
run along (one to a player, another to weapon and yet another one to health item), there is an auxiliary
class PathManager which helps GameMap with path management. It ensures that current path is properly
initialized. There are two vital methods – checkPath and preparePath. Recommended policy is to call
preparePath until checkPath succeed and after that it is safe to call runAlongPath.

As someone may not intend to use those all-in-one methods, GameMap contains methods for obtaining
path to a location using built-in A* or Gamebots.

Items and Inventory

Items

Items in original Gamebots and Unreal were only of one category – inventory. This was a bit inconvenient
as any developer needs common categories like weapons, armors, ammos (classes Item, Weapon, Health,
Ammo, Armor). Another natural thing to know is which ammo is suitable for which weapon.

When Body receives an inventory message, it processes it and according to information stored in the
database of item categories and properties, it creates an object of proper type and with appropriate values
of relevant variables.

Client

27

Figure 5.4. Scheme of the flow of the messages in the Body.

Example: Body received inventory with the Unreal Class which includes a string „ShockRifle“. It finds
the record in the database and creates Weapon, which includes information about current weapon ammo,
maximum capacity of ammunition, maximum effective distance for shooting and whether the weapon is
suitable for ranged or melee combat.

All processing of items rely on properly filled database of items (class ItemCathegories). This is a bit
tricky, because this database is partly filled according to personal experience from the game and effective
distances of weapons could be inaccurate. Unfortunately there is no way how to find out exact values.
Uncertain information are effective and maximum distances for weapons and whether weapons are better
for ranged or melee combat.

Note that every incoming inventory/picked-up inventory fires two events – one for general item/pick-up,
one for particular item/pick-up (e.g. Weapon).

User-defined items
Every item category has its own class, which is a descendant of Item. Problem could be with user-
defined items (Unreal Tournament allows new objects in the environment). Those new inventory items
are classified as Extra items and stored in this class. Extra has the same properties as Item. User has to
handle specific attributes of his new objects by himself.

Inventory
There is no accessible inventory for agents in UT, so it is handled by Inventory module (class
AgentInventory). This module contains a list of weapons. It registers couple listeners for inventory related
events (agent picked up weapon, ammo, agent's internal status). There is one important thing to remember.
Picked-up items have separate class hierarchy which is similar to the hierarchy of pick-ups (items which
lay on the ground). Following classes are: AddItem, AddWeapon, AddAmmo, AddHealth, AddArmor,
AddExtra, AddSpecial).

Inventory processes every pick-up message. If it is a new weapon, it adds it to the list of weapons. If it is
an ammo, it adds appropriate amount to the ammo of proper weapon in the list. If there is not a suitable
weapon, it adds the ammunition to the ammo list and every time new weapon comes, search this list
for suitable ammo. It also updates current weapon ammo according to agent status information (message
SELF).

Client

28

Inventory provides information like suitability of provided ammo (when agent sees an ammo pack, he
can determined, whether it is useful to pick it up) - suitableAmmo, whether agent has loaded weapons
(ranged or melee) – anyLoaded. Very useful method for beginners is getBetterWeapon. This method
do simple reasoning about weapons. It returns the most suitable weapon for the supplied positions of
agent and his target. The picked up weapon is the loaded one, which effective distance is the lowest from
distances greater than the distance between the agent and the target – that gives good chance of getting
most devastating weapon for the situation.

Memory
Memory (class AgentMemory) implements four interfaces:

1. WorldView – information about what agent currently sees and about his internal status, e. g. agent's
current health, weapon, ammo; visible navigation points, enemies etc. All information comes from the
first batch stored in the history.

2. RecentMemory – a bit older information. Batches of messages (class HistoryBatch) are stored in the
class History. Recent memory provides access to those batches and can return information like recently
seen navigation points, players, ammo, etc.

3. Knowledge – knowledge is for persistent knowledge about the map. There are two auxiliary structures
in AgentMemory to fulfill this task – KnownItems, KnownPlayers. KnownItems are initialized at the
beginning of the game by the batch of IINV messages sent by Gamebots. KnownPlayers are updated
continuously.

4. Inventory – an access to methods supplied by Inventory.

Figure 5.5. History is a list of HistoryBatches. Each batch contains a hash map in
which are stored lists of messages of each type (key is a type of message, value is a
hash map of messages (indexed by unique ID)).

Memory is composed of History, Inventory and structures for known items, players and navigation points.
The most important component is History. This class is behind everything concerning actual and recent
perception. History is an array of HistoryBatches. There are only a limited number of them stored and
they are connected as linked list.

Client

29

History has listeners registered for all types of messages and adds incoming messages to the first batch.
When the batch ends, new is created as a shallow copy (saves a lot of space) of the previous one, so
there is a continuous notion of agent surroundings. As it is only a shallow copy, when the message is
different from the stored one it replaces it. This is caused by the fashion of the network communication
optimization, messages are sent only when their properties changed (e. g. player's position) and hence
those new messages override the old ones in the first batch. Thus batches are keeping authentic image of
past seconds (it is possible to track the progress of enemy position to guess his tactics for instance).

Figure 5.6. : Example of iteration through Player messages up to 3 batches to past.

There is a HistoryIterator defined for iteration through messages of the same type up to the specified time.

Action selection mechanism and Client
The architecture of Client is robust. System of listeners allows for event driven action selection mechanism.
Memory, inventory and knowledge allows for long-period planning and reasoning. Example of such a
system is POSH which is integrated to the IDE and therefore available at once for use.

Frequency. As the action selection mechanism works in iterations, there is a property of agent called
logicFrequency. It should be set between 5 – 20 Hz. Nevertheless it could be useful to set it to lower values
– for example during debugging agent can make decisions every 1s. Higher values are not recommended
as the frequency of incoming environmental information is only about 10 Hz. Then why is the top
recommended value 20 Hz? There are asynchronous events and higher frequency gives agent possibility
to react on them almost instantly.

Client

30

Typical use of the Client
Typical user can use IDE to create a project. All projects are based on class Agent. If user don't want to
use IDE inheriting class Agent would suffice to use all presented functionality.

Implementation of the agent should include overriding following methods:

• doLogic() - definition of logic.

• prePrepareAgent() - place to run all necessary initializations prior agent's connection to the simulation

• postPrepareAgent() - place to run initializations before agent is spawned to the connection. It is already
connected and has all information about the map – list of all navigation points, items etc. It is a place
for some map preprocessing etc.

There are several issues related with running agent that programmer should be aware of.

Restart of the agent. When agent dies it is necessary to restart History and AgentInventory. Agent
therefore registers listener for BotKilled message and when it comes it calls restartAgent(). There comes
a tricky part. Due synchronization issues it is necessary to reinitialize History and AgentInventory when
logic is not running. Therefore it creates new instances of history and inventory in restartAgent() and when
the logic is ready it calls switchMemories(). This method replaces old instances by new one and logic can
keep on running. The test whether logic is ready is performed in the run() of Agent.

PostPrepareAgent. It is not allowed to call any Commands in this method. All commands are working
after the INIT message is sent to GB. This message is sent right after PostPrepareAgent().

Known Issues
There are several known issues.

HealthVial. This problem usually occurs when agent is trying to pick up HealthVial (item, which increases
agent's life by 5 points). It happens only if agent is going over the spawning point of the item just in the time
it is being spawned. Hence agent would like to go to the spawning point and thinks that there is a health
vial which he had already picked it up. This situation ends with a stuck if there is no timeout for run to item.

Built-in A*. It is recommended to use built-in A* only for estimation of distance to items, enemies etc.
but not for navigation itself. Built-in A* sometimes uses transitive edges in the graph and as the two points
are sometimes not reachable from each other it causes agent hit the wall.

JavaDoc
More information about any issue presented here can be found in designated JavaDoc.

31

Chapter 6. IDE module

Overview
Pogamut IDE is implemented as a plugin for NetbeansTM development environment. Main function of
Pogamut plugin is to support implementation of bots, their debugging and validation of implemented
model. These stages are supported by:

• Implementation – Pogamut supports three types of bots: Java bot, Scripted bot (implemented mainly
with Python in mind) and POSH bot. Each of these bot types has its own Project type implementation
conforming to NetBeans platform.

• Debugging – is supported by:

• List of registered servers

• List of running bot instances

• Introspection of running bots

• Log viewers

• Bot remote control panel

• Server control panel

• Validation – bot's behaviour can be validated by declarative experiments. Experiments are supported
by Experiment project type.

Pogamut Plugin is build on top of the Pogamut Core module and provides GUI to it's functionality.

Class overview
Root package of NetBeans plugin is cz.cuni.pogamut.netbeansplugin. Most of the important classes that
„do the job“ in this package and it's subpackages are implementations of some classes from NetBeans
Platform API. You have to be familiar with NetBeans Platform API in order to understand the big picture.
Only the important classes will be highlighted in this overview, the exhaustive list of all classes is in
enclosed JavaDoc.

Package cz.cuni.pogamut.netbeansplugin
class BotNode – node representing a running bot, it is displayed under UT server node in „Runtime“ panel.
class BotNodeChildren - list of nodes under BotNode (Logs, Introspection etc.).
class NbUTServer - UTServer implementation with some features specific to NetBeans platform, it raises
events in case of connecting new bots and registering experiments etc.
class UTServerNode - node representing Unreal Server (NbUTServer object) in NetBeans and providing
all the associated actions.

Package cz.cuni.pogamut.netbeansplugin.exceptions
Package containing exceptions specific to the Pogamut plugin.

IDE module

32

Package cz.cuni.pogamut.netbeansplugin.experiments
Runtime support for experiment project type.

class ExperimentNode - represents experiment at runtime. It provides common actions, shows log etc.

Package cz.cuni.pogamut.netbeansplugin.introspection
Nodes for introspection of bots properties and their periodical updating. Introspection isn't even driven,
IDE has to update properties by itself.

class IntrospectableNode – node representing some introspectable object (e.g. Agent), it is wrapper of
IntrospectableProxy object (found in PogamutCore). It contains nested class Root, which acts as root node
of introspection and is responsible for periodical updating of all properties.

Package cz.cuni.pogamut.netbeansplugin.logging
Logging package is being used for viewing Bot logs (Platform log, User log, In log, Out log)
and for Experiment log. This package contains both presentation classes (LogNode, LogViewerPanel,
LogViewerTopComponent) and business classes (LogRecordsSource, LogTableModel, OutProxy,
InProxy, …).

Standard Java logging isn't sufficient for purposes of interactive IDE. Therefore Pogamut has it's own
logging API. Main class of this API is LogRecordsSource, it enhances functionality of standard Logger.
Logger simply sends incoming messages to all Handlers and they filter the messages on the fly.
LogRecordsSource works similarly but it caches some amount of last LogRecords so when the associated
filter (LogRecordsSource.Filter) changes it can provide new filtered sequence of LogRecords received in
the past to all LogRecordSourceListeners.

Business classes:

class LogRecordsSource – main class of whole package, it enhances standard Java Logger.

• When it receives new log record it filters it and send that record to all listeners
(LogRecordListener.notifyNewLogRecord(LogRecord r)).

• When the filter changes it computes new filtered sequence and sends it to all listeners
(LogRecordListener.setNewData(Collection<LogRecord> r)), they are supposed to discard previously
received records and use this new sequence.

interface LogRecordListener - Listener for changes in LogRecordSource object. There are two types of
change:

• New record arrives

• Filter of records source has changed

class LogTableModel - Table model designed to cooperate with LogRecordsSource object through
LogRecordListener interface. When the user changes Filter for actually viewed log, the LogRecordSource
fires notifySetNewData() event which causes update of all listeners, including this table model.

class InProxy (OutProxy) – these classes are listeners on all incoming (outgoing) GB messages and
translate them to LogRecords. They both extend LogRecordsSource class.

class LogProxy – adapts standard Java Logger to LogRecordsSource.

IDE module

33

Presentation classes:

class LogNode – represents LogRecordsSource. It provides filter through “Properties” window and opens
log viewer window when user double clicks it.

class LogViewerPane – GUI component showing log records in table. The table shown in this panel uses
LogTableModel mentioned above.

Package cz.cuni.pogamut.netbeansplugin.options
Classes for Options panel „Pogamut“ shown under Tools->Options. These classes were generated by
NetBeans „Option Panel“ wizard and then manually edited. Options are stored using Java Preferences
API, for details see load() and store() methods in class NetbeanspluginPanel.

Package cz.cuni.pogamut.netbeansplugin.project
Implements all necessary classes from NetBeans Platform's Project API needed to set up these types of
Pogamut projects: Java bot, Posh bot, Scripted bot and Experiment.

All bots are being run inside the same JVM as IDE. This greatly simplifies communication between IDE
and running bot. If the were to running in different JVMs then RMI or Corba had to be used.

Java bot project

Java bot project uses standard NetBeans infrastructure for Java SE projects. The only difference
is in build script (build.xml). Java SE projects are being run in standalone JVM. Java bot project
type has modified „run“ task. This task launches BotLauncher program (BotLauncher class resides in
cz.cuni.pogamut.netbeansplugin.project package, in project BotLauncher, not in NetBeans plugin) which
connects to LauncherServer running inside IDE. This way Java bots can be run inside IDE.

Posh bot, Scrip bot and Experiment projects

These are completely new project types implementing all classes required by NetBeans Platform. Tutorial
on writing new project types can be found at http://platform.netbeans.org/tutorials/nbm-povray-1.htm. Our
implementation is inspired by this tutorial.

class PogamutProjectFactory – ancestor of classes responsible for identifying project directory on disc
(in open dialog).
class PogamutProject - ancestor of all Pogamut projects. Provides common functionality required by
NetBeans.

Method run(File file) is the place where bots are loaded from source file, instantiated and connected to
the server selected in the IDE.

class PogamutProjectLogicalView – tree structure showing source files and associated user actions (“run”,
“delete”, etc)
class LauncherServer – server waiting for requests on launching Java bots inside the IDE.

Package
cz.cuni.pogamut.netbeansplugin.project.templates

Each project type has its project template. Project templates are shown in “New project wizard” and unpack
empty projects parametrised by user input (project name) to specified location.

http://platform.netbeans.org/tutorials/nbm-povray-1.htm

IDE module

34

Project templates were generated by “New Project Template” wizard and then manually edited.
Customization of unpacked templates is performed in *WizardIterator.instantiate() method.

35

Chapter 7. Mediator

Overview
Mediator can be viewed glue between parser and client or as a messenger delivering messages from parser
to client and vice versa. It wraps threads that are waiting for the message from one side to be delivered to
the other side. It is used by the Client either for the Local Parser or Remote Parser (see chapter Parser).
The Mediator has also some knowledge about the GameBots2004 protocol. It recognizes the end of the
communication (when MapFinished or Disconnected message arrives) and correctly terminates itself at
the end.

Class Overview
All classes and interfaces of the mediator can be found in package cz.cuni.pogamut.communication.

class Mediator - implementation of the Mediator, messenger between Parser and the Client
interface MediatorClientInterface - interface that every Client has to implement, it allows the Mediator
to receive messages from the Client for the delivery to the Parser and sending messages to the Clint that
were received from the Parser
class MediatorForClient - class which implements MediatorClientInterface and is used to by
RemoteParser for creating new Mediator
interface MediatorGBInterface - interface for sending messages to the GameBots2004
interface MediatorParserInterface - interface for receiving parsed messages (derived from
MessageObject)

Class Mediator
The Mediator is like messenger between two sides. On the right side is Parser, who is producing parsed
messages from GameBots2004 for the Client. On the left is the Client or somebody who accepts parsed
messages from GameBots2004 and produce String commands. The Mediator implements the delivery of
those messages.

It is configured by three objects. They sequentially implements MediatorParserInterface,
MediatorClientInterface, MediatorGBInterface. Through those interfaces the Mediator is receiving and
sending messages. It creates two threads to achieve this. One thread for one way of the communication.
Each thread is transporting the messages from one side to another.

The Mediator is aware of the protocol of GameBots2004. When the message MapFinished or Disconnected
is received, it shut downs itself – terminating the delivery of messages and stopping threads.

Whenever any exception is raised, the Mediator catches it and shut downs both threads.

Mediator

36

Figure 7.1. Typical usage of the Mediator, one thread is transporting messages from
the Parser to the Client, another one from the Client to the Parser

Usage
The Mediator is used at two places.

First it is used to link the Parser class instance with AgentBody (LocalParser) class that is processing
parsed messages from GameBots2004.

Second it is used by RemoteParser server to connect new client with the Parser class.

37

Chapter 8. Experiment
Idea

Experiments should allow user to write script that would set up the server – change map, create and spawn
bots and then run the desired scenario up to a certain point defined by user where it should terminates.
Experiment definition also contains a list of events and actions (e.g. triggers).

Events definition can express any first order logic sentence. Implementing this is not a trivial task therefore
we are using already existing engine, namely JBoss Rules 4 (formerly known as Drools).

JBoss Rules (Drools)
Drools is an open-source rule based engine that may be distributed and used for free. It defines it's own
language for writing the rules and allows user to call Java from the rules. Basically the rules are if-then
rules. They have precondition and effect. Any sentence from first order logic may be written into the
precondition thus it is giving the user to express a lot.

Drools are using Java Beans specification to access the properties of the inserted facts. Therefore it is quite
easy to write the preconditions for the events as you are using the same names for object properties as in
the code of it's class itself.

You may find more information and the documentation of Drools at web page http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossRules.

Package cz.cuni.pogamut.experiments
class Experiment- main class wrapping whole experiment

class ExperimentConfiguration - class that contains configuration variables for the Experiment object

class ExperimentGlobals - extends HashMap and serves for storing global variables created during the
experiment, it is used by the user (programmer) of experiment

class ExperimentRules - wraps a few Drools classes that are needed by the Drools engine to startup such
as configuration object, compiled rules and custom class loader

class ExperimentStartup - class that serves as the mark up of the beginning of the experiment inside Drools
engine, it is added as the first fact to the session so it let the user to declare startup rule that should initialize
experiment

class Message - simple class containing string and integer property that can be used by user to assert facts
into the Drools engine

class Parameter - parameter of the experiment that can be specified via IDE (important files)

Class Experiment

Initialization of the object
For creating an Experiment object we need three things:

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRules
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRules

Experiment

38

• Drools rules – text definition of the experiment in Drools language provided by the user, internally it's
passed as an InputStream

• object implementing UTWorld interface – environment where the experiment will be run, internally it
is always UTServer or it's descendant NbUTServer

• output directory where we should save results (e.g. logs), the class requires the directory to be empty

Those variables are part of ExperimentConfiguration. Experiment class contains only one constructor with
parameter ExperimentConfiguration.

Drools rules are then passed to the ExperimentRules that is calling Drools engine and compiling them.
During the compilation (and the whole process of Experiment instantiation) it may raise Exception (e.g.
because of compilation error, file is missing, etc.)

Problems with class loader during evaluation of the
rules

Drools version we're using (version 4 RC2) strangely handles the class loaders. The custom class loader
may be specified during the compilation of the rules allowing the user to use other Java libraries for
instance, but the same class loader is not used during the execution. That leads to the exception during the
evaluation of the rules when the user is trying to instantiate an object form his or her library. We need this
custom class loader for accessing the agents the user is created through our IDE.

We have been reading the source code and has found out that thread's context class loader is used as the
helper when the class is not found during the evaluation. So we are setting the thread's context class loaded
to our BotProjectsClassLoader instance that is loading the jars from projects directory of the Pogamut
platform directory.

We feel that this is rather ugly solution but as the Drools doesn't (at present time) contain any mechanism
that will allow us to specify the custom classloader that should be used during the evaluation the rules
then we had no other chance.

runExperiment()
After the Experiment object is successfully instantiated (no exceptions occurred) it can be started with
method runThread().

The method runThread() will start the experiment in separate thread. The thread will first call the method
init() that initialize the Drools stateful sessions (see Drools documentation for more) and inserts first facts
and sets up the global variables.

Global variables:

• utWorld – interface to the server that allows the user to control the environment

• experiment – actual instance of the experiment that should be used only for stopping the experiment
via experimentEnd() method

• log – Logger instance for the whole experiment

• globals – instance of ExperimentGlobals class that serves for storing objects that may be created during
the course of experiment (we have found that Drools doesn't preserve changes to global variables
throughout different rules execution

Experiment

39

• parameters - map of parameters of the experiment

Facts:

• instance of ExperimentStartup with property startup set to true – this allows the user to write the rule
that can fire at the beginning of the experiment

• each parameter is also asserted as a fact

Handling of the agents
New facts are added to the Drools session every time the new agent is launched by some of the experiment's
rule into the UTWorld. Experiment is implementing BotEnteredWorldListener, BotLeftWorldListener and
register itself as the listener into the UTWorld, therefore it always knows when new agent is started. Two
facts are added or removed when new agent enters resp. leaves the environment:

• instance of Agent – the whole agent that was created and entered the environment

• instance of AgentMemory – the Memory instance of the agent that has entered the environment

We need two facts because the Drools doesn't support nested identifications of the variables. You can't
write a rule that depends on the state of inner property of the property of some object (e.g. on the name of
the agent that is stored in the property memory inside the agent instance).

Evaluating the rules
The rules are evaluated every time a fact is inserted to the session or it has changed inside the session.
That is including:

• adding new agent facts – every time new facts about some agent are added or removed from the session,
the rules are evaluated

• agent's logic thread iteration end event – the Experiment is registering itself as an listener for agent's logic
thread iteration end event, every time the agent finishes it's doLogic() iteration, the facts are updated
and rules are evaluated

Saving logs to hard drive
Experiment log and all logs from every agent that has ever entered the environment during the run of the
experiment is saved to the hard drive to the directory specified during the instantiation of the object.

Termination of the experiment
Experiment may terminate due to an exception or by calling experimentEnd() method on Experiment
instance. After the end of experiment, all logs are closed and the Drools session is destroyed.

Running Experiment from command line
The class Experiment contains also a static void main(String args) method that allows the user to run the
experiment from the command line. If it is started without parameters, it will give this help:

==================
Pogamut Experiment

Experiment

40

==================

This class is meant for running experiment without gui in batch mode.
After you debug your experiment using Pogamut GUI (NetBeans) you may
create a batch file that will run the experiments using this class
main method. Using batch file you may run several experiments over night.

Usage:

 java -cp ./src;./lib cz.cuni.pogamut.experiments.Experiment
 -f file.drl -h server:port [ADDITIONAL OPTIONS]

 Note that you have to specify java '-cp' flag, where you have to
 specify classpath for sources and libraries.

Required options:

 -f experiment_rules.drl ... rules file of the experiment
 --file experiment_rules.drl

 -h host[:port] ... host where UT2004 with GameBots2004
 is running, where to run the experiment
 --host host[:port]

Additional options:

 -n number_of_repeats ... how many times to run the experiment
 --number_of_repeats (default 1)

 -o output_directory ... directory where to save results (default '.'),
 --output output_directory if doesn't exist, will be created

Example:

 java cz.cuni.pogamut.experiments.Experiment -f myExperiment.drl
 -h artemis.ms.mff.cuni.cz:3001 -o /tmp -n 5

 This will run experiment defined in myExperiment.drl (Drools
 rule file) on host artemis.ms.mff.cuni.cz (where UT2004 GameBots
 server is running). The experiment will be repeated 5 times and
 results will be saved to the /tmp directory. This example assumes
 you have your PATH set to java.

41

Chapter 9. Introspection
Classes under Introspection package provide infrastructure for introspecting arbitrary object implementing
Introspectable interface. Introspectable interface has only one method returning an IntrospectableProxy
object. IntrospectableProxy is main object for introspection, it should reflect properties of object being
introspected (the one that returned this proxy). It is “logical view” of the introspected object.

IntrospectableProxy interface has two methods getChildren() and getProperties(). Method getChildren()
returns array of IntrospectableProxy objects that should be presented in tree views as children of this proxy.
Method getProperties() returns array of Property objects, these are for example shown in “Properties”
panel in the IDE.

There are two approaches for creating list of properties and children for introspection:

• automated introspection - based on Java Reflection API in the case of Java bots or on traversing script
context in the case of Posh bot.

• user defined introspection – programmer overrides getIntrospectableProxy() method in Introspectable
interface and returns his own implementation of IntrospectableProxy that will provide different logical
view (with properties that cannot be directly obtained by introspection or some simplified view).

There is default implementation of IntrospectableProxy – DefaultIntrospectableProxy. Its facilitates lazy
initialization of properties and introspectable proxies, it is used by automated introspection.

Pogamut implements two types of automated introspection – Java introspection and Python introspection.
But it is easy to provide introspection support for other types of scripting languages. You have to:

• implement ScriptProxy that will be aware of scripting language, it will probably work with internals of
ScriptEngine for that language (e.g. Contexts, globals)

• implement ScriptProxyFactory that will create Script proxy object if it will recognize given
ScriptEngine.

• register that ScriptProxyFactory through SPI

Class ScriptProxyManager is then responsible for getting the right ScriptProxy for your ScriptEngine. It
will ask all registered ScriptProxyFactories and stop when first of them returns ScriptProxy object.

Python introspection is a good example of this mechanism.

Package cz.cuni.pogamut.netbeansplugin.
project.introspection.java

Introspection of Java objects is provided by class JavaReflectionProxy. It uses Java Reflection
API to get list of all children and properties. Children are all fields implementing Introspectable
interface. Properties are all fields marked by @PogProp annotation that has registered property editor
(PropertyEditorManager.findEditor(field) returns non null value).

42

Chapter 10. Bot samples
Simple bot

Simple bot is like a slight introduction to the platform. Its logic is quite primitive and it just demonstrates
basic use of client's libraries.

protected void doLogic() {
 // IF-THEN RULES:
 // 1) are you walking? -> (check WAL)
 if (this.memory.isColliding()){ this.stateWalking(); return; }
 // 2) do you see item? -> (pick the most suitable item and run for)
 if (choosenItem != null || this.seeAnyReachableItemAndWantIt())
 { this.stateSeeItem(); return;
 // 3) do you see navpoint? -> (pick navpoint randomly and walk towards)
 if (this.memory.getSeeAnyReachableNavPoint())
 { this.stateSeeNavpoint(); return; }
 // 4) true -> (not seeing any navpoint, turn a bit)
 this.stateTurnAround();
}

Simple bot's doLogic procedure shows main outline of the simple bot's intentions. Its logic is based on
if-then rules. There are only four of them.

1. Collision - fires if bot collides with something - this method checks for wall and player collisions. If
some of that is true, bot tries to jump. It usually helps as collisions are frequently caused by small
obstacles in the way.

2. See item - fires if bot spots an item, it tries to pick it up. And now something a bit interesting, how bot
runs to the item? The simplest way would be to run directly to the item. But such approach would not
work every time. Why? Imagine, that bot spots an item lying somewhere on raised platform. He attempts
to run to it and hit the wall. So the better way is to use GameMap method safeRunToLocation().
Which will guide bot safely to the chosen location along the path obtained from UT server. This path
is computed using server's A* algorithm.

3. See navigation point - as we said in the introduction to the Simple bot, it is a simple bot. Therefore
it aimlessly wander around the location. For such a purpose serve last two if-then rules. First is fired
when bot spots a navigation point and run to it.

4. Second rule is turn around. It fires only when bot is not colliding, is not seeing any item or navigation
point. Then it turns around in the hope of spotting something.

Prey
Prey is only a toy for the hunter and as a toy should at least move along and withstand some playing around.
So pray is simply running around the medical kits placed in the location.

protected void doLogic() {
 // 1) is colliding? -> go to WALKING (check WAL)
 if (this.memory.isColliding()){ this.stateWalking(); return; }
 // 2) go around health items
 this.stateGoAroundItems();
}

Bot samples

43

Prey's logic is even simpler than the Simple bots one. Though there is one thing worth describing.
It is the second rule named stateGoAroundItems(). This procedure is responsible for the
moving-around-medkits behavior. How can we get such a behavior easily? GameMap contains method
runAroundItemsInTheMap(). This method accepts a list of items as a parameter. So we need
to obtain those items. As they are all the time the same, it will not be effective to obtain them every
call of doLogic(). There is an easy solution to this little problem. As you may recall, there are
other methods of agent then doLogic() which could be overridden. In our case, we need to override
postPrepareAgent(). This method is called right after bot receives map and game information.
Therefore he knows, how the map looks like and knows where are all medkits. So we can easily obtain
this list once for all the live of the bot.

Next piece of code shows how to obtain all health objects and insert them to the list of Items which is
necessary for the runAroundItemsInTheMap() method (note that getKnownHealths() returns
Health objects, so it could not be simply put to the array of Item).

this.healths = new ArrayList<Item>();
for (Item item : this.memory.getKnownHealths())
 this.healths.add(item);
/** shuffle the items so no bot will go into the same river twice */
Collections.shuffle(healths);

As bot now possesses list of items, it can call runAroundItemsInTheMap() all the time he is not
colliding with something. That would be all about the Prey.

Hunter
Hunter is the most advanced example of bot. He is capable to choose the best weapon according to the
current combat situation. He engages enemy when he spots him. When hurt he searches for the closest
medkit and when he spots some item he makes some reasoning before he picks it up so he is not picking
up useless crap. For such a complex behavior we will first present his list of if-then rules and then will
explain one rule by another highlighting usage of some special methods of the platform.

Hunter is a good example of introspection as well. He allows user to disable some parts of his if-then
rules. As we can see bellow, some rules has as their first precondition this.shouldXXX. Those boolean
values are enabled via introspection in IDE and user can then for example disable bot from engaging
enemy by a simple click.

protected void doLogic() {
 // 1) see enemy and has better weapon? -> switch to better weapon
 if (this.shouldRearm && this.memory.getSeeAnyEnemy()
 && this.hasBetterWeapon())
 { this.stateChangeToBetterWeapon(); return; }

 // 2) do you see enemy? -> start shooting / hunt the enemy
 if (this.shouldEngage && this.memory.getSeeAnyEnemy()
 && this.memory.hasAnyLoadedWeapon()) {this.stateEngage();return;}
 this.enemy = null;

 // 3) are you shooting? -> stop shooting, you've lost your target
 if (this.memory.isShooting()) { this.stateStopShooting(); return;

 // 4) are you being shot? -> turn around, try to find your enemy
 if (this.memory.isBeingDamaged()) { this.stateHit(); return; }

Bot samples

44

 // 5) do you have enemy to pursue? -> go to the last enemy position
 if ((this.lastEnemy != null) && (this.shouldPursue)
 && (this.memory.hasAnyLoadedWeapon()))
 { this.stateGoAtLastEnemyPosition(); return; }

 // 6) are you walking? -> check WAL
 if (this.memory.isColliding()) { this.stateWalking(); return; }

 // 7) do you see item? -> pick the most suitable item and run for it
 if (this.shouldCollectItems && this.seeAnyReachableItemAndWantIt())
 { this.stateSeeItem(); return; }

 // 8) are you hurt? -> get yourself some medKit
 if (this.memory.getAgentHealth() < this.healthLevel
 && this.canRunAlongMedKit()) { this.stateMedKit(); return; }

 // 9) run around items
 this.stateRunAroundItems(); return;
}

Now we will describe all 9 rules.

Has better weapon
This rule is the first, because bot needs to have the best weapon before he starts engaging the enemy.
Hunter uses one of those magic methods of Inventory which can be found in memory. This method
evaluates all weapons which are currently available to the bot and returns the most proper one. It makes
the reasoning according to the distance between the bot and his opponent.

How is this reasoning performed? Every type of weapon has some additional, hard-wired properties. We
will need maximal and effective distance for this time. The values of those are just guessed, so they are not
exact. Nevertheless for such reasoning they suffice. The chosen weapon is then the one loaded, with the
lowest effective distance - lowest means that it is the most deadly ones (like the flak cannon for instance)
and with maximal distance greater than the distance between the player and his enemy. As we can see,
such reasoning is not always right, but in most cases it is sufficient as bot usually does not possess all
types of weapon.

Engage
Engage is fired when hunter possesses loaded weapon and spots an enemy. He starts to fight with him.
Procedure stateEngage first updates information in enemy and then starts hunter to shoot at enemy if
he is not shooting already. If he is far from enemy, he runs straight towards the enemy.

Stop shooting
Stop shooting is crucial rule even though it is quite simple one. It fires if bot is shooting. As it is after the
engage, bot no longer sees any enemy and therefore should stop shooting. The problem with shooting is
that UT does not control such things and therefore bot has to care about that.

Hit
Hit is fired when bot is being damaged. As it is after the engage rule it means that someone shoot at the
bot and he is not aware of his presence. So he turns around hoping that he will spot enemy in the time
and starts to engage him.

Bot samples

45

Pursue
This state serves for pursuing the enemy. This behavior uses variable enemy. If enemy is null, he does
not perform any pursuing. If there is some opponent stored, bot runs to its last position and if he does
not meets him, he set enemy to null and therefore ends the pursue. Running to enemy's last position is
performed using safeRunToLocation().

Walking
StateWalking is the same procedure responsible for collision with walls and players as in previously
described bots.

Grab item
This rule is fired when hunter spots some item and want it. Procedure
seeAnyReachableItemAndWantIt() contains a bit of reasoning about what is useful for bot at the
moment. The reasoning differs according to the category of the item. If it is weapon, bot want the item only
if it is for short distance fight and bot already has long distance fight weapon and vice versa. Medkits are
wanted only if bot has lower than maximal health (normally 100). Armor is chosen if bot has not reached
maximum possible armor and ammo is chosen if bot possesses weapon for it.

If, after all that reasoning, is the weapon worth for bot, it runs to it using safeRunToLocation().

Medkit
Medkit rule fires when bot has low health level. He runs around closest medkits to heal himself.
There hunter uses another useful method of GameMap - nearestHealth() which returns specified
number of Health objects of at least specified strength. Then he can run along those objects using
runAroundItemsInTheMap().

Run around weapons and armors
Last rule is fired every evaluation of logic, when bot has nothing better to do. Therefore it stands for default
behavior of bot when there is nothing more important. As the name could tell, it makes bot running around
spawning positions of weapons and armors in the location. List of those weapons and armors is obtained
in the postPrepareAgent(). For running along we use runAroundItemsInTheMap().

Conclusion
For the more detailed description of Hunter please see the Manual of Pogamut, where is complete
description of every single part of the hunter.

SPOSH bot
SPOSH bot is an example of bot whose logic is driven by SPOSH plan. POSH is a Parallel-rooted Ordered
Hierarchical Slip-stack planner whose description can be found on [WWW]. The design methodology
used when working with POSH is BOD - Behavior Oriented Design. This design paradigm states, that the
agent has acts and senses. Acts represent his actions in the environment. Senses are connected with his
perception of the environment and of his internal state. As the description of POSH and BOD is beyond
the scope of this documentation we will explain the functionality of this bot presuming that the reader

Bot samples

46

is familiar with the principles of BOD and POSH. Yet we will try to write it as simply as possible so it
hopefully will be possible to get the main ideas even without this knowledge.

Main difference on the first sight between the SPOSH bot and previous bots is in the decomposition of
the bot. Previous bots have if-then rules sequence in the doLogic() and methods which are used by
those rules were in the same file. There it uses by default following structure. Bot is decomposed into
three main categories of files. First is the bot himself - file where we can override methods of agent like
postPrepareAgent(). Second is the POSH plan. This file contains description of the plan - similar
to if-then rules in doLogic() in previous bots. Third category contains usually more files describing
behaviors. Each behavior contains some acts and senses which are necessary for some behavior - an
example of behavior could be movement, combat, communication with others, etc. This concept allows for
dividing complex bot's behavior to logical parts. We will discuss this matter lately, first we will introduce
the POSH plan.

((documentation "" "Ondrej Burkert" "Simplified Hunter")
 (DC PoshBot (goal ((fail)))
 (drives
 ((rearm (trigger ((seeEnemy)
 (hasBetterWeapon)))rearm))
 ((engage-enemy (trigger ((seeEnemy)
 (armed))) engageEnemy))
 ((stucked (trigger ((stucked))) jump))
 ((shooting (trigger ((isShooting))) stopShooting))
 ((low-health (trigger ((health 80 <)
 (knowMedkits))) runAroundCloseMeds))
 ((see-item (trigger ((seeItemAndWantIt))) runToItem))
 ((run-around (trigger ((succeed))) runAroundItems))
)))

As we can see, the POSH plan contains rules as well, those rules are called drives. This example of POSH
bot is in the matter of fact more or less just a reimplementation of Hunter's behavior. POSH capabilities
are far beyond of this plan but they are not necessary for such a straight forwardly design bot .

So the bot is again rearming if he spots an enemy and has better weapon for the situation. He engage him
just after the rearm. Jumps when stuck - wall / player collision, stops shooting when shooting and not
seeing enemy etc.

A bit interesting drive is low-health. We will use it as an example of POSH syntax.

((documentation "" "Ondrej Burkert" "Simplified Hunter")
 (DC PoshBot (goal ((fail)))
 (drives
 ((low-health (trigger ((health 80 <)
 (knowMedkits))) runAroundCloseMeds))
)))

This would be a simple plan with only one drive. POSH syntax is inspired by the Lisp (logical language
which is used a lot in the USA), so there are many brackets, be careful about having them all right. The
DC means the Drive Collection and its goal is to fail. That means that bot will never reach the goal and
will run forever. If you set the goal on something more specific or rather possible, bot will finish when
reaching the goal.

Drives are stored in the list of drives [(drives (()) (()) (()))]. They are ordered and evaluated
according to that order. Each drive is a triple name, trigger and action. Trigger can contain more conditions
which are linked by logical AND. There we can see two preconditions which has to be met before the

Bot samples

47

drive fires. Conditions are using senses from behaviors. For instance health is a sense which returns actual
level of health of the bot (number between 1 - 200). Condition (health 80 <) is met when bot has
the health lower then 80 points - POSH syntax uses postfix notation. As an action of the drive we use there
directly actions specified in the behavior.

Behaviors are then just lists of acts and senses.

 public boolean sense_fail() {
 return false;
 }

This is an example of very simple sense fail which is used as a goal in the root of the plan. As we can see,
method name is begins with sense_ which means that it falls among senses.

public void action_runAroundCloseMeds() {
 this.log.info("Action RUN_AROUND_CLOSE_MEDS.");
 this.bot.getMap().runAroundItemsInTheMap(this.medkitsToRunAround,false);
}

Next code example introduce the action runAroundCloseMeds. Again we have special prefix for the
actions - action_. For the simple SPOSH bot we used only one file with behavior. The example can be
currently found in the package cz.cuni.sposh.java.examples.

Khepera-like bot
Khepera like bot demonstrate tracing and autotracing capabilities of the agent in Pogamut. He is inspired
by the well-known project Khepera [WWW] which is from the robotics field. Our bot has three "infrared"
sensors - autotraces. Those sensors are in fact vectors of specified length, which starts from the center of
the bot's body and goes to 3 directions - one straight forward and other two 45° to the left and the right
sides from the center vector. Sensors returns true if they intersect with something solid in the location.

As we have three sensors available, there are 8 possible combinations of their states - imagine a binary
code. So in the doLogic() of Khepera-like bot is a big if-then tree which covers these 8 possibilities
and defines proper action for each one. So for instance if bot hits with his front and left sensors it turn
horizontal to the right a bit and sleeps for a while to allow its avatar to finish the turn. Nevertheless there
is may be a good place to note again that bot will sleep for a while after every iteration of his logic - that is
according to the logicFrequency. We can see corresponding part of the if-then tree in the following
torso of the code.

 if (sensorFront) {
 if (sensorLeft) {
 if (sensorRight) {
 // LEFT, RIGHT, FRONT
 body.turnHorizontal(bigTurn);
 Thread.sleep(turnSleep);
 } else {
 // LEFT, FRONT
 body.turnHorizontal(smallTurn);
 Thread.sleep(turnSleep);
 }

So the Khepera-like bot is again very simple, but you can find there examples of proper use of autotraces
and traces which can be very important for example for steering behavior of the bot.

