Programmer documentation

Programmer documentation

Table of Contents

1. OVENVIEW OF POGBIMIULeeitiieeiiti ettt ettt et e et e et et e e et et e e e e et e e e e ene s 1
2. Modules overview Of POGAIMULcouuuiiiiiie e 2
MBIN MOTUIES ...ttt ettt ettt et e e e e e nbe e e ennans 2
SUPPOIT MOTUIES ...ttt ettt e et e e e e et e e e e et e e e eenaaeeees 2
TOOIS @MU FESOUICES ... eeeeit ettt ettt ettt ettt e et e e et et e e et e bt e et e et e e e e et reeeentnnaeeens 2
3. GAMEDOLS 2004 ..ottt et et e et et e e e eaa e ee 3
Fg11 oo (¥ oi (oo H TP OP PP PPPPPTPRPPPIN 3
UNFEAISCIIPL DASICSeieeiieeeeii ettt e et eeene s 3
RS (= PRSPPI 3
EVENE FUNCLIONS ...ttt ettt e e et e e e et e e e e nb e eees 3
NELIVE FUNCLIONS ...ttt ettt e e et e e et e e eeaans 3
SPBWINING ..ttt ettt ettt ettt e e e e at e e e e e e e eee 4
OVEIVIBIV .ottt e ettt e et be e e et et e e et ab e e e et e e e ena s 4
SErvers and CONMNECTIONScuuueiiiti ettt e e e et e e e eae s 4

BiOtS .ttt 5
MULBEOIS 8N ThE TESE ... et e 5

T PP 6
ClaSS UESCITPLION ...ttt ettt ettt e et e et e e b e e e b e e e e 6
ClaSS OVEIVIBIW ...ttt ettt e et e e e eba s 6
GAME LYPE CLASSES ...ttt 7
Server and ClIENt ClaSSEScoevie e 9

BOt @nd Player ClASSESvuiiiiiiii et 11
IMIULBEOT CIASSES ...ttt ettt ettt e e et e e e et e e e an e eees 13
OENEE ClBSSES ..ottt 14

A, ParSEr MOGUIE ...ttt ettt e et et e et e et et e e e eba s 15
OVEIVIBIV .ttt ettt ettt e ettt e et e e et et e et e ab e et e tb e e e enaaas 15
ClASS OVEIVIBIW ...ttt ettt ettt e et et et e e a e e e aaa e e ennes 15
Package Cz.CUuNi.POgAMUL.PEISEriiiiiiieeiiii et e 15
Package cz.cuni.pogamut.COMMUNICAEIONueierrieieiiie et e e e eeeanns 15

L0 o PP PT PR PPTPIN 15
ParSEr SCREIMA ... et et ettt e e e e 16
TEXE MESSAGES TYPIES .. eeeeeetie ettt ettt ettt et et et r e et e e et e e e e enas 17
Class MessageObject and Java MESSA0E tYPESvuniieiiiieieeii et 17
(0L aTg=-> I T o) 1 PP 17
Synchronous message batch, delta meSSagesvvveviiiiiiii e 17
Text message handling FOULINEuuniiiii et 18
ENd Of COMMUNICEIIONcevtiiiiiiii et et e e e e e e e n e e e era e eees 19
Embedding Parser 10 @ CHENLouuuiiiiii et 19
JFlex grammar, Bot_mSG.fIeX file ... 19
AddiNG NEW MESSAGE TYPE ... eeeeeii ettt ettt e et e ettt e e e e at e e e ent e e eenanaeeees 20
I O 1= o | PP POPPTTPPPPPTTR 21
ATCIITECTUNE ...t ettt ettt ettt et e e e et e e eanans 21
Description of the communication With Parser ... 22
Handshake With GamEDOLSc.uuiiiiiii e 22
MeSSagES FromM GaMEDOLScceeetieeeiii et 22
Optimization of network COMMUNICALIONooeiiviiiieiiii e 22
1600]171017= 010 PSP PTTPUPPTTRN 23
Detailed communiCation deSCriPLiONcceuuuieiiiiiieiiii et 23
COMMUNICELION SEAIESeeeeeti ettt ettt e e e e e 23

Map representation, NAVIGALIONcouuiiiiiii e 25
[TEMS BN TNVENTOTY «.oeeeeeeee et ettt e e et eeeaaa s 26

Programmer documentation

1= 0 0 PP 26
USEr-defined ITEIMSuiiiiii e 27
10177 01 (0] oY PP PP PPN 27

1Y/ T PP 28
Action selection mechanism and ClIentoveiiiiiiiiii e 29
Typical USe Of the CHENtciii e 30
KINOWN TSSUBS ...ttt ettt et et e e et e e e e e et e e e e e e e e aeees 30
JAVBDIOC ..ttt e e anas 30
LT 47T L1 = SRR 31
L@ N T PR 31
ClASS OVEIVIBIW ...ttt ettt e et e e e et r e e et e et e et r e e e et neeeaaa e eeeanen 31
Package cz.cuni.pogamut.netbeansplugincc.veiiiiiiiiiiei e 31
Package cz.cuni.pogamut.netbeansplugin.exCeptionscc.oveviiiieiiieecii e, 31
Package cz.cuni.pogamut.netbeansplugin.experimentsoeevvivivineeeiieeee e eeaenn, 32
Package cz.cuni.pogamut.netbeansplugin.introSpectioncooevuiieviieeiiiieciineeieens 32
Package cz.cuni.pogamut.netbeansplugin.loggingccooeeeeiiiieiiiiiii e, 32
Package cz.cuni.pogamut.netbeansplugin.Optionsccuvveiiiieiiii e 33
Package cz.cuni.pogamut.netbeansplugin.projECtocvvvveiieeiii i e e 33
Package cz.cuni.pogamut.netbeansplugin.project.templatescooeeviiiiiiieiiiieninnes 33
7L< o 1= o S PSP P 35
L@ N T PR 35
L@ S @ = 4T T PR 35
O S 1Y <o - (o PP 35
L ES= o PRSPPI 36
ST o o= 1111 1| AP 37
1= PP 37
JBOSS RUIES (DI0O0IS) ..uiiiiieiieeii ettt et e e e e e e e e e et e e et e et e e e et e eeaneeeeas 37
Package Cz.cuni.pogamut.EXPErIMENESuuiiiiiiiii e e e e e e e e e e anas 37
(OSSR o= 11101 1| P 37
Initialization of the ODJECEuiiii i 37
Problems with class loader during evaluation of therules...............ccooeiiiiiiinnn, 38
FUNEXPEITMENT() ©.niiineii e e e e e e e e e e e e e et e e e e et e e et e eaaeeees 38
Handling of the agentsooiiiiiii e 39
Evaluating the TUIESei e 39
Saving 10gS t0 hard driVeouiiiiici e 39
Termination of the eXPErMENtco.iiiiii e 39
Running Experiment from command [iNEcooiiiiiiiii i 39
LS I 11101 o= 1 o o T 41
Package cz.cuni.pogamut.netbeansplugin. project.introspection.java...........ccooeeevveviineeinnnnnn. 41
O = T o] o] 1= 42
S 0] T oo PN 42
= PRSPPI 42
L [0 PP UPTP 43
[B2 S 1= 1 = T 7= oo o P 44
T =0 [PP 44

RS (0] W JE 0700 1 o PN 44

T PP 44
PUISUE ... ettt 45

LAYz 2T o P 45

L€ = o TN 1= 0 PPN 45
= o L PP 45

Run around WeapoNs and @rMOISccvuueiiiieiiieeiiee e ee e e e e e et e e et e e e eanaas 45
1000 Tox 1= Lo o [O 45

S @ 1 I o o PSP 45

Programmer documentation

Kheperalike bot

Vi

List of Figures

4.1. Local parser - everything iSrun 0N 0Ne Machingoooviviiiiiiiiiie e 16
4.2. Remote parser — parser runs on the different machine then the Agent itselfcccooeeeieninen. 16
4.3 PaISar SCNEMA .oove i 16
4.4. Message handling fIOW Chartcooeuiiiiii e 18
5.1, CHENt @CNITECTUNE ... ettt ettt e e e e e e e ennas 21
5.2. COMMANG EXEMPIE «...uueeeitte ettt e et e ettt e e et et e e e e e et e e e n e eee 23
5.3. Communication states and it's order during handshaking with GameBots2004cc.......... 25
5.4. Scheme of the flow of the messagesin the Body.coouiiiiiiiiiiiiii e, 27
5.5. History isalist of HistoryBatches. Each batch contains a hash map in which are stored lists

of messages of each type (key is atype of message, value is a hash map of messages (indexed by

UNIQUE 1D)). it ei ettt ettt ettt ettt e ettt s e ettt e e ettt e e e et e e e e b e e e ena e eeen 28
5.6. : Example of iteration through Player messages up to 3 batchesto past.ccceeveveiiinieeenn. 29

7.1. Typical usage of the Mediator, one thread is transporting messages from the Parser to the
Client, another one from the Client t0 the Parserovviiiiiiii e 36

Vii

Chapter 1. Overview of Pogamut

Pogamut is a team software project conducted by a group of students on faculty of mathematics and
physics, CharlesUniversity, Prague, Czech Republic. It emergesfrom the necessity of the platform suitable
for afast development of virtual human-like agents.

Its main concern is to create the connection between complex virtual environment and devel opment
tools. The chosen environment is Unreal Tournament 2004 (UT2004). The platform is connected to the
environment through Gamebots 2004 (GB2004) which are a server built into UT2004. This connection
istended by the Parser which transforms string-based APl of GB2004 to Java objects. Those objects are
accepted by the Client or more specifically the Agent which includesthe library of methods and structures
to facilitate the devel opment — e.g. action primitives, memory, navigation and inventory of the agent. Over
all of this spreads the IDE — NetBeans plug-in — which implements log viewers, server control, projects,
manual navigation, etc.

Structure of the programming documentation is therefore following. First there is an introduction to the
platform architecture and short description of main modules. Then follows chapter devoted to Gamebots
2004 which are responsible for the export of information from UT2004. It containsthe detailed description
of functionality of all classes, mutators and game types.

Chapter 4 is about the Parser. It outlines its main responsibilities and the idea of aremote and local parser,
that relate to the optimization of the network communication which is described there as well.

Chapter 5 is dedicated to the Client. It contains an overview of internal compounds of the top-level
class Agent (memory, inventory, navigation, body), summary of usefull methods and description of the
mechanisms that are under those methods (like how it handles items or navigation).

Chapter 6 presents the IDE. After the description of single packages follows characterization of
introspection.

Chapter 7 is devoted to auxiliary module Mediator which is responsible for flawless communication
between the Parser and the Agent.

Chapter 8 is about experiments.

The last chapter contains description of all the sample bots, with all relevant information.

Chapter 2. Modules overview of
Pogamut

Pogamut consists of severa modules. The main modules are IDE, Client, Parser, GameBots2004. There
are a so two supporting modules — Mediator, Experiments, which we will cover later on.

Main modules

Each module is named after it's usage or arole.

GameBots2004 is part of UT2004 and acts as a server offering clients the service of creation and control
of the bot inside UT2004. It facilitate a text-based protocol which client must implement in order to be
able to control the bot inside the game. To work over the text messages is hard — therefore the module
Parser exists.

Parser trandates text messages from GB2004 and creates Java objects out of them. This is used by a
module Client.

Client module is really a client of GB2004 using Parser to translate text messages over which it works.
It's purpose is to allow a Java programmer to create Java API for creating and controlling the bot inside
UT2004. The main class of thismodule is Agent which wraps afew other classes representing abot inside
UT2004.

Finally thereisan IDE. IDE serves for implementation, debugging and evaluation of user-created bots. It
uses Client's API for creating and running new instances of created agents. It also using Experiments AP
allowing user to evaluate the bots and to experiment with them.

Support modules

Mediator. This module handles sending messages from one side to another. It's used for sending back and
forth messages between Parser and Client (more specifically between Parser and Agent).

Tools and resources

M odul e Experiment servesfor running experiments. That means setting the UT2004 environment, creating
agent instances and observing them.

I ntrospection provides access to some of the agent's variables at the runtime.

Sample bots are example code to demonstrate features of the platform and provide alead to the user.

Chapter 3. Gamebots 2004

Introduction

GameBots 2004 (GB, GameBots) are a modification (mod, more information in chapter 2) for the game
Unreal Tournament 2004 (UT04). GameBots are written in Unreal Script (UT04 scripting language).
GameBots provide network text protocol for connecting to UT04 and controlling in-game avatars (bots).
With GameBots user can control botswith text commandsand at the sametime, heisreceiving information
about the game in defined format.

GameBots main purposeisto make available rich environment of UT04 for virtual agent development by
allowing easy connection to UT04 through itstext protocol. More information about GB text protocol can
be found in GameBots 2004 user documentation. This documentation is organized as follows: First there
will be brief introduction to Unreal Script, which is followed by general overview of GB architecture and
most important mechanics and second we will describe every class of GB in detail.

UnrealScript basics

Unreal Script is a scripting language created especialy for the game Unreal Tournament 2004. It is
somehow similar to Java or C++. The game UTO04 itself is written in Unreal Script except of the engine,
which is written in C++. All classes written in Unreal Script can be inherited and modified or modified
directly - although it is not recommended to do it that way. UT04 supports so called game modifications
(mods). Mod is some package, that modifies the game in some way without touching the game internal
classes.

In this chapter | want to discuss four features of Unreal Script. Namely special construct state, then event
functions, native functions and spawning.

For more information about UnrealScript visit UnreaWiki site or http://unreal.epicgames.com/
Unreal Script.htm for a quick reference and examples.

States

States are groupings of functions, variables, and code which are executed only when the actor isin that
state. One state is usually divided in afew sub states by simple tags. For moving between states and sub
states, Unreal Script has function gotoState. Their purposeis to support Al and to facilitate programming.

Event Functions

Event function is called by engine automatically, when particular event is triggered in the environment.
Unreal Script features alot of preprepared events, which can be used when programming the bots.

Native Functions

Unreal Script features large number of so called native functions. These functions are written in C++ and
are part of the game engine (we cannot see their code, or modify them). Their headers are defined in
Unreal Script with special word native (we can call these functions from Unreal Script). These functions
handles movement, ray tracing, etc. But mostly important, they handle spawning of objects in the game.

Gamebots 2004

Spawning

Spawning of objects is handled by native function Spawn. With this function we can spawn Actor class
and all classes inherited from Actor class - that means for example the majority of classes we have in
GameBots. Actor is anything that moves or isvisible in the game, but Actors are not limited to this. Some
actors can be invisible and can be used just for handling some specia situation in the game.

Overview

GameBots are built on UT04 classes, which are inherited and then modified. Thanks to this, we don't
need to change the code of original classes, so we leave the code of the game intact. In this section we
will provide basic GameBots overview. We will start with most important mechanics - the servers and
connections, this will be followed by bots, where will be said how is the controlling of the bot handled,
then we will speak about mutators and last we say something about GB ini file.

Servers and connections

UTO04 features alot of different game types. Each game type can have different rules and different goals,
which have to be completed, when our bots want to win. First thing that the GameBots do is, they inherit
UTO04 class DeathMatch. This class handles game type DeathMatch and all other game type classes, that
are supported in GB, areinherited from it. GB class BotDeathMatch accepts connections to defined ports
by creating two servers (BotServer and Control Server moreinfo below). It aso modifies some mechanics
for the purposes of GB. Game rules remains the same (in DeathMatch this means, that player who kills
pre-selected number of opponents - fraglimit - wins).

Asthere are two types of connectionsto GameBots, there are two classes that handlesthis. First oneisthe
class BotServer, which accepts connections used for spawning and controlling the bots (one connection
can spawn and control one bot). Second one is the class Control Server, which accepts connections on
different port than BotServer and provides control of game mechanics (changing map, kicking playersfrom
the server, pausing the game, etc.). Usualy there will be just one control connection, although GameBots
supports multiple control connections.

For every accepted connection aclasswill be created that will handle the connection. Connections accepted
by BotServer are handled by class BotConnection, connections accepted by ControlServer are handled
by class ControlConnection. All the commands that can be sent to GameBots are processed in these two
classes.

Because classes BotServer and ControlServer and classes BotConnection and Control Connection does
basi cally the same kind of things, they areinherited from acommon ancestor. BotServer and Control Server
inherit GBServer Class and BotConnection and Control Connection inherit GBClientClass. GBServer Class
and GBClientClass are abstract and consists of basic client and server functionality and some common
functions for handling certain commands. The hierarchy looks as follows:

hj ect - >Act or - >I nf o- >Ganel nf o- >Unr eal MPGanel nf o- >Deat hMat ch-
>Bot Deat hivat ch

bj ect - >Act or - > nf 0- >I nt er net | nf o- >l nt er net Li nk- >TcpLi nk-
>@BSer ver C ass- > Bot Server, Control Server

bj ect - >Act or - > nf 0- >I nt er net | nf o- >l nt er net Li nk- >TcpLi nk-
>@Bd i ent d ass-> Bot Connecti on, Control Connection

Asyou see UT04 features classes that handles TCP/IP connections with standard functionality of sending
and receiving text and/or binary data. As was already mentioned GameBots uses pure text protocol for
inbound and outbound communication.

Gamebots 2004

Bots

UT04 featuresitsown botswritten in Unreal Script. The botsin Unreal Script (US) arefinite-state machines
(US has got special syntax that handles states). Every bot in US needs to have spawned two classes - the
Controller class, which controls the bot behavior (in this class bots artificial intelligence is stored) and the
Pawn class, which represents bot avatar in the game, handles animations, etc.

The bots in UT04 features nice behavior and their artificial intelligence is on higher level compared to
other first person shooter games. However, in GameBots we don't want our bots to act autonomously. We
want to control them by text commands. For this reason there is a class RemoteBot, that modifies standard
UTO04 bot controller class. It makes bots controllable, disables built-in Al and sendsinformation about bot
surroundings outside the game.

Class RemoteBot is spawned by class BotConnection (BotConnection requests spawning, the actual
spawning is done in BotDeathMatch class). Text commands are received by class BotConnection and then
the right methods and functions are called in the class RemoteBot. For the export of in-game information
class RemoteBot uses socket maintained by class BotConnection. GameBots inherits xPawn class of
UTO04 and so created GBxPawn class modifies xPawn in a way we can set the bot skin (bot appearance
in the game). So far just original UT04 skins are supported. List of them is in GameBots 2004 user
documentation.

The hierarchy looks as follows:

bj ect - >Act or->Control | er->Al Control | er->Scri ptedControl |l er-> Bot -
>Renot eBot bj ect - >Act or - >Pawn- >x Pawn- >GBx Pawn

Mutators and the rest

GameBots features also functionality, that should facilitate development of behavior of bots by
visuaization of additional information in the game. For this purpose GameBots uses mutator classes
and xEmitter classes. Mutators can modify (mutate) the game by adding or removing functionality,
adding or removing game rules, modifying the map or even adding information to the environment.
In GameBots there are two mutators - PathMarkerMutator and GBHudMutator. PathMarker Mutator
visualize navigation points in the game by spawning a little cube over every navigation point in the
map. Navigation points are spread across the map in UT04 and are used by bots for navigation in the
environment.

GBHudMutator spawns a name of every navigation point in the map on the HUD in away, that it appears
the name is above the NavPoint (HUD is the screen with information about game status, we look on the
game "through” this information screen). Also the player current location is displayed on the HUD.

GBHudMutator can be combined with PathMarkerMutator - then we can see all navigation points also
with their names. Hierarchy looks like this:

nj ect - >Act or - > nf o- >Mut at or - >Pat hMar ker Mut at or, GBHudMut at or

GB features one xEmitter class- itis TraceLine class. Thisclassisused for the visualization of automatic
ray tracing feature of GB. For every automatic ray, one green ray is spawned in the game. Hierarchy is:

hj ect ->Act or - >xEnmi tt er - >TracelLi ne

Rest of the classes in GameBots

The rest of the classes in GameBots are overal less important. They add three more game types
BotTeamGame - players fight in ateams, BotCTFGame - players fight and teams and tries to steal aflag

Gamebots 2004

of opponent team and BotDoubleDomination - players fight in ateams and try to control two pointsin a
map simultaneously. They override additional UT04 classes to make sure all required information from
the environment are sent outside (GBxBot, GBxPlayer). They can set up our bots with some defaults
(RemoteBoatlnfo) or they can help our bots to fulfill some commands (FocusActor Class, PauseFeed).

Ini file

GameBots have got one ini file BotAPL.ini. In thisfile alot of features of GameBots can be configured.
The gamerules can be a'so modified (time limit, goal score, etc.). Each GameBots class can be configured
separately here. More information can be found in GameBots 2004 user documentation.

Class description

In this chapter we will describe all GameBots classes in detail. First we will provide general overview
of all used GB classes, then we will speak about game type classes, afterwards server and client classes,
followed by bot and player classes, next mutator classes and last few words about the rest of the classes.

Class Overview

Here is a short description of every classin GameBots.

GBServerClass - abstract server class, list of all received connectionsis created here

GBClientClass - abstract client connection class, universal code for receiving and storing GameBots
commands is here. Some functionality that is common for all connection classesis here.

BotServer - class where we listen on defined port and accept bot connections
Control Server - class where we listen on defined port and accept control connections

BotConnection - class that handles bot connection, parsing of bots commands is here, from here we
control our remote bots.

ControlConnection - class that handles control connection, parsing of control server commands is here

RemoteBot - main bot class, exporting information from the game, executing commands called by
BotConnection class, overriding default UT04 bot Al

RemoteBotInfo - sets some defaults for bot, got this class from old gamebots, now it is not used in GB
(may be used in future)

BotDeathMatch - main GameBots game type class, BotServer and Control Server are spawned here,
RemoteBot class and original UT04 bots are spawned here, features default DeathMatch rules (by
inheritance)

BotTeamGame - adding bots to teams handled here, features default TeamGame rules (by inheritance)
BotCTFGame - features default CTFGame rules (by inheritance)

BotDoubleDomination - features default DoubleDomination rules (by inheritance)

TeamGameCopy - copy of an original UT04 class TeamGame - because of inheritance

CTFGameCopy - copy of an original UT04 class CTFGame - because of inheritance

Gamebots 2004

» xDoubleDomCopy - copy of an origina UT04 class xDoubleDom - because of inheritance
» FocusActorClass - helper class, so our bots can focus on location in the game

» PauserFeed - helper class, so we can pause the game even if no player isin it.

» PathMarker - classthat hold StaticMesh used for NavPoints visualization

» PathMarkerMutator - class that spawns PathMarker over NavPoints in the map

» GBHudMutator - class that adds GBHudInteraction classto al playersin the game

» GBHudlnteraction - classwhere GBHud is created and where we handle key inputs and draw NavPoints
grid

* GBHud - classthat extends default HUD without modifying class with additional information
* TracelLine - this xEmitter class |ets us spawn the visualization of automatic ray tracing
» GBxBot - classthat overrides standard UT04 bots, so they send information to our remote bots

» GBxPlayer - class that overrides standard UT04 player controller class, so players can now travel
through walls when spectating and send information to our bots

» GBxPawn - we override standard xPawn class, so we can set the bot appearance in the game

Game type classes

These classes modify original UT04 game types classes and provide them with all the functionality
needed to connect to the environment through TCP/IP and spawn and control remote bots. In GameBots
there are four different types of game with somewhat different rules and different goals. They are
BotDeathMatch, BotTeamGame, BotCTFGame and BotDoubleDomination. The names of UT04 original
classes are DeathMatch, TeamGame, CTFGame and xDoubleDom. The hierarchy of original UT04 game
type classes looks like this:

bj ect - >Act or - >I nf 0- >Ganel nf o- >Unr eal MPGanel nf o- >Deat hivat ch- >
TeanGane- > CTFGane, xDoubl eDom

As you see, TeamGame is a child of DeathMatch and CTFGame and xDoubleDom are children of
TeamGame. In GameBots we wanted to preserve this hierarchy to avoid to have same code in multiple
classes. Because of this we created GameBots hierarchy, which [ooks like this:

hj ect - >Act or - >I nf o- >Ganel nf o- >Unr eal MPGanel nf o- >Deat hivat ch- >
Bot Deat hivat ch- >TeanGaneCopy- >Bot TeantGanme- >CTFGaneCopy, xDoubl eDontCopy

oj ect - >Act or - >I nf o- >Ganel nf o- >Unr eal MPGanel nf o- >Deat hivat ch- >
Bot Deat hivat ch- >TeantzaneCopy- >Bot TeanGane- >CTFGaneCopy- >Bot CTFGane

oj ect - >Act or - >I nf o- >Ganel nf o- >Unr eal MPGanel nf o- >Deat hivat ch- >
Bot Deat hMat ch- >TeantzaneCopy- >Bot TeanGane- >xDoubl eDomCopy- >
Bot Doubl eDomi nat i on

The classes with suffix "Copy" are exact copies of original UT04 classes. Thanks to this we don't have
any redundant code in our GB classes. Everything important for client connections and bot spawning is
handled in class BotDeathMatch and then is inherited by other GameBots game types (BotTeamGame,
BotCTFGame, BotDoubleDomination). Although this might not look well on the first glance, it helps
greatly to maintain the code of GB.

Gamebots 2004

BotDeathMatch

Thisisthe main GameBots class inherited from UT04 DeathMatch class. All other GameBots game type
classes are inherited from BotDeathMatch. The BotServer and the Control Server are created here. In this
class we handle also spawning of the RemoteBots in the map, spawning of the original UT04 botsin the
map and specia events such as new player joining or leaving the server.

Therules of BotDeathMatch are standard DeathM atch rules. That meansthe goal of the gameisto survive
and to kill as much opponents as possible. DeathM atch hastime limit and goal score. If somebody reaches
the goal score, the game ends and the player wins. Otherwise the game ends according to itstime limit and
the winner will be the player with highest score (with most killed opponents).

The main functions of this class are:

* function PostBeginPlay

» function RemoteBot Add RemoteBot
* function SpawnPawn

» function bool AddEpicBot

« function SpawnEpicBot

function PostBeginPlay This function is automatically called after beginning of the game.
Here we spawn classes BotServer and ControlServer, which are
then used for accepting connections to defined ports.

function RemoteBot Thisfunction spawns a class RemoteBot, which isacontroller class

AddRemoteBot for one remote bot. We set here the I1d of the bot, correct number of
players currently on the server and set variables affecting bot skills
(accuracy, etc.). When we have our controller class ready we call
SpawnPawn function, which spawns bots Pawn class, which results
in the bots avatar appearing in the game.

function SpawnPawn Function for spawning and respawning the bots Pawn (thats the
visible avatar of the bot in the game). Here we set the bots Pawns
peripheral vision.

function bool AddEpicBot and This functions spawns Controller class and Pawn class for original

function SpawnEpicBot UTO04 bots. We needed to do this by ourselves because we wanted
to set some bots variables (name, team, skill, etc.), which would be
otherwise inaccessible.

BotDeathMatch has other functions - they handle sending of the game status to bots, special events as
joining or leaving the server by player or bot, respawning of the bots and overriding functions that would
otherwise cause the UT04 bots to join our server automatically.

In a specia construct of Unreal Script - defaultproperties - we set what classes will be used for player
controller (variable PlayerControllerClassName), if the game will be pauseable and other stuff needed
for our game to start and run properly.

BotTeamGame

This class features UT04 TeamGame rules. It is inherited from class TeamGameCopy (here are the
rules of UT04 TeamGame stored, as it is the exact copy of TeamGame class), which is inherited from
BotDeathMatch.

Gamebots 2004

TeamGame rules are: All players and bots in the game are divided into two teams and the goal is to beat
the other team. The score is again the number of killed opponents. Game hasits time limit and goal score.

The main function here is function bool AddRemoteBotToTeam. It overrides function from

BotDeathMatch and it assures our bot will be added to (a) desired team or (b) to some availableteam, when
desired team isnot set or cant be joined. Other functions here handl e getting game status and player scores.

BotCTFGame

This class features UT04 CTFGame rules. It is inherited from CTFGameCopy (exact copy of UT04
CTFGame class). CTFGameCopy is inherited from BotTeamGame.

CTFGame rules are: All players and bots in the game are divided into two teams and the god is to steal
the flag owned by other team. Game has its time limit and flag limit (how many times can be ones team
flag stoled until the other team wins).

Functions here handle getting game status and player scores.

BotDoubleDomination

This class features standard UT04 DoubleDomination rules. It isinherited from xDoubleDomCopy (exact
copy of UT04 xDoubleDom class). xDoubleDomCopy is inherited from BotTeamGame.

DoubleDomination rulesare: All playersand botsin the game are divided into two teams. In the map there
are two control points. The goal is to capture both of the control points and hold them for afew seconds.
Then the team scores. Game has its time limit and goal score.

Functions here handl e getting game status and player scores.

Server and client classes

Here we will describe in detail server and client classes.

GBServerClass

This is an abstract class and should never be instantiated Any connection accepting class in GameBots
needs to be inherited from GBServer Class and spawned in the class BotDeathMatch.

Inthisclassweare creating alist, where we have stored every accepted connection. US featurestwo events
- GainedChild and LostChild that are used for this.

BotServer

Class BotServer extends GBServerClass. This classisinstantiated once in class BotDeathMatch. We have
one server for the bots, but we can have multiple connections to it. The class BotConnection is spawned
by BotServer for the connections.

In defaultproperties we set what class will be spawned for the connections in the variable AcceptClass.
Port where we will wait for the connections is set in ListenPort variable and maximum connections in
MaxConnections variable.

The only function here - BeginPlay, which is caled automatically when the game starts, binds our
connections to desired port and starts listening (waiting for new connections).

Gamebots 2004

ControlServer

Class Control Server extends GBServerClass. It is very same as the BotServer class, except the listening
port and the classes it spawns for the connections. Here it is Control Connection class.

GBClientClass

This is an abstract class and should never be instantiated From this class classes BotConnection and
ControlConnection are inherited. In these two classes we process GameBots commands.

In GBClientClass we have some universal code for client connections. It is mainly some configure
variables, variables and functions for storing and parsing incoming messages and function for sending
messages outside the UT04. GBClientClass features also some functions used by both child classes -
BotConnection and Control Connection (exporting lists of objectsin a map for instance).

For receiving there are functions ReceivedText and ReceivedLine and variables ReceivedArgs,
ReceivedVals and ReceivedData. For parsing messages we have functions Par seVector, Par seRot and
GetArgVal. And for sending messages we have function SendLine. Main function for handling text
commands is ProcessAction function. It is called by ReceivedLine function and is not implemented in
GBClientClass. It should be implemented by children of GBClientClass. In ProcessAction we define,
what should be done when we receive certain command.

BotConnection

Class BotConnection extends GBClientClass. This class is spawned by BotServer. Each connection
to BotServer has spawned its own BotConnection class (one BotConnection class handles one bot
connection). In this class GameBots commands for bots (RemoteBots) are processed. One BotConnection
class can spawn one RemoteBot class and control one RemoteBot (actual spawning is handled in
BotDeathMatch class, but functions are called from here).

This class has two states - waiting and monitoring. In waiting state, the class waits for INIT command -
by this command the bot will be created in the game (bot controller and afterwards the bot pawn). In state
monitoring we are periodically calling functions on RemoteBot that exports synchronous messages with
information about the game (viz. GameBots 2004 user documentation).

Inthisclassthere are functions and structures for automatic ray tracing of the bot (LaunchRay, AutoTrace,
AddDefaultRays, AddCustomRay and RemoveCustomRay). In AutoTrace function the class for ray
visualization is created.

The main function here is function ProcessAction, where commands for RemoteBot are parsed and
executed. For complete list of GameBots command see GameBots 2004 user documentation. More details
about how the GameBots bots commands are executed can be found in this documentation in chapter
RemoteBot class.

ControlConnection

Class ControlConnection extends GBClientClass. This class is spawned by ControlServer. Each
connection to Control Server has spawned its own Control Connection class (one Control Connection class
handles one control connection). In this class GameBots commands for control server are processed. (in
fact each instance of ControlConnection isindependent of each other).

This class has one state running - with two sub states waiting and running. In sub state running we are
periodically exporting info about location of all players in the game. This can be used for visualization
of players position in mini map.

10

Gamebots 2004

Functions in this class handle exporting of information about the map and about the game. Main function
here is function ProcessAction, where commands are parsed and executed. For more information about
Control Server command see GameBots 2004 user documentation.

Bot and player classes

Here we will speak about classes for our bots and players. We will start with most important class
RemoteBot, which will be followed by GBxPlayer class, GBxBot class and GBxPawn class.

RemoteBot

Class RemoteBot extends UT04 class Bot. The bots in Unreal Script are finite-state machines, that react
to events in the game (events are special types of functions called by engine, when particular situation
appears in the game). In RemoteBot class we override original bots states, functions and events, so no
autonomous behavior will be executed.

Class RemoteBot has got three states. It is StartUp state, Dead state and GameEnded state (we override
also two more states - MoveToGoal and TakeHit, but it ssemsthey are never called in our class). StartUp
state is the main state here. In StartUp state bot movement and turning is executed. Every time the bot is
killed, we end up in the Dead state. From Dead state we respawn the bot. State GameEnded is active, when
the game ends - because of time limit or reached goal score. There are few seconds, when the winner is
showed and then the map is changed.

Functions and events in this class controls the bot (shooting, aiming) and exports information through
BotConnection class (exporting events in the game, checking surroundings periodically, etc.). Now we
will speak about bot variables and control basics.

Variables

Important inherited variable in this class is Pawn. Pawn represents our bots avatar in the game. When we
want to get location or rotation of our bot, we need to look at our bots Pawn variables. Other important
variables are Focal Point (vector), Focus (actor) and Target (actor). These variables have got influence on
bots turning and shooting. See below.

Bot movement

For moving the bot we call native engine latent functions M oveT o and M oveT oward. We support them
with location or object whereto go (vector in case of MoveTo, Actor in case of MoveToward), what actor
we want to focus on and if we should use walking speed. Functions MoveTo and MoveToward resets
FocalPoint variable to location we supported them with (if we leave the focus input of these functions
unspecified).

Bot turning

Bot turning is done automatically by the engine. Only thing we need to do is to set Focal Point variable.
We can also turn to Actors, for this we set Focus variable. If we call function FinishRotation afterwards,
the function will end when we will be facing the spot. If we have some Actor targeted, we will continue
to turn to face him if he moves (if no other commands will be received by bot).

Bot shooting

For shooting these functions are important: RemoteFireWeapon, WeaponFireAgain, StopFiring and
AdjustAim. With RemoteFireWeapon our weapon starts to fire. BUT! It would fire just one shot if we
wont have function WeaponFireAgain overridden to return true. Now our weapon will continue to fire
until we call StopFiring function (called by STOPSHOQT), or run out of ammo, or our bot dies. Function
AdjustAim doesaiming for us. It iscalled by the firing routines. This function provides aiming correction.

11

Gamebots 2004

In AdjustAim function: We are firing on Target (Actor class) - that is inherited variable. If Target is not
set, it is get from Enemy variable - also inherited, also Actor class. We made a slight change to code in
AdjustAim function, so it is now possible to fire even on location (we set FireSpot variable in AdjustAim
to our location target).

So when we want to fire on someone we set Target variable. If we want to shoot on the location,
we set FocalPoint variable (and myFocalPoint variable, as the FocalPoint is changed by MoveTo and
MoveToward functions) and set Target and Enemy variablesto None.

Reachability and paths

For reachability information and path finding we use native engine functions. Namely actor Reachable,
pointReachable and FindPathTo. Functions are self-explanatory, FindPathTo function fills array
RouteCache with ordered list of NavPoints we should follow, when we want to get to our goal.

CanSee and LineOfSightTo

Thesetwo functions are preprepared functionsfor getting information if we can see some actor and if some
line of sight exists to desired location or point from our bot. CanSee is influenced by Pawns peripheral
vision.

GBxPlayer

Thisclassextends standard UT04 player controller class- inthis classcommandsfrom player are processed
and are executed in a game. These commands are keyboard and mouse inputs. In this class we have code
for player moving with his avatar, for player moving as the spectator and so on.

We changed a code for spectating abit, so now it is possible for spectatorsto go through wallsin the game.
Also we modified abit functions for sending messagesto other playersin agame so now also RemoteBots
can receive this messages (functions ServerSay, TeamSay). Moreover HIT message is now sent to bots
properly also from players (function NotifyTakeHit).

In our GameBots game types we spawn GBxPlayer class instead of standard xPlayer class for UT04
players. It is set in game types variable PlayerControllerClassName.

GBxBot

This class extends standard UT04 bot class. We override here one function, so our bots can receive HIT
message a so from UT04 bots properly (function NotifyTakeHit). In our GameBots game types we spawn
GBxBot classinstead of standard xBot class for original UT04 bots.

GBxPawn

This class overrides standard UT2004 xPawn class. This class represents bot virtual body. That means -
bots appearance, bots animations and the way of handling movement etc. Bot skins are loaded here.

In GameBots we override Setup function of xPawn class, so we make possible to set bot skin (bot
appearance) in the game.

RemoteBotinfo

Thisclassistaken from the old GameBotsfor UT2000 and is spawned in BotDeathMatch at the beginning
of the game. In UT2000 it was probably needed for configuring some variables needed by engine for
spawning the bot correctly. In GB04 we don't use this class at thistime.

12

Gamebots 2004

In this class the skins, bot difficulty, bot names, accuracy and so on are configured.

Mutator classes

Here we discuss mutator classes in detail.

PathMarkerMutator

This Mutator spawns at the beginning of the game on every navigation point without inventory item
PathMaker class, which will visualize the otherwise invisible NavPoint.

PathMarker

This class is a part of NavPoint visualization. StaticMesh used for the visualization is loaded by exec
command in thisclass. After spawning of this classin the map on the desired location, the object specified
in the variables of PathMarker class appears in the game.

GBHudMutator

This Mutator causes, that for every player in the game class GBHudInteraction will be spawned.
GBHudinteraction class is necessary for adding additional functionality for player HUD and for the
GameBots key commands.

GBHudInteraction

GBHudinteraction extends I nteraction class, which is special type of UT04 classfor the purposes of adding
additional functionality to key events, player HUDs (and so on) without modifying the classes, that are
normally responsible for this.

Inthis class we create special GameBots HUD for players (GBHud class, we call its function PostRender
from here - without this we wouldn't be able to draw on the HUD) and we catch GameBots key
commands here. Also we draw NavPoints grid (NavPoints reachability graph) in this class (function
DrawNavPointsGrid). GBHud and NavPoints grid is controlled by key events (function KeyEvent).

GBHud

GBHud extends HudBase (original UT04 HUD base class). We draw here NavPoints names above the
NavPointsin the game and current location of the player in UT units. Thisclassis controlled by key events
(they are processed by GBHudlnteraction class).

TraceLine

This classis based on xEmitter class. xEmitter classes are used in Unreal Script for creating various visual
effects, that can be later seen in the game. TraceLine class spawns beam effect, that is used for the
visualization of automatic ray tracing. Each automatic ray has got one beam associated with it. Colour
of the beams is green (in the future we plan to implement changing colours of the beams according to
whether the ray hits something or not).

Most important function here is Tick. This function is called regularly many times per second by the
engine. In this function we are creating the desired beam and here we also change its location according
to bot movement. Function Tick is simulated that means, that it is called not only on game server, but also
on al the clients. If it were not simulated, we couldn't see the rays on the clients - that means spectators
connected to our game would be unable to see the rays. Also al the other functions here are simulated.

13

Gamebots 2004

The replication construct defines some additional variablesthat are replicated to the client. Otherwise, the
variables wouldn't change their value on the clients - just on the server.

Other classes

Therest of the classes that did not fall into preceding categories.

FocusActorClass

This class extends UT04 Actor class (Actor is an abstract class and cannot be spawned, but we want
to spawn it for specia purpose). Normally bots in UT04 cannot focus on a locationl, when they are
running toward location2, which is different. They can focus on some other Actor, but not on location.
For GameBots purposes we wanted to make our bots able to focus aso on the location. For this we use
FocusActorClass. We set the location of FocusActorClass to desired location and then we set our focus
to FocusActorClass. FocusActorClass is normally invisible, but can be made visible, so we can see the
spot, the bot is currently heading or looking. Position of FocusActorClass is updated in Tick function of
RemoteBot class, if we have set it to be visible (otherwiseit is used just for setting the focus on location).

PauserFeed

This class is used to pause the game even without no players in it. The problem is that Unreal Script
requires us to support some PlayerReplicationlnfo class, when we want to pause the game. PauserFeed
class inherits PlayerReplicationinfo class, so it can be used for this purpose. Class is created at the start
of the game.

14

Chapter 4. Parser module

Overview

Parser is a module of Pogamut, it is middleware between GameBots2004 and Client. It is used by the
Client to communicate with GameBots2004. Its purposeisto simplify handling messages from GameBots
and to lower network bandwidth. Simplification is done by trandating messages from text messages
(ASCII format, sent by GameBots) to Java objects (MessageObject class). Objects are then sent to the
Client (another module of Pogamut2, where Al is). Parser islowering data bandwidth by transmitting only
informations that has changed like position of the bot, visibility etc., not the position of items that can't
move - delta messages.

There are two different kinds of view on a Parser. The first is Parser as a Java class. Strictly speaking
Parser as a class just trandates text messages to Java objects. It does not contain any mechanisms to
receive or to send messages via TCP/IP for instance. Sending messages are done by Mediator (see chapter
MEDIATOR).

The second view is Parser as a module. The Parser module covers both parsing the text messages and the
usage of Mediators for sending/receiving messages to/from the Client.

The Parser itself is implemented using JFlex, specification of the JFlex grammar can be found in the file
bot_msg.flex file.

Class overview

Almost everything isin package cz.cuni.pogamut.Parser. The Parser class a so implementstwo interfaces
from package cz.cuni.pogamut.communication. The Parser returns messages that are instances of
class from package cz.cuni.pogamut.MessageObjects. There are class for each type of message the
GameBots2004 can send in this package.

Package cz.cuni.pogamut.Parser

class GameBotConnection - wrapper for GameBots2004 socket

class Parser - trandlates text messages into Java objects

class ParserConnection - wrapper for the RemoteParser socket, used by Client (class Agent) when
RemoteParser is used

class RemoteParser - class wrapping RemoteParserServer, alowing to run it as a program

class RemotePar ser Server - acts asaserver for Client (default port 4000), which connects to the GB2004
and applying delta compression to messages

class UnrealIDMap - class which maps Unreal 1D strings to a numbers which are used to identify objects
in the game thus saving the network bandwidth

class Yylex - generated class by Jflex (Javaversion of Flex) from bot_msg.flex file

Package cz.cuni.pogamut.communication

class Mediator ParserInterface- interface for receiving messages from Parser for the Client
class Mediator GBInterface - interface for sending messages to the GameBots2004

Usage

There are two types of usage of the Parser module — Local Parser and Remote Parser.

15

Parser module

The Local Parser is meant to be run on the same machine as the Client (specifically Agent class). It should
be used when the UT2004 server is running on the same machine as the Agent because thereisno gainin
delta compression in such a case (see Figure 4.1, “Local parser - everything is run on one maching”).

Figure4.1. Local parser - everythingisrun on one machine

Workstation

GameBotsZ004 lg———= | Local Parser (—J—> / (—l—) IDE

Agent

Unreal
Tournament
2004

The Remote parser is meant to be run on the machine as the UT2004 server that is different from the
machine where the Client runs. Therefore the communication between Client and Remote Parser goesvia
TCP/IP. See Figure 4.2, “Remote parser — parser runs on the different machine then the Agent itself”. If
the user is running UT2004 server on different machine then it's advised to prefer Remote Parser over
Local Parser to lower the data bandwidth due to the delta compression.

Figure 4.2. Remote parser — parser runs on the different machine then the Agent
itself

Unreal
Tournament
2004

GameBots2004 g—— | Remate Parser

Parser schema

Each Parser instance is configured by GameBotConnection that is used for receiving text messages from
GB2004. See Figure 4.3, “Parser schema’. During the construction of the Parser an Yylex instance is
also created that uses GameBotConnection's socket (BufferedReader input) to receive text messages from
GameBots2004.

Figure 4.3. Parser schema

Unreal
Tournament
2004

GameEots 2004

public

receiveFarsadl

get message

16

Parser module

Text

The Parser class implements interface MediatorParserinterface that contains method
receiveParsedM essage(). Whenever that method is caled by the Mediator, the text message handling
routineisiterated through. Thefinal product of the routineis M essageObject that isreturned. Thisscenario
is different when message END isreceived. Thiswill be explained later on.

messages types

Text messages from GameBots2004 are of two types. Synchronous and asynchronous (for more
informations see chapter GAMEBOTS). Asynchronous messages came at random and can't be delta-ed
asthey don't have any ID and are usually quite unique. Synchronous messages are always delta-ed before
they are returned by the Parser.

Class MessageObject and Java message types

Thereis aclass for each message the GameBots2004 protocol defines. All these classes are descendants
of MessageObject class, which defines two key methods diff() and update().

Diff() method takes as an argument amessage object of the same class and hasto tell whether the argument
differsfrom aobject or not, also nullify every property which has the same as an argument.

Update() method writes also takes as an argument message object of the same class and writes al non-
null propertiesto current object (used by the Client).

Those two methods realize the delta compression that will be explained later on.

Unreal ID, int ID

Each synchronous message also has an ID attribute. This attribute is filled by GameBots2004 with string
that suppliesUT2004. ThisUnreal 1D string isunique for each object existing in the game. ThisID isquite
long and it would waste the bandwidth if sent every time with the message. In spite of this, there has to
exist some ID for every object in the game so the Client can recognize it. Therefor the class UnrealIDMap
exists. It assigns an unique number to each Unreal ID string so the messages will be processed according
toint ID not the string 1D thus saving the communication bandwidth.

Synchronous message batch, delta messages

The key concept of the GameBots2004 protocol are synchronous message batches, which comes in
frequency about 10 batches per second. Information about what bot sees (navigation points, items, other
players, etc.) comesin batches. Each batch can be viewed as a camera picture of what bot seesin a specific
time. The Parser always have two batches stored. The last one and the current one. The Parser needs to
know, which messagesisthe Client aware of, allowing him to create delta messages and naotice the Client
in case that something disappear from it'sfield of view.

Usually when bot sees some player (for instance) it is visible to the bot for some time. That means the
player staysin the bot'sfield of view for several batches. The player's name usually don't change therefore
it's no use to send it's name over and over again. Thisis a part where delta messages steps in. The Parser
takes the message (in this case Player object) and updates the message so it contains only information
which changes using diff() method and returns that. In case of Player message it will probably be player's
location.

The batch's end is marked with EndMessage. Upon receiving such a message — the Parser must check
the current batch against the last batch. For each message in last batch that is not present in the current

17

Parser module

one, the Parser must send the DeleteFromBatch message to the Client so the information about what the
Client seesis correct.

There is a possibility that many objects disappeared from the Client's field of view therefore the
EndMessage should produce many DeleteFromBatch messages. In this case the Parser saves those
messages to a queue and when asked for another message it takes message from the queue rather then
caling Yylex.

Text message handling routine

Figure 4.4. Message handling flow chart

- ;
{ receiseParsedil essag ';T\I

'\ﬂ- called /

! |

. S —
. 4 S,
A there a\ /" Remove and return hY
n

Message i VES ﬁ first message from the |

fquele? \«\ fueLE, /’
MO
Get message
from vy e
e Campare current batch with S Remave and retum ™,

{:jj's'_.'rt EI'IE"I.JESSG'I_I.;{::::— VES

the last one and push . \
———=(first message fromthe
DeleteFromBatch messages \ queJue - ,'

—— 10 the quee. "\\ /s
| .
R[]

¥
PS5
s it Ty
{i'ag.i.-nch,-.;.n.;.ug‘;)_ VES _j,{ Feturn the message. |
“\qlissa-JE' _
o

In

[0
)lﬁ Compare current ’_ .
ARl el message w S Return the defta ™,

< T m— VES — O —- - - . |
~ COMPression - ezsage from last \ age.
-HE_;_!'I'I|.| _,SSI_._I_]__» mMessadg from las _ IMessage _,/'ll

~ -~ lratch.
'“H.]/'
S

Return the message \.I

- oy

i

I
i

The handling begins with the question if there is a message in a queue waiting for delivery (produced by
some EndM essage in the past). If so, remove one message from the queue and return it. If not, call Yylex.
Yylex class then reads and parses one text message from GameBots2004. It returns M essageObject to the

18

Parser module

Parser and the Parser will process the message according to it'stype. Asynchronous messages are returned
immediately and synchronous messages are delta-ed and stored to a current batch.

If EndMessage arrives, compare current batch with last one and produce DeleteFromBatch messages if
necessary. Also write current batch as the last one and begin new one.

The only difference in this behavior is when the list of map's NavPoints or items is received. In this case
there is no need to create delta messages and the message is returned immediately.

End of communication

The communication can end either normally, when the MapFinished message is received from
GameBots2004 or abnormally - network communication problem, socket closed on the remote side, etc.

When the Client receives MapFinished it has to terminate itself and shouldn't be requesting any other
messages from Parser.

When an error occurs, which meansthedatacan't be read from the socket by Y ylex amessage Disconnected
is created and sent to the Client. The Client has to terminate itself after that.

Embedding Parser to a Client

The Parser as described above can be used by a Client as alocal instance (Local Parser), or can be run on
a different machine as a Remote Parser. These two kinds of usage Local Parser / Remote Parser reflects
two scenarios.

Thefirst scenario iswhen everything is run on one machine. Everything means UT2004 + GameBots2004
and the Client. In this case there is no need to run the parser as a different process and can be embedded
right into the Client.

The second scenario is when UT2004 + GameBots2004 is running on a different machine (machine A)
then the Client (machine B). In this case the Client needs to connect to a different machine using network
protocols. If the Client will use Local Parser it will waste the network bandwidth as GameBots2004 always
sends everything (doesn't do delta compression). Thusis advised to run RemoteParser process on machine
A, which the Client will connect to.

JFlex grammar, bot_msg.flex file

The file bot_msg.flex contains specification for the JFlex that tells how to parse the text messages from
GameBots. JFlex takes this file and transforms it into finite-state machine that parses incoming strings.
Thefile contains support functions, state definitions and respective actions (Java code) that should be done
when apart of the message is recognized.

The file was created according to the GameBots2004 API. It parses all messages that are specified there.
For every message type exists a special Java class that encapsulate it. If the message is not simple - that
meansif it containsattributes - then aspecial stateinside JFlex iscreated to handleit. For instance, the PLR
GameBots2004 message looks like this: PLR{Unreal|D RemoteBot2.bot} {Position x,y,z} ... Soinsidethe
flex file you will find the definition of the state STATE_PLR inside which the attributes are parsed.

For more information about the JFlex grammar please refer to the JFlex manual [http://jflex.de/
manual.html]

19

http://jflex.de/manual.html
http://jflex.de/manual.html
http://jflex.de/manual.html

Parser module

Adding new message type

Because the message is processed by few modules of the Pogamut, you have to alter several placesto add
new message type.

First you haveto add new messageto GameBots2004 and push it into UT2004 server (for moreinformation
about this topic refer to GameBots documentation).

Then you have to create a new class in package cz.cuni.pogamut.MessageObjects that is derived from
class MessageObject and implements interface Serializable. Define properties of class (in most cases are
just taken from GameBots message). The class has to implement few methods:

Constructor without parametershasto call super() (constructor of MessageObject) with type of message,
every message has a type. Add new type of message to the enum MessageType. There are others
constructors of MessageObject accepting other parameters as well, but in most cases we don't know
the other parameters.

toString() method should be overridden, since we print these messages for debugging.

In case the message represents game entity (is synchronous message):

 Override method haslD() to return true and add it to the constructor of SynchronousM essages class
» Override methods update() and diff(), for details see JavaDoc of class M essageObject

« Class hasto implement interface Clonable and override method clone to return deep copy

bot_msg.flex has to implement support for new message from GB (for more details about bot_msg.flex
see JFlex documentation):

 to statelist of states add another state (e.g. MSG_FLOWER)

e add to state YYINITIAL pattern for the name of message and to the code for the pattern put
initialization of message handling. In most casesit means

act Gbj = new Fl ower Message(); state_go(MSG FLOAER);
e instate MSG_FLOWER parse rest of message
« use JFlex to create new yylex.javafile from bot_msg.flex, replace current one and run parser

* in new yylex.java find the row 'return YYEOF;' and change it to 'return null;', otherwise you will
get compilation error

The last point will be handling of messages in the Client module, but that depends on a kind of message
you're adding.

20

Chapter 5. Client

Architecture

Client iscomposed of Body, Memory, Inventory and Game Map modules. Each module isresponsible for
apart of services which are provided by Client. Those services are:

* memory — storage of sensory data
* inventory —item related issues
* notion of map — navigation

» commands —for the control of agent body in the environment

Figure5.1. Client architecture

Commands
U |
Commfinds
T
: Init - Navigation
Body Game Map
Messagres D

M

e

: Actualization of inventory I\I
P g

e
a s S
r

J Inveptory
b1 / 7 r ’ }
1\ Iemﬂr} In‘ ento r} mfofmation
=
r
Sensoric information

Now there will be abrief resume of functions of the modules.

Body (AgentBody) is a bridge between Client itself and Unreal Tournament 2004 (UT) (ergo Parser).
It processes messages (Java objects) from Parser and fire events to notify listeners (at least Memory,
Inventory). It implements interface Commands and therefore enables user to call predefined methods for
agent control.

Memory (AgentMemory) contains History, which is the storage of all sensory data coming from Body.
Memory implements interfaces WorldView, RecentMemory, Knowledge and Inventory, hence it includes
all predefined methods for decision making system (DMS) to obtain sensory information (e. g. visible
navigation points, players, weapons, etc.) and for work with inventory.

Inventory (Agentinventory) is basically an array of weapons. Agent in UT does not have any inventory
and thus does not know about other weapons he picked up. Inventory gives the agent information about
weapons he possesses, about available ammunition etc.

Game map (GameMap) is a module for navigation. It operates over a map representation and built-in
A* algorithm. Map representation is initialized at the beginning of the simulation. Game map provides

21

Client

methods for obtaining path to desired location, for run along specified objectsin the map (e. g. navigation
points, weapons), etc.

Description of the communication with Parser

Communication is handled by the Body. It starts with the handshake with the Gamebots server. After that
the Gamebots start sending messages — strings according to Gamebots API. Parser parses those messages
to message objects—MessageObject descendants. Those messages are deltacompressed and sent to Client.
Client (Body) receivesthem, complete the compressed ones and fire event. Registered listenersare notified
about the message and perform designated actions.

More detailed descriptions of the communication follows.

Handshake with Gamebots

When the Agent reguests connection to parser, parser creates new copy of itself and this parser is assigned
to the Agent. Then it tries to establish connection with Gamebots. When ready, Gamebots send HELLO
to Client. It responds READY. After that the Gamebots sends all navigation points and inventory items
located in the location which is on the Unreal server. Those information are used for initialization of
module Map (necessary for proper function of built-in A*) and Knowledge in Memory (known items,
navigation points).

After that Gamebots sends the message which concludes game information (like name of the map, limit of
pointsto win the match, type of the game etc.). After thismessage user caninitialize agent’ slogic and after
that Agent sends | NI T which indicates to Gamebots that they can spawn the avatar to the environment
and start sending messages about agent’ s surroundings.

Messages from Gamebots

All information about the information carried by messages from Gamebots can be found in Gamebots
documentation. There are two main categories: synchronous and asynchronous messages. Synchronous
messages are sent approximately every 100 ms and cover environment information (navigation points,
players, etc.). Asynchronous messages are expressing events (damage, noises, pickup of anitem, kill, etc.).
Each message type sent from Parser to Client has its object type (subclass of MessageObject).

Optimization of network communication

Synchronous messages are delta compressed. They include information that client can remember and
therefore Parser doesn't have to send. Those information are omitted when the message is send again.

But that is not the only optimization of the network communication. The other is again focused on
synchronous messages. Synchronous messages create batches. They are bordered by BEA N, END
messages. Information in neighboring batches are quite similar and therefore it is not necessary to send
all messages in them over again. Parser keeps its own copy of actual batch and than sends only updated
messages (properties changed or are new). At the end of each batch Parser checks whether some of the
messages disappeared and send message to notify Client about it.

And the last optimization is that every object (message) with unique UT identifier got assigned unique
integer identifier and therefore the delta compression can save some network capacity using couple Bytes
for integer instead of tens of Bytesfor long string which is used asidentifier in UT.

Example of optimization: navigation point is originaly in GB a string with about 90 characters. In our
version of communication Parser sends object with 3 doubles (for location of the navigation point), String

22

Client

with identifier — about 20 characters, some Boolean values and the integer identifier. The next time the
same navigation point is sent, Parser sends only the integer identifier and Boolean val ues (those stands for
visibility and reach ability of the navigation point).

Commands

Commands are messages sent by Client to Gamebots, which specify what the agent will do. They are
represented by simple strings wrapped by an object and are composed in Body according to specified
parameters. As there are not many commands sent per second, they are not optimized at all.

When acommand is sent an event is fired, so anyone can observe the flow of commands (used in IDE).

Detailed communication description

Parser — Client communication:

e Parser creates full MessageObject from GB string message and takes old MessageObject of the
same UnreallD from its database of known objects (KnownObjects. HashMap — UnredID =>
MessageObject). Then it uses method Diff, which makes delta object from full one (set al unchanged
properties to null). If there is anything different from old object, it sendsit to the Client.

* Client receives amessage, which is usually not completely initialized. There are three possibilities:

« Message doesn't have ID (messages which are not compressed, mostly asynchronous messages) —
pass it along without any processing

* Message hasID, but it is new (not in KnownObjects) —add it to the them and passit along as well

* Message has ID and it has got old one in KnownObjects — use Update method of MessageObject
(called on old one, accepts new as parameter), this will update old object. Than send the updated
object to further processing (like processing items). Than pass it along — fire event.

Sending commands to Parser:

» Methods for creation of all commands specified in Gamebots API are parametrized only by objects
which are easily accessible using methods of AgentMemory, Agentlnventory, etc.

» Those methods compose proper string, which is then send to Parser which propagate it to Gamebots
and to the server of the game.

Figure 5.2. Command example

Voi d runToLocation(Triple location){
sendCommand(“ RunTo {Location " + location.toString() + “}";

}
Communication states

During the handshake with GameBots2004 the agent goes through a different communication states that
reflects the flow of the communication (namely handshake) with GameBots2004.

There are three types of states: Handshaking, Running, Final

Handshaking communication states:

23

Client

e START - the Agent object has been just created and connected to GameBots2004

* MAP_RECEVIVE_NFO - the Agent recognize the remote side as GameBots2004 and expecting NFO
message with basic informations about the current map (name, gametype, time limit, etc.)

* MAP_RECEIVE NAVPOINTS EXPECTED - NFO message has been received and now the Agent is
expecting the beginning of the NavPoints list that are placed in current map as well astheir connection
informations (edges between them)

* MAP_RECEIVING_NAVPOINTS - GameBots2004 are sending informations about the NavPointsin
the map, the Agent is storing them into the AgentMemory

* MAP_RECEIVE_ITEMS_EXPECTED - NavPoints were received, now the Agent expects the list of
itemsthat are available in the map and their respective locations

* MAP_RECEIVING_ITEMS - GameBots2004 are sending informations about the itemsin the map, the
Agent is storing them into the AgentMemory

* AWAITING_LOGIC - handshake with GameBots2004 is complete, now we're waiting for logic to
initialize, namely the postPrepareAgent() method is called, that can be altered by the user of the bot
(hook for initiaization of planners, engines, etc.

Running communication states:

* BOT_RUNNING - server isrunning and the bot in the UT2004 as well

* PAUSED - the bot is paused - either because the server is paused or the user has paused the bot using
RemoteControl panel inside IDE

Final communication states:
e TERMINATED - the Agent was terminated using IDE

» FAIL - error during the handshaking phase occurred, probably dueto thewrong GameBots2004 protocol
or the exception

» EXCEPTION - an exception occurred during the execution of the Agent'slogic

* MAP_FINISHED - the map on the server has finished and the connection has been lost

Thefirst communication stateis START - after that it will switch to the other onesin the order as described
in the list above. Those states closely reflects the handshaking phase with GameBots2004 therefore they
are called handshaking types. When the state is switched to AWAITING_LOGIC, the method from
Agent object postPrepareAgent() is called and the Agent waits for it's end. The state is then switched to
BOT_RUNNING or PAUSED depending on the state of the server.

The problems may happen anywhere during the communication. When the problem is encountered the
communication switches to one of the final state. When the state is switched to any of the fina state, the
agent is terminated. Reasons are;

» agent isterminated from the IDE

» GameBots2004 is of older or newer version and communication with different protocol

* exception occurred

24

Client

e map on the server

Figure 5.3. Communication states and it's order during handshaking with

GameBots2004

The agent has
just been
created.

Expecting start
of map
navpaint fist

Expecting stant
of map tem
Iist

Awaking th% ‘3

logic of the
agent to
initialize (user
method
called).

:_3.(START)
i
¥
(MAP_RECEIVE_NFO)é - Warting for
| NFO message
L wihbasic
¥ maa

,—}(MAP_FEECEIV E_NAV

POII"-.ITS_E}(F’ECTEED

[
d

k.

q

MAP_RECENING_MAVPOINTS

|

.—)(MAFP_RECEINE_ITEMS_EXPECTED)
[

L

k.

r

4

MAF_RECEINING _ITEMS

>

AWAITING_LOGIC

L

Logic init done,
SEMVer s running.

(BOT_RUNNING).7 Server resumed. 4<

Server paused

Logic init done,
senverispaused

nformations.

locations of
map's

Receiving a
| storing
location and
type of map's
items.

FAUSED

)

f

@ERuren) (i) (Excstnon) (uApfmstep)

Agent was Error in Exception Exception
terminated fram handshalke with occured during occured during
the IDE GameBots2004. execution. execution.

Map representation, navigation

Map representation and corresponding methods are covered in the class GameMap. GameMap has access
to navigation points sent at the beginning of the communication from Gamebots. Those pointsincludetheir
neighbors and therefore thereisafull representation of graph which represents the map agentisplayingin.

The built-in A* algorithm can be used by agent’slogic for reasoning about static objects on the map (it is

not working with dynamic game entities — e. g. Players and dropped items).

25

Client

There are couple frequently used methods. First is nearestltem. It uses A* to find out the distance from
current agent location to all items of specified type and returnsthe closest one. Its extension nearestHealths
returns specified number of health items of at least specified strength.

Another very useful method is runAlongPath. This method covers running along a list of navigation
points. It is capable to handle lifts which are amost in every map. It simply navigates agent from one
node to another using MOVE command. Anytime it come across navigation point with “Lift” in the unreal
identifier it starts sequencefor lift. First wait for lift to come down if necessary (message MOV), then enters
the lift and waits till the top and then resumes normal running along.

RunAroundltemslnTheM ap takes care about a continuous move of agent along specified items in the
map. It uses previous method for running between them. Moving along some pointsis frequently used in
behaviorslike patrolling behavior or just movement along weaponsin DeathMatch mode. It isresponsible
for all necessary stepsfor run along items— pick apath toitem, run along it, when closeto theitem, switch
to the next item in the list.

SafeRunToL ocation can lead an agent along path to the provided location. It cares about all related
background work — obtaining path to the location and running along it.

Asan agent can bedisturbed during running along by some higher level task it isnecessary to keep variables
used by runAlongPath up-to-date. As it could become a complicated task as agent has many paths to
run along (one to a player, another to weapon and yet another one to health item), there is an auxiliary
class PathManager which helps GameMap with path management. It ensures that current path is properly
initialized. There are two vital methods — checkPath and prepar ePath. Recommended policy is to call
preparePath until checkPath succeed and after that it is safe to call runAlongPath.

As someone may not intend to use those all-in-one methods, GameMap contains methods for obtaining
path to alocation using built-in A* or Gamebots.

ltems and Inventory

ltems

Itemsin original Gamebots and Unreal were only of one category —inventory. Thiswas abit inconvenient
as any developer needs common categories like weapons, armors, ammos (classes Item, Weapon, Health,
Ammo, Armor). Another natural thing to know iswhich ammo is suitable for which weapon.

When Body receives an inventory message, it processes it and according to information stored in the
database of item categories and properties, it creates an object of proper type and with appropriate values
of relevant variables.

26

Client

Figure 5.4. Scheme of the flow of the messagesin the Body.

5 Get info from database

Messa,
il Item
Ttem? Switch Fire
e P R L
Complete the message No type

(delta compression)

Extra

Example: Body received inventory with the Unreal Class which includes a string ,, ShockRifle". It finds
the record in the database and creates Weapon, which includes information about current weapon ammo,
maximum capacity of ammunition, maximum effective distance for shooting and whether the weapon is
suitable for ranged or melee combat.

All processing of items rely on properly filled database of items (class ItemCathegories). This is a bit
tricky, because this database is partly filled according to personal experience from the game and effective
distances of weapons could be inaccurate. Unfortunately there is no way how to find out exact values.
Uncertain information are effective and maximum distances for weapons and whether weapons are better
for ranged or melee combat.

Note that every incoming inventory/picked-up inventory fires two events — one for general item/pick-up,
one for particular item/pick-up (e.g. Weapon).

User-defined items

Every item category has its own class, which is a descendant of Item. Problem could be with user-
defined items (Unreal Tournament allows new objects in the environment). Those new inventory items
are classified as Extra items and stored in this class. Extra has the same properties as Item. User has to
handle specific attributes of his new objects by himself.

Inventory

There is no accessible inventory for agents in UT, so it is handled by Inventory module (class
Agentinventory). This module contains alist of weapons. It registers couple listenersfor inventory related
events (agent picked up weapon, ammo, agent'sinternal status). Thereisoneimportant thing to remember.
Picked-up items have separate class hierarchy which is similar to the hierarchy of pick-ups (items which
lay on the ground). Following classes are: Additem, AddWeapon, AddAmmo, AddHealth, AddArmor,
AddExtra, AddSpecial).

Inventory processes every pick-up message. If it is anew weapon, it addsit to the list of weapons. If itis
an ammo, it adds appropriate amount to the ammo of proper weapon in the list. If there is not a suitable
weapon, it adds the ammunition to the ammo list and every time new weapon comes, search this list
for suitable ammo. It also updates current weapon ammo according to agent status information (message
SELF).

27

Client

Inventory provides information like suitability of provided ammo (when agent sees an ammo pack, he
can determined, whether it is useful to pick it up) - suitableAmmo, whether agent has loaded weapons
(ranged or melee) — anyL oaded. Very useful method for beginners is getBetter Weapon. This method
do simple reasoning about weapons. It returns the most suitable weapon for the supplied positions of
agent and histarget. The picked up weapon is the loaded one, which effective distance is the lowest from
distances greater than the distance between the agent and the target — that gives good chance of getting
most devastating weapon for the situation.

Memory

Memory (class AgentMemory) implements four interfaces:

1

4.

WorldView — information about what agent currently sees and about his internal status, e. g. agent's
current health, weapon, ammo; visible navigation points, enemies etc. All information comes from the
first batch stored in the history.

. RecentMemory — a bit older information. Batches of messages (class HistoryBatch) are stored in the

class History. Recent memory provides access to those batches and can return information like recently
seen navigation points, players, ammo, etc.

. Knowledge — knowledge is for persistent knowledge about the map. There are two auxiliary structures

in AgentMemory to fulfill this task — Knownltems, KnownPlayers. Knownltems are initialized at the
beginning of the game by the batch of | | NV messages sent by Gamebots. KnownPlayers are updated
continuously.

Inventory — an access to methods supplied by Inventory.

Figure 5.5. History is a list of HistoryBatches. Each batch contains a hash map in
which are stored lists of messages of each type (key isatype of message, valueisa
hash map of messages (indexed by unique I D)).

History HistorvBatch

i Navigation Weapons
HistoryBatch 1 Points Armors
HistoryBatch 2 Heared Noises

Players
Wall collisions Ammos
BotKilled

HistoryBatch 20

Memory is composed of History, Inventory and structures for known items, players and navigation points.
The most important component is History. This class is behind everything concerning actual and recent
perception. History is an array of HistoryBatches. There are only a limited number of them stored and
they are connected as linked list.

28

Client

History has listeners registered for all types of messages and adds incoming messages to the first batch.
When the batch ends, new is created as a shallow copy (saves a lot of space) of the previous one, so
there is a continuous notion of agent surroundings. As it is only a shallow copy, when the message is
different from the stored one it replaces it. This is caused by the fashion of the network communication
optimization, messages are sent only when their properties changed (e. g. player's position) and hence
those new messages override the old onesin the first batch. Thus batches are keeping authentic image of
past seconds (it is possible to track the progress of enemy position to guess his tactics for instance).

Figure5.6. : Example of iteration through Player messages up to 3 batchesto past.

HistorvBatchlterator

S
t Players Navigation Points
s —| —=| |
I
t
Players
—=| —| —=|
Players
£ |
End

ThereisaHistorylterator defined for iteration through messages of the same type up to the specified time.

Action selection mechanism and Client

Thearchitectureof Clientisrobust. System of listenersallowsfor event driven action sel ection mechanism.
Memory, inventory and knowledge allows for long-period planning and reasoning. Example of such a
system is POSH which isintegrated to the IDE and therefore available at once for use.

Frequency. As the action selection mechanism works in iterations, there is a property of agent called
logicFrequency. It should be set between 5—20 Hz. Neverthelessit could be useful to set it to lower values
— for example during debugging agent can make decisions every 1s. Higher values are not recommended
as the frequency of incoming environmental information is only about 10 Hz. Then why is the top
recommended value 20 Hz? There are asynchronous events and higher frequency gives agent possibility
to react on them almost instantly.

29

Client

Typical use of the Client

Typical user can use I DE to create a project. All projects are based on class Agent. If user don't want to
use | DE inheriting class Agent would suffice to use all presented functionality.

Implementation of the agent should include overriding following methods:
» doLogic() - definition of logic.
» prePrepareAgent() - place to run all necessary initializations prior agent's connection to the simulation

 postPrepareAgent() - place to run initializations before agent is spawned to the connection. It isalready
connected and has all information about the map — list of all navigation points, items etc. It is a place
for some map preprocessing etc.

There are several issues related with running agent that programmer should be aware of.

Restart of the agent. When agent dies it is necessary to restart History and Agentinventory. Agent
therefore registers listener for BotKilled message and when it comes it calls restartAgent(). There comes
atricky part. Due synchronization issues it is necessary to reinitialize History and Agentlnventory when
logicisnot running. Thereforeit creates new instances of history and inventory in restartAgent() and when
thelogicisready it calls switchMemories(). This method replaces old instances by new one and logic can
keep on running. The test whether logic isready is performed in the run() of Agent.

PostPrepareAgent. It is not allowed to call any Commands in this method. All commands are working
after the INIT messageis sent to GB. This message is sent right after PostPrepareAgent().

Known Issues

There are several known issues.

HealthVial. Thisproblem usually occurswhen agent istrying to pick up HealthVial (item, which increases
agent'slifeby 5 paoints). It happensonly if agent isgoing over the spawning point of theitem just inthetime
it is being spawned. Hence agent would like to go to the spawning point and thinks that there is a health
vial which he had already picked it up. Thissituation endswith astuck if thereisno timeout for runto item.

Built-in A*. It is recommended to use built-in A* only for estimation of distance to items, enemies etc.
but not for navigation itself. Built-in A* sometimes usestransitive edgesin the graph and as the two points
are sometimes not reachable from each other it causes agent hit the wall.

JavaDoc

More information about any issue presented here can be found in designated JavaDoc.

30

Chapter 6. IDE module

Overview

Pogamut IDE is implemented as a plugin for NetbeansTM development environment. Main function of
Pogamut plugin is to support implementation of bots, their debugging and validation of implemented
model. These stages are supported by:

* Implementation — Pogamut supports three types of bots: Java bot, Scripted bot (implemented mainly
with Python in mind) and POSH bot. Each of these bot types has its own Project type implementation
conforming to NetBeans platform.

» Debugging —is supported by:

* List of registered servers
 List of running bot instances
* Introspection of running bots
e Log viewers

» Bot remote control panel

¢ Server control panel

 Validation — bot's behaviour can be validated by declarative experiments. Experiments are supported
by Experiment project type.

Pogamut Plugin is build on top of the Pogamut Core module and provides GUI to it's functionality.

Class overview

Root package of NetBeans plugin is cz.cuni.pogamut.netbeansplugin. Most of the important classes that
»do the job" in this package and it's subpackages are implementations of some classes from NetBeans
Platform API. Y ou have to be familiar with NetBeans Platform APl in order to understand the big picture.
Only the important classes will be highlighted in this overview, the exhaustive list of al classesisin
enclosed JavaDoc.

Package cz.cuni.pogamut.netbeansplugin

class BotNode — node representing arunning bot, it isdisplayed under UT server nodein ,, Runtime® panel.
class BotNodeChildren - list of nodes under BotNode (Logs, | ntrospection etc.).

class NbUTServer - UTServer implementation with some features specific to NetBeans platform, it raises
eventsin case of connecting new bots and registering experiments etc.

class UTServerNode - node representing Unreal Server (NbUTServer object) in NetBeans and providing
all the associated actions.

Package cz.cuni.pogamut.netbeansplugin.exceptions

Package containing exceptions specific to the Pogamut plugin.

31

IDE module

Package cz.cuni.pogamut.netbeansplugin.experiments

Runtime support for experiment project type.

class ExperimentNode - represents experiment at runtime. It provides common actions, shows log etc.

Package cz.cuni.pogamut.netbeansplugin.introspection

Nodes for introspection of bots properties and their periodical updating. Introspection isn't even driven,
IDE hasto update properties by itself.

class IntrospectableNode — node representing some introspectable object (e.g. Agent), it is wrapper of
Introspectabl eProxy object (found in PogamutCore). It contains nested class Root, which acts asroot node
of introspection and is responsible for periodical updating of all properties.

Package cz.cuni.pogamut.netbeansplugin.logging

Logging package is being used for viewing Bot logs (Platform log, User log, In log, Out log)
and for Experiment log. This package contains both presentation classes (LogNode, LogViewerPanel,
LogViewer TopComponent) and business classes (LogRecordsSource, LogTableModel, OutProxy,
InProxy, ...).

Standard Java logging isn't sufficient for purposes of interactive IDE. Therefore Pogamut has it's own
logging API. Main class of this API is LogRecordsSource, it enhances functionality of standard Logger.
Logger simply sends incoming messages to all Handlers and they filter the messages on the fly.
LogRecordsSour ce works similarly but it caches some amount of last LogRecords so when the associated
filter (LogRecordsSource.Filter) changesit can provide new filtered sequence of LogRecords received in
the past to al LogRecordSourcelListeners.

Business classes:
class LogRecordsSource — main class of whole package, it enhances standard Java Logger.

* When it receives new log record it filters it and send that record to all listeners
(LogRecordListener.notifyNewlL ogRecord(LogRecord r)).

* When the filter changes it computes new filtered sequence and sends it to al listeners
(LogRecordListener.setNewData(Collection< LogRecord> r)), they are supposed to discard previously
received records and use this new sequence.

interface LogRecordListener - Listener for changes in LogRecordSource object. There are two types of
change:

* New record arrives
* Filter of records source has changed

class LogTableModel - Table model designed to cooperate with LogRecordsSource object through
LogRecordListener interface. When the user changes Filter for actually viewed log, the LogRecordSource
fires notifySetNewData() event which causes update of all listeners, including this table model.

class InProxy (OutProxy) — these classes are listeners on all incoming (outgoing) GB messages and
translate them to LogRecords. They both extend LogRecordsSour ce class.

class LogProxy — adapts standard Java Logger to LogRecordsSource.

32

IDE module

Presentation classes:

class LogNode — represents L ogRecordsSource. It provides filter through “ Properties” window and opens
log viewer window when user double clicksiit.

class LogViewer Pane — GUI component showing log records in table. The table shown in this panel uses
LogTableModel mentioned above.

Package cz.cuni.pogamut.netbeansplugin.options

Classes for Options panel ,,Pogamut* shown under Tools->Options. These classes were generated by
NetBeans ,, Option Panel“ wizard and then manually edited. Options are stored using Java Preferences
AP, for details see load() and store() methods in class NetbeanspluginPanel.

Package cz.cuni.pogamut.netbeansplugin.project

Implements all necessary classes from NetBeans Platform's Project APl needed to set up these types of
Pogamut projects: Java bot, Posh bot, Scripted bot and Experiment.

All bots are being run inside the same JVM as IDE. This greatly simplifies communication between IDE
and running bot. If the were to running in different JVMs then RMI or Corba had to be used.

Java bot project

Java bot project uses standard NetBeans infrastructure for Java SE projects. The only difference
is in build script (build.xml). Java SE projects are being run in standalone JVM. Java bot project
type has modified ,,run“ task. This task launches BotLauncher program (BotLauncher class resides in
cz.cuni.pogamut.netbeansplugin.project package, in project BotLauncher, not in NetBeans plugin) which
connects to Launcher Server running inside IDE. Thisway Java bots can be run inside IDE.

Posh bot, Scrip bot and Experiment projects

These are completely new project typesimplementing al classesrequired by NetBeans Platform. Tutorial
onwriting new project types can befound at http://platform.netbeans.org/tutoria s/nbm-povray-1.htm. Our
implementation isinspired by this tutorial.

class PogamutProjectFactory — ancestor of classes responsible for identifying project directory on disc
(in open dialog).

class PogamutProject - ancestor of all Pogamut projects. Provides common functionality required by
NetBeans.

Method run(File file) is the place where bots are loaded from source file, instantiated and connected to
the server selected in the IDE.

class PogamutPr ojectL ogical View —tree structure showing source files and associated user actions (“run”,
“delete”, etc)
class Launcher Server — server waiting for requests on launching Java bots inside the IDE.

Package
cz.cuni.pogamut.netbeansplugin.project.templates

Each project type hasits project templ ate. Project templatesare shownin“ New project wizard” and unpack
empty projects parametrised by user input (project name) to specified location.

33

http://platform.netbeans.org/tutorials/nbm-povray-1.htm

IDE module

Project templates were generated by “New Project Template” wizard and then manually edited.
Customization of unpacked templates is performed in *Wizardlterator.instantiate() method.

Chapter 7. Mediator

Overview

Mediator can be viewed glue between parser and client or as amessenger delivering messages from parser
to client and vice versa. It wraps threads that are waiting for the message from one side to be delivered to
the other side. It is used by the Client either for the Local Parser or Remote Parser (see chapter Parser).
The Mediator has also some knowledge about the GameBots2004 protocol. It recognizes the end of the
communication (when MapFinished or Disconnected message arrives) and correctly terminates itself at
the end.

Class Overview

All classes and interfaces of the mediator can be found in package cz.cuni.pogamut.communication.

class Mediator - implementation of the Mediator, messenger between Parser and the Client

interface Mediator ClientInterface - interface that every Client has to implement, it allows the Mediator
to receive messages from the Client for the delivery to the Parser and sending messages to the Clint that
were received from the Parser

class MediatorForClient - class which implements MediatorClientinterface and is used to by
RemoteParser for creating new Mediator

interface Mediator GBInterface - interface for sending messages to the GameBots2004

interface MediatorParserinterface - interface for receiving parsed messages (derived from
M essageObject)

Class Mediator

The Mediator is like messenger between two sides. On the right side is Parser, who is producing parsed
messages from GameBots2004 for the Client. On the left is the Client or somebody who accepts parsed
messages from GameBots2004 and produce String commands. The Mediator implements the delivery of
those messages.

It is configured by three objects. They sequentially implements MediatorParserinterface,
Mediator ClientInterface, Mediator GBInterface. Through those interfaces the Mediator is receiving and
sending messages. It creates two threads to achieve this. One thread for one way of the communication.
Each thread is transporting the messages from one side to another.

TheMediator isaware of the protocol of GameBots2004. When the message M apFinished or Disconnected
isreceived, it shut downs itself — terminating the delivery of messages and stopping threads.

Whenever any exception israised, the Mediator catches it and shut downs both threads.

35

Mediator

Figure7.1. Typical usageof theMediator, onethread istransporting messagesfrom
the Parser to the Client, another one from the Client to the Par ser

Parser to Client thread

zend messages IB
%
Client

< commandsfor GB |

Parser Mediator

Client to Parser thread

Usage
The Mediator is used at two places.

First it is used to link the Parser class instance with AgentBody (LocalParser) class that is processing
parsed messages from GameBots2004.

Second it is used by RemoteParser server to connect new client with the Parser class.

36

Chapter 8. Experiment

ldea

Experiments should allow user to write script that would set up the server — change map, create and spawn
bots and then run the desired scenario up to a certain point defined by user where it should terminates.
Experiment definition also contains alist of events and actions (e.g. triggers).

Eventsdefinition can expressany first order logic sentence. Implementing thisisnot atrivial task therefore
we are using already existing engine, namely JBoss Rules 4 (formerly known as Droals).

JBoss Rules (Drools)

Drools is an open-source rule based engine that may be distributed and used for free. It definesit's own
language for writing the rules and allows user to call Java from the rules. Basically the rules are if-then
rules. They have precondition and effect. Any sentence from first order logic may be written into the
precondition thusiit is giving the user to express alot.

Drools are using Java Beans specification to access the properties of the inserted facts. Thereforeit isquite
easy to write the preconditions for the events as you are using the same names for object properties asin
the code of it's classitself.

Y ou may find more information and the documentation of Drools at web page http://wiki.jboss.org/wiki/
Wiki.jsp?page=JBossRules.

Package cz.cuni.pogamut.experiments

class Experiment- main class wrapping whole experiment
class ExperimentConfiguration - class that contains configuration variables for the Experiment object

class ExperimentGlobals - extends HashMap and serves for storing global variables created during the
experiment, it is used by the user (programmer) of experiment

class ExperimentRules - wraps a few Drools classes that are needed by the Drools engine to startup such
as configuration object, compiled rules and custom class loader

class ExperimentStartup - classthat serves asthe mark up of the beginning of the experiment inside Drools
engine, itisadded asthefirst fact to the session so it | et the user to declare startup rule that should initiaize
experiment

class Message - simple class containing string and integer property that can be used by user to assert facts
into the Drools engine

class Parameter - parameter of the experiment that can be specified via IDE (important files)

Class Experiment

Initialization of the object

For creating an Experiment object we need three things:

37

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRules
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossRules

Experiment

 Droolsrules—text definition of the experiment in Drools language provided by the user, internally it's
passed as an |nputStream

 object implementing UTWorld interface — environment where the experiment will be run, internally it
isalways UTServer or it's descendant NbUT Server

* output directory where we should save results (e.g. 10gs), the class requires the directory to be empty

Those variables are part of ExperimentConfiguration. Experiment class contains only one constructor with
parameter ExperimentConfiguration.

Drools rules are then passed to the ExperimentRules that is calling Drools engine and compiling them.
During the compilation (and the whole process of Experiment instantiation) it may raise Exception (e.g.
because of compilation error, fileis missing, etc.)

Problems with class loader during evaluation of the
rules

Drools version we're using (version 4 RC2) strangely handles the class loaders. The custom class loader
may be specified during the compilation of the rules allowing the user to use other Java libraries for
instance, but the same class loader is not used during the execution. That leads to the exception during the
evaluation of the ruleswhen the user istrying to instantiate an object form his or her library. We need this
custom class loader for accessing the agents the user is created through our IDE.

We have been reading the source code and has found out that thread's context class loader is used as the
hel per when the classis not found during the eval uation. So we are setting the thread's context classloaded
to our BotProjectsClassLoader instance that is loading the jars from projects directory of the Pogamut
platform directory.

We fedl that thisisrather ugly solution but as the Drools doesn't (at present time) contain any mechanism
that will alow us to specify the custom classloader that should be used during the evaluation the rules
then we had no other chance.

runExperiment()

After the Experiment object is successfully instantiated (no exceptions occurred) it can be started with
method runThread().

The method runThread() will start the experiment in separate thread. The thread will first call the method
init() that initialize the Drools stateful sessions (see Drools documentation for more) and insertsfirst facts
and sets up the global variables.

Global variables:

o utWorld — interface to the server that alows the user to control the environment

* experiment — actual instance of the experiment that should be used only for stopping the experiment
via experimentEnd() method

* log — Logger instance for the whole experiment

« globals—instance of ExperimentGlobals classthat servesfor storing objects that may be created during
the course of experiment (we have found that Drools doesn't preserve changes to global variables
throughout different rules execution

38

Experiment

e parameters- map of parameters of the experiment

Facts:

* instance of ExperimentSartup with property startup set to true — this allows the user to write the rule
that can fire at the beginning of the experiment

* each parameter is also asserted as afact

Handling of the agents

New factsare added to the Drools session every timethe new agent islaunched by some of the experiment's
rule into the UTWorld. Experiment isimplementing BotEnteredWorldListener, BotLeftWorldListener and
register itself asthe listener into the UTWorld, therefore it always knows when new agent is started. Two
facts are added or removed when new agent enters resp. leaves the environment:

* instance of Agent —the whole agent that was created and entered the environment
* instance of AgentMemory —the Memory instance of the agent that has entered the environment

We need two facts because the Drools doesn't support nested identifications of the variables. You can't
write arule that depends on the state of inner property of the property of some object (e.g. on the name of
the agent that is stored in the property memory inside the agent instance).

Evaluating the rules

The rules are evaluated every time a fact is inserted to the session or it has changed inside the session.
That isincluding:

* adding new agent facts— every time new facts about some agent are added or removed from the session,
the rules are evaluated

 agent'slogicthread iteration end event —the Experiment isregistering itself asan listener for agent'slogic
thread iteration end event, every time the agent finishes it's doL ogic() iteration, the facts are updated
and rules are evaluated

Saving logs to hard drive

Experiment log and al logs from every agent that has ever entered the environment during the run of the
experiment is saved to the hard drive to the directory specified during the instantiation of the object.

Termination of the experiment

Experiment may terminate due to an exception or by calling experimentEnd() method on Experiment
instance. After the end of experiment, all logs are closed and the Drools session is destroyed.

Running Experiment from command line

The class Experiment contains also a static void main(String ar gs) method that allows the user to run the
experiment from the command line. If it is started without parameters, it will give this help:

Pogarmut Experi ment

39

Experiment

This class is neant for running experinment wthout gui in batch node.
After you debug your experinment using Poganut GU (NetBeans) you may
create a batch file that will run the experiments using this class

mai n net hod. Using batch file you may run several experinments over night.

Usage:

java -cp ./src;./lib cz.cuni.poganut.experiments. Experi ment
-f file.drl -h server:port [ADD TI ONAL OPTI ONS]

Note that you have to specify java '-cp' flag, where you have to
specify classpath for sources and libraries.

Requi red options:

-f experinent_rules.drl ... rules file of the experinment
--file experiment_rules.drl

-h host[: port] ... host where UT2004 with GaneBots2004
is running, where to run the experinment
--host host[:port]

Addi ti onal options:

-n nunber _of _repeats ... how many times to run the experinment

--nunber _of repeats (default 1)

-0 output_directory ... directory where to save results (default '.'),

--output output_directory if doesn't exist, will be created
Exampl e:

java cz.cuni.pogamut.experiments. Experi nent -f nyExperinent.drl
-h artemis.ms.nff.cuni.cz:3001 -o /tnp -n 5

This will run experinment defined in nmyExperinment.drl (Drools

rule file) on host artemis.nms.nff.cuni.cz (where UT2004 GanmeBot s
server is running). The experinment will be repeated 5 tines and
results will be saved to the /tnp directory. This exanpl e assunes
you have your PATH set to java.

40

Chapter 9. Introspection

Classes under Introspection package provideinfrastructure for introspecting arbitrary object implementing
Introspectable interface. Introspectable interface has only one method returning an Introspectabl eProxy
object. IntrospectableProxy is main object for introspection, it should reflect properties of object being
introspected (the one that returned this proxy). Itis“logical view” of the introspected object.

I ntrospectableProxy interface has two methods getChildren() and getProperties(). Method getChildren()
returnsarray of I ntrospectabl eProxy objectsthat should be presented in tree viewsas children of thisproxy.
Method getProperties() returns array of Property objects, these are for example shown in “Properties”
panel inthe IDE.

There are two approaches for creating list of properties and children for introspection:

 automated introspection - based on Java Reflection API in the case of Java bots or on traversing script
context in the case of Posh bot.

« user defined introspection — programmer overrides getl ntrospectableProxy() method in Introspectable
interface and returns his own implementation of IntrospectableProxy that will provide different logical
view (with properties that cannot be directly obtained by introspection or some simplified view).

There is default implementation of IntrospectableProxy — DefaultlntrospectableProxy. Its facilitates lazy
initialization of properties and introspectable proxies, it is used by automated introspection.

Pogamut implements two types of automated introspection — Java introspection and Python introspection.
But it is easy to provide introspection support for other types of scripting languages. Y ou have to:

 implement ScriptProxy that will be aware of scripting language, it will probably work with internals of
ScriptEngine for that language (e.g. Contexts, globals)

» implement ScriptProxyFactory that will create Script proxy object if it will recognize given
ScriptEngine.

* register that ScriptProxyFactory through SPI

Class ScriptProxyManager is then responsible for getting the right ScriptProxy for your ScriptEngine. It
will ask al registered ScriptProxyFactories and stop when first of them returns ScriptProxy object.

Python introspection is a good example of this mechanism.

Package cz.cuni.pogamut.netbeansplugin.
project.introspection.java

Introspection of Java objects is provided by class JavaReflectionProxy. It uses Java Reflection
APl to get list of al children and properties. Children are all fields implementing Introspectable
interface. Properties are all fields marked by @PogProp annotation that has registered property editor
(PropertyEditorManager .findEditor (field) returns non null value).

41

Chapter 10. Bot samples
Simple bot

Simple bot islike adight introduction to the platform. Itslogic is quite primitive and it just demonstrates
basic use of client's libraries.

protected void doLogic() {

}

/1 1F-THEN RULES:
/1 1) are you wal ki ng? -> (check WAL)
if (this.menory.isColliding()){ this.stateWalking(); return; }

/1 2) do you see iten® -> (pick the nost suitable itemand run for)

if (choosenltem!= null || this.seeAnyReachabl eltemAndWantlit())
{ this.stateSeelten(); return;

/1 3) do you see navpoint? -> (pick navpoint randonmly and wal k t owar ds)

if (this.menory. get SeeAnyReachabl eNavPoi nt ())

{ this.stateSeeNavpoint(); return; }
/1 4) true -> (not seeing any navpoint, turn a bit)
this. stateTurnAround();

Simple bot'sdoLogi ¢ procedure shows main outline of the simple bot's intentions. Itslogic is based on
if-then rules. There are only four of them.

1

Prey

Callision - firesif bot collides with something - this method checks for wall and player collisions. If
some of that is true, bot tries to jump. It usually helps as collisions are frequently caused by small
obstaclesin the way.

. Seeitem - firesif bot spotsanitem, it triesto pick it up. And now something a bit interesting, how bot

runs to the item? The simplest way would be to run directly to the item. But such approach would not
work every time. Why?Imagine, that bot spotsan item lying somewhere on rai sed platform. He attempts
toruntoit and hit thewall. So the better way isto use GameMap method saf eRunToLocat i on() .
Which will guide bot safely to the chosen location along the path obtained from UT server. This path
is computed using server's A* algorithm.

. See navigation point - as we said in the introduction to the Simple bot, it is a simple bot. Therefore

it aimlessly wander around the location. For such a purpose serve last two if-then rules. First is fired
when bot spots a navigation point and run to it.

. Second rule is turn around. It fires only when bot is not colliding, is not seeing any item or navigation

point. Then it turns around in the hope of spotting something.

Prey isonly atoy for the hunter and asatoy should at |east move al ong and withstand some playing around.
So pray is simply running around the medical kits placed in the location.

protected void doLogic() {

}

/1 1) is colliding? -> go to WALKI NG (check WAL)

if (this.menmory.isColliding()){ this.stateWalking(); return; }
/1 2) go around health itens

this. stateCGoAroundl tens();

42

Bot samples

Prey's logic is even simpler than the Simple bots one. Though there is one thing worth describing.
It is the second rule named st at eGoAr oundl t ens() . This procedure is responsible for the
moving-around-medkits behavior. How can we get such a behavior easily? GameMap contains method
r unAroundl t enmsl nTheMap() . This method accepts a list of items as a parameter. So we need
to obtain those items. As they are al the time the same, it will not be effective to obtain them every
call of doLogi c(). There is an easy solution to this little problem. As you may recall, there are
other methods of agent then doLogi c() which could be overridden. In our case, we need to override
post Prepar eAgent () . This method is called right after bot receives map and game information.
Therefore he knows, how the map looks like and knows where are all medkits. So we can easily obtain
thislist once for al the live of the bot.

Next piece of code shows how to obtain all health objects and insert them to the list of Items which is
necessary for ther unAr oundl t emsl nTheMap() method (notethat get KnownHeal t hs() returns
Heal t h objects, so it could not be simply put to the array of | t en).

this.healths = new ArrayList<ltenr();

for (Itemitem: this.nmenory. get KnownHeal t hs())
this.healths.add(item;

/** shuffle the itens so no bot will go into the same river twce */

Col I ections. shuffl e(heal t hs);

As bot now possesses list of items, it can call r unAr oundl t ensl nTheMap() all the time heis not
colliding with something. That would be all about the Prey.

Hunter

Hunter is the most advanced example of bot. He is capable to choose the best weapon according to the
current combat situation. He engages enemy when he spots him. When hurt he searches for the closest
medkit and when he spots some item he makes some reasoning before he picksit up so heis not picking
up useless crap. For such a complex behavior we will first present his list of if-then rules and then will
explain one rule by another highlighting usage of some special methods of the platform.

Hunter is a good example of introspection as well. He allows user to disable some parts of his if-then
rules. Aswe can see bellow, someruleshasastheir first preconditiont hi s. shoul dXXX. Those boolean
values are enabled via introspection in IDE and user can then for example disable bot from engaging
enemy by asimpleclick.

protected void doLogic() {
/1 1) see eneny and has better weapon? -> switch to better weapon
if (this.shoul dRearm && this. menory. get SeeAnyEneny()
&& this. hasBetterWapon())
{ this.stateChangeToBetterWapon(); return; }

/1 2) do you see eneny? -> start shooting / hunt the eneny
if (this.shoul dEngage && this. menory. get SeeAnyEneny()

&& this. menory. hasAnyLoadedWapon()) {this.stateEngage();return;}
this.eneny = null;

/1 3) are you shooting? -> stop shooting, you' ve |ost your target
if (this.menory.isShooting()) { this.stateStopShooting(); return;

/1 4) are you being shot? -> turn around, try to find your eneny
if (this.menory.isBeingDamaged()) { this.stateH t(); return; }

43

Bot samples

/1 5) do you have eneny to pursue? -> go to the |ast enemy position
if ((this.lastEneny !'= null) && (this.shoul dPursue)
&& (this. menory. hasAnyLoadedWeapon()))
{ this.stateCGoAtLast EnenmyPosition(); return; }

/1 6) are you wal ki ng? -> check WAL
if (this.menmory.isColliding()) { this.stateWalking(); return; }

/1 7) do you see iten -> pick the nost suitable itemand run for it
if (this.shouldCollectltems && this.seeAnyReachabl el temAndWantit())
{ this.stateSeelten(); return; }

/1 8) are you hurt? -> get yourself sonme nedKit
if (this.menory. get AgentHealth() < this. healthLevel
&& this.canRunAl ongMedKit()) { this.stateMedKit(); return; }

/1 9) run around itens
this.stateRunAroundltens(); return;

}

Now we will describe all 9 rules.

Has better weapon

This rule is the first, because bot needs to have the best weapon before he starts engaging the enemy.
Hunter uses one of those magic methods of | nvent or y which can be found in memory. This method
evaluates all weapons which are currently available to the bot and returns the most proper one. It makes
the reasoning according to the distance between the bot and his opponent.

How is this reasoning performed? Every type of weapon has some additional, hard-wired properties. We
will need maximal and effective distancefor thistime. The values of those arejust guessed, so they are not
exact. Nevertheless for such reasoning they suffice. The chosen weapon is then the one loaded, with the
lowest effective distance - lowest means that it isthe most deadly ones (like the flak cannon for instance)
and with maximal distance greater than the distance between the player and his enemy. As we can see,
such reasoning is not always right, but in most cases it is sufficient as bot usually does not possess all
types of weapon.

Engage

Engage is fired when hunter possesses |oaded weapon and spots an enemy. He starts to fight with him.
Procedure st at eEngage first updatesinformation in enery and then starts hunter to shoot at enemy if
heis not shooting already. If heisfar from enemy, he runs straight towards the enemy.

Stop shooting

Hit

Stop shooting is crucial rule even though it is quite simple one. It firesif bot is shooting. Asit is after the
engage, bot no longer sees any enemy and therefore should stop shooting. The problem with shooting is
that UT does not control such things and therefore bot has to care about that.

Hit is fired when bot is being damaged. Asiit is after the engage rule it means that someone shoot at the
bot and he is not aware of his presence. So he turns around hoping that he will spot enemy in the time
and starts to engage him.

Bot samples

Pursu

e

This state servesfor pursuing the enemy. This behavior usesvariableeneny. If eneny isnul | , hedoes
not perform any pursuing. If there is some opponent stored, bot runs to its last position and if he does
not meets him, he set enemy to nul | and therefore ends the pursue. Running to enemy's last position is
performed using saf eRunToLocat i on() .

Walking

Grab |

MedKki

St at eVl ki ng isthe same procedure responsible for collision with walls and players asin previously
described bots.

tem

This rule is fired when hunter spots some item and want it. Procedure
seeAnyReachabl el t emAndWant | t () containsabit of reasoning about what is useful for bot at the
moment. The reasoning differs according to the category of theitem. If it isweapon, bot want theitem only
if itisfor short distance fight and bot already has long distance fight weapon and vice versa. Medkits are
wanted only if bot has lower than maximal health (normally 100). Armor is chosen if bot has not reached
maximum possible armor and ammo is chosen if bot possesses weapon for it.

If, after all that reasoning, is the weapon worth for bot, it runsto it using saf eRunToLocat i on() .

t

Medkit rule fires when bot has low health level. He runs around closest medkits to heal himself.
There hunter uses another useful method of GameMap - near est Heal t h() which returns specified
number of Heal t h objects of at least specified strength. Then he can run along those objects using
runAroundl t ensl nTheMap() .

Run around weapons and armors

Concl

Last ruleisfired every evaluation of logic, when bot has nothing better to do. Thereforeit standsfor default
behavior of bot when there is nothing more important. Asthe name could tell, it makes bot running around
spawning positions of weapons and armors in the location. List of those weapons and armors is obtained
inthe post Pr epar eAgent () . For running along we user unAr oundl t ensl nTheMap() .

usion

For the more detailed description of Hunter please see the Manual of Pogamut, where is complete
description of every single part of the hunter.

SPOSH bot

SPOSH bot isan example of bot whoselogic isdriven by SPOSH plan. POSH isaParallel-rooted Ordered
Hierarchical Slip-stack planner whose description can be found on [WWW]. The design methodology
used when working with POSH is BOD - Behavior Oriented Design. This design paradigm states, that the
agent has acts and senses. Acts represent his actions in the environment. Senses are connected with his
perception of the environment and of his internal state. As the description of POSH and BOD is beyond
the scope of this documentation we will explain the functionality of this bot presuming that the reader

45

Bot samples

is familiar with the principles of BOD and POSH. Yet we will try to write it as smply as possible so it
hopefully will be possible to get the main ideas even without this knowledge.

Main difference on the first sight between the SPOSH bot and previous bots is in the decomposition of
the bot. Previous bots have if-then rules sequence in the doLogi ¢() and methods which are used by
those rules were in the same file. There it uses by default following structure. Bot is decomposed into
three main categories of files. First is the bot himself - file where we can override methods of agent like
post Pr epar eAgent () . Second isthe POSH plan. This file contains description of the plan - similar
to if-then rules in doLogi c() in previous bots. Third category contains usually more files describing
behaviors. Each behavior contains some acts and senses which are necessary for some behavior - an
exampl e of behavior could be movement, combat, communication with others, etc. This concept allowsfor
dividing complex bot's behavior to logical parts. We will discuss this matter lately, first we will introduce
the POSH plan.

((docunmentation "" "Ondrej Burkert" "Sinplified Hunter")
(DC PoshBot (goal ((fail)))
(drives
((rearm (trigger ((seeEneny)

(hasBetter\Wapon)))rearm))
((engage- eneny (trigger ((seeEneny)

(armed))) engageEneny))
((stucked (trigger ((stucked))) junp))
((shooti ng (trigger ((isShooting))) st opShooting))
((lowhealth (trigger ((health 80 <)

(knowMedki ts))) r unAroundC oseMeds))
((see-item (trigger ((seeltemandvantit))) runToltem))
((run-around (trigger ((succeed))) runAroundl tens))

)))

Aswe can see, the POSH plan contains rules aswell, those rules are called drives. This example of POSH
bot isin the matter of fact more or less just a reimplementation of Hunter's behavior. POSH capabilities
are far beyond of this plan but they are not necessary for such a straight forwardly design bot .

So the bot is again rearming if he spots an enemy and has better weapon for the situation. He engage him
just after the rearm. Jumps when stuck - wall / player collision, stops shooting when shooting and not
seeing enemy etc.

A bit interesting drive is low-health. We will use it as an example of POSH syntax.

((docunmentation "" "Ondrej Burkert" "Sinplified Hunter")
(DC PoshBot (goal ((fail)))
(drives
((lowhealth (trigger ((health 80 <)

(knowivedki ts))) r unAroundC oseMeds))
)))

This would be a simple plan with only one drive. POSH syntax is inspired by the Lisp (logical language
which isused alot in the USA), so there are many brackets, be careful about having them all right. The
DC means the Drive Collection and its goal is to fail. That means that bot will never reach the goal and
will run forever. If you set the goal on something more specific or rather possible, bot will finish when
reaching the goal.

Drivesarestoredinthelist of drives[(dri ves (()) (()) (()))]. They areordered and evaluated
according to that order. Each driveisatriple name, trigger and action. Trigger can contain more conditions
which are linked by logical AND. There we can see two preconditions which has to be met before the

46

Bot samples

drivefires. Conditions are using senses from behaviors. For instance health is a sense which returns actual
level of health of the bot (number between 1 - 200). Condition (heal th 80 <) ismet when bot has
the health lower then 80 points - POSH syntax uses postfix notation. As an action of the drive we use there
directly actions specified in the behavior.

Behaviors are then just lists of acts and senses.

public bool ean sense_fail () {
return false;

}

Thisis an example of very simple sense fail which isused asagoal in the root of the plan. Aswe can see,
method name is beginswith sense_ which means that it falls among senses.

public void action_runAroundd oseMeds() {
this.log.info("Action RUN_ AROUND CLOSE MEDS.");
t hi s. bot. get Map() . runAroundltensl nTheMap(this. medkit sToRunAround, f al se);

}

Next code example introduce the action r unAr oundCl oseMeds. Again we have special prefix for the
actions- act i on_. For the simple SPOSH bot we used only one file with behavior. The example can be
currently found in the packagecz. cuni . sposh. j ava. exanpl es.

Khepera-like bot

Kheperalike bot demonstrate tracing and autotracing capabilities of the agent in Pogamut. He isinspired
by the well-known project Khepera[WWW] which isfrom the roboticsfield. Our bot has three "infrared"
Sensors - autotraces. Those sensors are in fact vectors of specified length, which starts from the center of
the bot's body and goes to 3 directions - one straight forward and other two 45° to the left and the right
sides from the center vector. Sensors returnstrue if they intersect with something solid in the location.

As we have three sensors available, there are 8 possible combinations of their states - imagine a binary
code. SointhedolLogi c() of Khepera-like bot is a big if-then tree which covers these 8 possibilities
and defines proper action for each one. So for instance if bot hits with his front and left sensors it turn
horizontal to the right a bit and sleeps for awhile to alow its avatar to finish the turn. Nevertheless there
ismay be agood place to note again that bot will sleep for awhile after every iteration of hislogic - that is
according to the | ogi cFr equency. We can see corresponding part of the if-then tree in the following
torso of the code.

if (sensorFront) {
if (sensorlLeft) {

if (sensorRight) {
/1 LEFT, RIGHT, FRONT
body. t ur nHori zont al (bi gTurn);
Thr ead. sl eep(turnSl eep);

} else {
/1 LEFT, FRONT
body. t urnHori zont al (snal | Turn);
Thr ead. sl eep(turnSl eep);

}

So the Khepera-like bot is again very simple, but you can find there examples of proper use of autotraces
and traces which can be very important for example for steering behavior of the bot.

47

