
Charles University in Prague

Faculty of Mathematics and Physics

DIPLOMA THESIS

Bc. Jakub Gemrot

Koordinace chování virtuálních lidí

Behavior Coordination of Virtual Characters

Department of software and computer science education

Supervisor: Mgr. Cyril Brom, PhD.

Faculty of Mathematics and Physic

Charles University in Prague

Study program: Computer Science, Theoretical Computer Science

2009

To my dearest … one day a boy and a girl will fall in love.

To my really patient parents … I'm sorry it took so long, I really am.

To Pogamut team members … working with you guys is fun!

To Cyril … ideas may be veiled in the fog, but you have a battery light.

… last but not least – thanks go to my alma mater – Charles University!

I declare that I have written this thesis by myself and that I have used only the cited re-
sources. I agree with making this thesis public.

In Prague, 16. 4. 2009 Jakub Gemrot

2

Table of Contents
1 Introduction..6
2 Area of the thesis...8

2.1 Pogamut platform...10
2.2 Thesis's terms and abbreviations..11

3 Structure of the thesis...12
4 Goals ...13
5 Virtual interactive storytelling...14

5.1 Believability of the story..15
5.2 Role-plot duality...15
5.3 Role definition..16
5.4 Story definition approaches..16
5.5 Chosen approach..18

6 Story authoring...21
6.1 Actors' behaviors..21
6.2 Abstraction of the story world..23
6.3 Story entities, facts and relations...23
6.4 Story actions...24
6.5 Story situations and boundary problem..24
6.6 Story authoring...25
6.7 Chapter conclusion..26

7 Architecture..27
7.1 Step 1 – Virtual environment...27
7.2 Step 2 – Sensing and acting in the environment..27
7.3 Step 3 – Actor's perception and story relations..29
7.4 Step 4 – Role definition..31
7.5 Step 5 – Plot definition...32
7.6 Step 6 – Story execution..32
7.7 Summarization...32

8 StorySpeak origin...33
8.1 BDI architecture...33
8.2 AgentSpeak(L)...34
8.3 AgentSpeak(L) extensions...37

9 StorySpeak...39
9.1 Additional StorySpeak extensions...39
9.2 StorySpeak plans and basic expressions..40
9.3 Additional expressions...42
9.4 Variables and unification...43
9.5 Calling Java methods, accessing Java fields..44
9.6 Template plans, plan delegation and parallel expressions...........................45
9.7 Failing plans...46
9.8 Subplans and handling of events inside instantiated plan............................47
9.9 Plan annotations...47
9.10 Definitions..48
9.11 Interpretation algorithm...50
9.12 Extending StorySpeak..54

3

10 Storytelling framework..55
10.1 Additional infrastructure work...55

11 Evaluation..57
11.1 Shared parts..57
11.2 Story script 1 – Simple greetings...59
11.2 Story script 2 – Greetings with replies...61
11.3 Story script 3 – Story manager orders actors to party!.................................64
11.4 Story script 4 – Ignorant Gregory..66

12 Conclusion...70
13 Future work..71
Literature...72
Appendix A – Related work...74

Machinima..74
Inscape..74

Appendix B – The StorySpeak language grammar...75
Appendix C – Enclosed CD..80

4

Název práce: Koordinace chování virtuálních lidí
Autor: Jakub Gemrot
Katedra: Katedra software a výuky informatiky
Vedoucí diplomové práce: Mgr. Cyril Brom, PhD.
e-mail vedoucího: brom@ksvi.mff.cuni.cz

Abstrakt: Tato práce je o specifickém přístupu ke koordinaci chování virtuálních
agentů. Každý virtuální agent je schopen jednat sám za sebe, ale také může být
kdykoli veden některým z koordinačních agentů. Tento přístup je navrhnut speciálně
pro oblast interaktivního storytellingu, kde jednotliví agenti - herci jsou vnímáni
pouze jako loutky, které jsou ovládány abstraktním agentem - režisérem. Kontrolní
mechanismus agentů je založen na BDI architektuře. Zejména na jedné z její
implementací a to jazyku AgentSpeak(L). Jazyk AgentSpeak(L) je rozšířen
o šablonované plány a nový mechanismus exekuce plánů, který umožňuje zmíněnou
kontrolu agentů - herců.

Klíčová slova: virtuální interaktivní storytelling, BDI, rozšíření AgentSpeak(L),
definice příběhu, provádění příběhu

Title: Behavior Coordination of Virtual Characters
Author: Jakub Gemrot
Department: Department of Software and Computer Science Education
Supervisor: Mgr. Cyril Brom, PhD.
Supervisor's e–mail address: brom@ksvi.mff.cuni.cz

Abstract: This thesis is about specific approach to the behavior coordination of
multiple embodied virtual agents. Agents may act for themselves or be controlled
directly by bodiless coordination agents. This kind of approach is designed for the
area of interactive storytelling, where the actor agents are viewed as a string puppets
that are controlled by the abstract director. The control mechanism is based upon the
BDI architecture and the AgentSpeak(L) language that is extended with template
plans and new plan execution mechanism that allows the directing of other actor
agents.

Keywords: virtual interactive storytelling, BDI, AgentSpeak(L) extension, story
definition and execution

5

1 Introduction
Computers are truly amazing. They seem to have many applications as they are part
of our daily life. They plan air traffic, observe nuclear reactions, keep our keys to
bank accounts and control dish-washer machines at night, so we may go to bed
earlier. No one is surprised that they are used for practical reasons, but computers are
used also for their artistic potential. However the idea may seem to be
bizarre, computer programs are capable of generating beautiful things such as songs
and pictures. I am not talking about 3D modelers or audio composers as they are only
software tools and not generative systems. There are examples of works, David
Cope's experiments in musical experiments1 or evolutionary art (see fig. 1), where
computers are used in new inspiring ways.

Figure 1 – Pictures from picbreeder.org2 – Dolphin, Habitable planet and Rock
drummer – that were evolved by neural network with human teacher.

It is no surprise that computers made also their way to the field of
storytelling. Not only that they allow to play movies, but they are bringing
interaction. Imagine that you may influence the course of the story of Hansel and
Gretel. Have you ever tried to think about: What would happen if the wicked witch
escapes the oven (she is a witch after all) and starts to chase Hansel and
Gretel? Would the poor children hide themselves in the nearby bush? Or would they
just run as fast as they can – but what if the witch have a broom? Will the kids
manage to escape then? Or the story turns into a horror, which – let's admit it – fairy
tales are usually not far from.

This interactivity we brought to the story brings up the question – who knows
such a version of Hansel and Gretel story, where the wicked witch escapes the oven
and even has the Nimbus 2008? If a storyteller was a man, it would be left to his or
her imagination as it is the case of role–playing games like Dungeons&Dragons.
D&D is a board game where players are involved in fictional story. Each player of
D&D speaks for his own imaginary character except for player that is the game
master. The game master has the role of the storyteller that tells the story to other
players, decides effects of players' actions and speaks for all other non-player
characters. His role is to maintain the believability of this evolving and ever–
changing story. That is for humans, but how can one describe possibilities in the
1 http://arts.ucsc.edu/faculty/cope/experiments.htm [15. 4. 2009]
2 http://picbreeder.org/imagedisplay.php?type=RANK [15. 4 .2009]

6

story so the computer could unfold them? How to describe the possibilities in the
story line? This thesis is suggesting a specific approach to the story definition
allowing the user to define plans for autonomous actors as well as for bodiless
director agent. The director agent may interrupt actors' plans at any given time
allowing the author of the story to coordinate them and express plot events.

7

2 Area of the thesis

Virtual storytelling concerns itself with unfolding of a story inside a specific virtual
environment be it textual, 2D or 3D world. The story is typically told by a number of
computer–controlled actors, which inhabit the world. The field is
interdisciplinary, bringing together researchers from movies [Clarke01],
psychologists [Ruth06], computer scientists [Bae08] and linguists [Kopp05]. Its roots
lie within automatic generation of story scripts using planners [Turner92]. As time
went by, and computers became capable of 3D visualization, this idea evolved into
orchestration of computer–controlled virtual actors. Virtual actors, faithfully
visualized, may tease the viewers interest and fill them with anticipation of deep
stories as viewers are used to see in cinemas and perhaps more. Viewers are now
allowed to interact with actors, ceasing to be only passive consumers. Viewers-
players are given a freedom to roam inside the virtual environment in search for their
own and unique story experience, which is determined by the sequence of actions
they take inside the world (or their absence). It is exactly this interactivity that brings
new opportunity for authors to produce emotionally rich stories as well as burdening
them with a new problem. Books are read from the beginning to the end as well as
movies are watched, so the authors have complete control over the story
line. Interactivity prevents this. The interactive story is not read or watched in
author's intentional sequence but it is interleaved with players' actions and decisions
that can prevent the unfolding of storyline as intended by the author. Perhaps the
author should the abandon his strong intentions in the first place.

Truly the best analogy for the virtual interactive storytelling would be
computer games, specifically a role–playing games (RPGs, see fig. 2) where players
are in control of an avatar that is thrown into the middle of a specific story.

Figure 2 – Neverwinter Nights 2, typical example of RPG game, where a
player controls the party and performs quests that allow him to advance in the story.

Players find themselves in a living world with tens of characters, who guide
them through the intended story line by giving players quests to complete, which
direct their attention. Still, the most of RPGs are considered to be boring because the
set of players' possible actions is limited which makes the story to be almost
linear. This approach is used to avoid the combinatorial explosion of possible

8

situations that may arise in the world allowing the game developers to predict
situations the players may experience. But there are also examples of games that
leave players in the world on their own, allowing them to literally live inside it
[Fable 2, Fallout 3, World of Warcraft], explore the world, own houses, even have
wives and children. And it is this freedom the virtual storytelling would like to give
its players. The possibility to be a part of the story, interact with other actors while
being guided on the story line forward, which makes the fictional Star Trek
holodeck3 idea the holy grail of the field.

Figure 3 – The Star Trek holodeck provides 3D holographic visualization of the
virtual world that allows people to walk inside the environment.

But why is the idea of Star Trek holodeck (see fig. 3) so appealing? What
would people seek by entering it? Entertainment, chance to be somewhere
else, become someone different – even if just for the moment. People are aware that
there are so many places in the world, so many things to try that they can not see and
experience them all. Human life is just too short for that. So we are eagerly reading
detective stories, romantic novels, watching horror movies or historical dramas
searching for new sensations while always asking ourselves a question – how would
it feel to be inside such story? And it is exactly the experience that the holodeck in
Star Trek is offering, an opportunity to live through the story on your own and to
make decisions on your own, be Robin Hood who fights the Sheriff of
Nottingham, be Sherlock Holmes and uncover the mystery of the Hound of the
Baskervilles or just live one day together with Friends.

Will the entertainment industry be the only one who would benefit from this
device – the holodeck? Certainly no. Policemen, firefighters, rescue workers they all
could undergo many training scenarios in virtual environments. They could face
robbers, learn the drill during extinguishing forest fires or try to save as many lives
as possible during the natural disaster. The possibilities would be numerous, what
U.S. Army at least is aware of as they are financing developments of virtual
simulators for combat training, learning languages or developing the social skills that
are needed during the missions in countries with foreign culture [Johnson07].

3 http://en.wikipedia.org/wiki/Holodeck [16. 4. 2009]

9

Figure 4 – Header of the Tactical Language web page 4 where they explain
how the training simulations in virtual environments may help with understanding of

foreign languages and cultural nuances.

Strangely, there is not many differences between training scenarios and fairy
tales. Of course that they are totally different – fairy tales are told to children to
appease their fear from fantasies, that are inhabited by bogeymen and training
simulations must challenge the trainee with problems she is likely to face during her
work5. But looking through the glasses of virtual storytelling, we find out that
similar mechanisms are working in both of them. One have to present the audience
an environment (be it an Iraqi town or the gingerbread house) and populate the
environment with animate objects, which tell the story. But how the animate objects
will be controlled?

Let's pretend for a moment that we have a holodeck that is capable of
displaying 3D objects and animate it to any extents. This gives us the way how to
take the audience into the environment of the story. To complete the interactive part
of the storytelling we need a way how to say “computer, the wicked witch is living
inside this gingerbread house and she will try to catch and eat anybody who lays
a finger on gingerbread from her house's walls” defining the role of the witch in the
story. Then we will need to specify the challenge for the player by saying
“computer, tell the players that their aim is to stole as many gingerbread as possible
before the wicked witch catches one of them”. And we hope the computer to reply
with “command accepted, computing the wicked witch behavior … finished, would
you like to validate the story by playing it?”

Certainly, automatic natural language understanding is not on the level for
this kind of interaction with the computer to be possible, but do we have any other
way how to tell that to the computer?6

2.1 Pogamut platform
Virtual interactive storytelling application can not be created without virtual
environment. Implementation of the 3D engine is a huge task. Fortunately, the idea
to use an existing 3D virtual world for embodied virtual agents (actors in our case) is
not new [Adobbati01]. There already exist projects that are offering various APIs7

for controlling virtual characters (avatars) inside a specific virtual environment. One
of them is the Pogamut project that is being developed at our faculty in Prague.

4 http://www.tacticallanguage.com/ [16. 4. 2009]
5 For instance, the illustration of an environment and a story will be totally different with gingerbread

and the witch who imprison the players on the one hand and Shia doctor who refuses to abandon his
clinic even though there will be a bombing raid on the other hand.

6 On the higher level of abstraction then the C or Java language.
7 Application programming interfaces.

10

Figure 5 – Virtual environment of the UT04

Pogamut is a platform that allows controlling avatars inside an environment
of the commercial game Unreal Tournament 2004 (UT04, see fig. 5) using
Java. Pogamut is designated for research projects concerning investigation of
behavior of human–like virtual agents and the education of undergraduate
students. UT04 offers adjustable human–like virtual 3D world together with a lot of
different locations, library of predefined items and a map editor.

The initial aim of the platform was to provide rich environment of UT04 for
academic community. The platform was already successfully used in a few master
thesis by [Gazolla06] [Kadlec08] and it has been used in international competition
BotPrize at Australia [BotPrize08].

The platform has also a potential to be suitable for experiments in virtual
interactive storytelling. The map editor may be used for the authoring of the virtual
environment. The UT04 rendering engine is customizable and allows using custom
3D models and animations for actors. And the Pogamut library may be used to
control these actors.

However, the platform is currently lacking a framework that would be built
over the Pogamut providing a way for story authoring.

2.2 Thesis's terms and abbreviations
I would like to note at this point, that the whole thesis's concern is “virtual”

storytelling. If I further speak about environments or actors, I will always mean it as
virtual environments and virtual actors, etc.

Throughout the text I will often use the word author to refer to the creator of
the story. Usage of the word author should not invoke the feeling that an author is
not a programmer because the presented framework is suitable only to authors who
have some background in computer science as well.

The thesis's concern are virtual interactive stories, I will abbreviate them as
VIS.

11

I will use the term virtual environment (VE) for some specific implementation
of the 3D rendering engine (e. g. Unreal Tournament 2004). The graphical
appearance of actors inside a chosen VE are called avatars.

I will also use terms of actors' roles and actors' behavior interchangeably as
the role of the virtual actor is expressed by the actor behavior during the execution of
the story.

3 Structure of the thesis
The structure of the thesis is as follows.

Chapter 4 is presenting the goal of the thesis and divide it into several
subgoals.

Chapter 5 is presenting the virtual interactive stories and their main problem
of narrative-interactive tension.

Chapter 6 is discussing authoring of actors' roles and the definition of the
story world. The story authoring is divided into six steps that are further discussed in
chapter 7.

Chapter 8 and 9 concern themselves with the main part of the work and that is
StorySpeak language that is used to describe situation/behavior pair during the role
definition.

Chapter 10 summarizes how the storytelling platform supports the author.

Chapter 11 evaluates the platform with a few story scripts showing its
features.

Last two chapters conclude the thesis.

12

4 Goals
The goal of the thesis is to provide a framework for behavior coordination of virtual
actors for the Pogamut platform. This framework makes the first step towards the
framework for the definition of interactive stories providing a means to perform short
scenes with several virtual actors. To fulfill this goal we need to:

1. introduce virtual interactive stories and present a story definition and
execution problem,

2. discuss existing approaches to the story definition (and execution),

3. describe a chosen approach,

4. identify steps of the story authoring in the context of chosen approach,

5. create a framework for behavior coordination of virtual actors,

6. evaluate the framework with a few story scripts that will present its
features.

The thesis is focusing on the definition of actors' behaviors as sequences of
actions and does not concern with graphics, gestures, mimics, dialog management or
natural language processing.

13

5 Virtual interactive storytelling
Virtual interactive story (VIS) is a non-linear story that is told by virtual actors in
virtual 3D environment to a player that is present inside the environment either as an
observer (ghost) or as a player-actor. To make the story interactive, the player must
be able to interact with the environment. The interactivity is bringing a problem for
the story. The players' actions can not be foreseen therefore they may interrupt the
story execution at any given time. Depending on the freedom of the player, it may
have various effects on the course of story. The player may be given one of the three
degrees of freedom:

1. The player can be only a passive observer that is allowed to watch the
story from different places or from the eyes of different actor. E. g., the
player may decide to watch the story from the Hansel's eyes – see what
the actor may see, or just fly with the camera over the gingerbread
house. Although the story can not be called interactive in this case, it
brings one question: Will the player see all important events in the story
this way? After all, the player might direct the camera at the first tree and
might ignore the story completely.

2. The player may be an active observer that may influence actors or the
environment. He could be given a way to change the mood of actors,
alter their goals or give them additional items. How the story of Hansel
and Gretel would continue if Hansel was given a pair of lock picks to get
out of the cage at midnight?

3. The player may be present in the story as another actor. The player can
play the role of Hansel or the wicked witch. How should Hansel and
Gretel behave when they found the empty gingerbread house because the
player in the role of wicked witch had decided to find some herbs for
a love potion?

If the story is constructed as a series of events, that is a series of
actors' actions, then it will result in an unbelievable story. The passive observer may
miss the part where the wicked witch imprisoned Hansel and Gretel because he
admires meadow full of flowers. The active observer may be surprised that
Hansel, who was given lock picks, is not using them. And in the last case, the story
could not even be planned this way as we can not force the actor to behave according
to the script. The linearity of the story has to be abandoned.

Nevertheless, the author's intentions are not only to present a believable story
world, but also to tell the story. The author intends the player to experience different
situations. The fear from the wicked witch when the player as Hansel is running from
her. Bravery of Robin Hood who was given a sword by the player allowing Robin
Hood to escape from sheriff's guards. Or just observe Ross who is trying to be alone
with Rachel. These author's narrative intentions face unanticipated actions of the
player. The author wants the player to experience some events in the story, but the
player has a freedom to prevent these events from happening or triggers them in
different order. This is called narrative-interactive tension and this is the main
problem of the virtual interactive storytelling. The role of virtual storytelling
framework is thought to be a mediator of this tension [Magerko05].

14

How to mediate the narrative-interactive tension? Before I describe three
approaches that are being widely used, I would like to present a bit weird analogy
between an interactive story and a computer program. The computer program can be
seen as an interactive story. Threads are actors, data objects items and the
threads' code that transforms data objects are actors' roles. We may start the program
in debugging mode and watch the story of the user input that is being transformed to
the final output. How many if-then-else statements the data will face before they are
transformed? Each such if-then-else condition unfolds a different story and the
program produces different output. If the program receives unanticipated input, it
will crash with segmentation fault or produce some strange output.

Although the analogy is far-fetched, we should have two things in mind:
1) if the player perform an unanticipated behavior (there is no behavior written for
it), the story will always fail, 2) the more if-then-else conditions the interactive story
contains, the more stories as sequence of events it contains.

The former is suggesting that, if we give too much freedom to a player, there
always will be cases we have not thought of and the feeling from the story will
disappear in the moment the player does not fall behave as we anticipated. On the
other hand, limiting players action weakens the interactivity.

The latter tells us that, what we do not encode to the program of the story, it
will not simply be there. The more non-linear we want the story to be, the more code
we have to write.

This is a second problem of the virtual interactive storytelling. How the story
should be encoded to express the most story lines with the fewest lines of definition
as possible?

5.1 Believability of the story
Apart from the narrative-interactive tension and the non-linear story definitions
problems, there is another point that must be addressed by the virtual storytelling
framework. That is the believability of the story and its actors. If the player see
Hansel to be a crybaby in the dark forest, it will be strange of Hansel to try to escape
from the witch at all cost. The story will fail to be believable and it will harm the
player's experience.

5.2 Role-plot duality
There is a tight correspondence between a definition of a plot and definition of roles
because the story is always told through actors' actions (role). We may sketch the
event as “Hansel is imprisoned by the witch.” but we will have to specify what the
actor should do during the event after all. We may say that the plot implies roles. On
the other hand, when we see the witch dragging poor Hansel into the cage, locking
him up while yelling on Gretel to clean the house, we quickly recognize the event in
the story. Therefore roles imply the plot as well. As the computer who executes the
story can not come up with actors' actions it does not know, there are always roles
that are being defined. This means that authors are defining short sequences of
actors' actions that are being triggered during the execution of the story.

15

5.3 Role definition
What does the term role mean? I see it as an analogy of the social role. Sociology
defines the term social role as a set of 1) obligations, 2) connected behaviors and 3)
rights as conceptualized by social actors in social situations [Keller06]. We may
analogically define the role of the wicked witch following the definition from
sociology: 1) she is bound to protect her house 2) by catching and imprisoning
everybody who is trying to steal gingerbread from her house 3) using spells and
traps. The last part of the sociology definition tells us that the actor has to behave
according to the context of some situations. This means that the wicked witch should
exhibit different behavior when she is catching Hansel and Gretel, then catching the
highway robbers. Hansel and Gretel are children and there is no need to use
magic, but dealing with armed robbers requires different approach. Therefore to
define the actor's role means to identify the set of story situations an actor may face
during the story and specify a behavior for each of these situations. The more story
situations the actor's role has behaviors for, the better acting the actor will exhibit.
The actors' role will always be a list of pair situation,behavior.

5.4 Story definition approaches
There was a lot of discussion in the storytelling community how the virtual
interactive story should be defined. The consensus has not been found yet, but two
different approaches has been identified. There are two different kinds of approach to
the story definition: 1) author-centric and 2) character-centric. The former is thought
to create stories with a strong plot coherence but poor character believability and vice
versa [Riedel03].

Author-centric approach
Author–centric approach is a story authoring concept that is trying to formalize the
author mental process during the story construction. The story is being constructed
by sketching the plot as a sequence of events on the storyline. The author is meant to
specify important events that should happen inside the story and the story manager
should cover the rest.

Having the storyline definition from the author, the story manager is meant to
plan the actions of actors according to those events and control these actors during
the story execution. Actors have no own reasoning mechanisms

Figure 6 – The story manager is guiding Ben and Mao according to the author's
script. The story manager has to supply every action for them.

16

The story is defined as an initial state of the story and a list of events.
For instance, the story of Hansel and Gretel could be describe like this:

1. story starts how the father leaves Hansel and Gretel in a forest,

2. Hansel cries and Gretel is trying to calm him,

3. they go through the forest,

4. they find the gingerbread house, ...

Certainly, such definitions have to be formalized for the planner. The events
would have a form of states of the story. Except of the list of events, the author
would have to define a list of actions that actors may perform. The planner would
have to plan all actions for actors to satisfy the ordering of events (story states).

This approach has a problem with narrative-interactive tension during a story
execution – the story manager must be able to change actors' actions according to
player's actions. These actions might be even severe, e. g., the player kills one of the
main actors or sells an important item to an enemy. Nevertheless, if such real–time
planner that copes with unanticipated situations is devised, it will be the best
mediator of the narrative-interactive tension.

Character–centric approach
Character-centric approach to the story definition models each actor as an
autonomous agent [Wooldridge95] with own goals. The story, as a sequence of
events, should emerge from the interaction of actors. There is no central story
manager that observes the scene and orders the actors what to do or synchronizes
their behaviors. Example of this approach is [Cavazza01]. Cavazza models the
actor's mind as an HTN planner making HTN plan a role of the actor. Such approach
is successful until the actors need to do a joint–behavior. Introduction of joint-
behaviors would need to create some synchronization mechanism that would ensure
that all actors plan joint–actions at the same time. This leads to the idea of combined
approach.

Figure 6 – Actors are modeled as an autonomous agents with own goals and plans.

Combined approach
Combined approach embraces both author–based and character–centric approach. It
leaves autonomy to characters that may be modeled independently while sustaining
a story manager that is omniscient. The story manager may be used to coordinate
behaviors of actors by altering their goals to direct their efforts in order to maintain
the pace and believability of the story. Example of this approach may be the work of

17

Magerko and his IDA (Interactive Drama Architecture) [Magerko05]. Actors in IDA
are semi–autonomous. They may pursue their own goals but they have to obey the
director agent that directs the story according to story content and story
structure. Magerko model story content as a set of plot points which are defined as
doublets <precondition, action>. Story structure then defines directed edges
between plot points creating a partial ordering of plot points. Partial ordering of plot
points is defining every possible topological ordering of plot points thus defining
every possible story. Additionally his story manager maintains a player model and
predicts the possible player behavior thus it can take an action whenever a player
actions threatens the intended storyline. Unfortunately, Magerko's work was not
made public and can not be evaluated.

5.5 Chosen approach
I believe that the storytelling framework needs to combine both approaches. There
are two reasons:

1. Author-centric approach requires a real time planner that needs to be
really fast to be able to react to players' actions. If the planner is not
supplied, then the author has to write the actions nevertheless.

2. It is difficult to represent joint-behavior with character-centric approach.

The former can be solved by using reactive planners with predefined plans for
the actor (character-centric approach). The latter can be solved by introducing the
story manager that may control actors directly when coordination of two or more
actors is required (author-centric approach).

Presented storytelling framework will embrace both approaches by allowing
the author to provide plans for both actors and story manager. It will allow the author
to write plans from the perspective of an actor (character-centric approach) and also
from the perspective of the story manager (author-centric approach).

Figure 7 – Actors have own goals, plans and they act as autonomous agents. The
story manager observes the story world and performs joint-behaviors with actors to

unfold the story.

18

To support the definition of the believable characters, the actors will have
their own perception of the story world. Plans for actors will be executed always in
the context of facts the actors perceive.

The story manager will have an access to the complete state of the story in
contrast with actors. This will allow the author to express joint-behaviors as story
manager plans. Additionally, joint-behaviors should be also used to express events of
the plot.

The analogy with the sociology role (ch. 5.3) tells us that all behaviors are
expressed always in the context of some situations. The wicked witch will behave
differently when facing robbers then when dealing with Hansel and Gretel.

I see the actor's role definition as a definition of role pair situation–
behavior. The author would have to be able to define pair situation–behavior.
Whenever some situation is recognized, the behavior of the actor should be switched.

The same mechanism could be used also for the definition of the story
manager. The story manager has to act whenever some situation is encountered.

Story situations
The situation can be thought of as a state of the story that satisfies the situation's
conditions. For instance, the situation can be “the wicked witch saw Hansel who was
eating gingerbread” or “Hansel and Gretel were alone in a forest”. The story situation
is based on story states' values. Additionally, the situation is usually triggered by
some event inside the world. E. g., “the wicked witch saw”. The situation is also
described by events that have just happened.

Examples of such values may be the wicked witch's position, description of
the gingerbread house, what items Gretel has, what Hansel is doing, list of objects
the wicked witch may see, etc. These values may be discrete (Gretel has a knife
vs. Gretel does not have a knife) or continuous (position in the 3D world).

Events are recent changes of story states' values. Example is “the wicked
witch saw Hansel”. This is an event that Hansel has been added to the wicked witch's
list of visible objects. The framework will have to observe such changes and produce
events as they appear.

The attention should be paid to the representation of the story world as this
implies the way how situations' conditions will be written. For instance, if the objects
that the wicked witch may see, is represented as a list, then the author would have to
iterate over such a list every time he wants to check whether the wicked witch can
see Hansel.

There is a question whether the situation's query should be evaluated over the
complete state of the story world or only over its limited subset. 1) Should every
actor be omniscient having always access to all story facts' values and relations that
currently hold or 2) should every actor have an access only to a limited set they
perceive?

The first option could be considered cheating as an actor will perform
behavior that is based on facts it can not know. It may be a coincidence that the
wicked witch appears behind my back for the first time I try to steal gingerbread, but
after the third attempt I will start to be suspicious.

19

On the other hand, the behavior of the actor that is based only on its
observation may prove to be limited. We will not be able to create surprises such as
meeting of two actors on the corner of the street as both of them do not have
information about the location of the other one. This supports the idea of the
omniscient story manager that should guide actors in such situations and the
combined approach to the story definition.

Appropriate behavior
Behavior is defined as actions or reactions that a virtual actor exhibits in relation to
its virtual environment. What is an appropriate behavior depends on the author aim
and his concept of the story. If the author models a role of the wicked witch, he will
want her to be aggressive and blunt. If the author wants to surprise a player, he will
make the witch kind in the beginning and aggressive later when the player will feel
safe.

Implemented parts
Provided description of the chosen approach creates a frame for the implementation
of the behavior coordination of actors. The aim of the thesis is not to provide the
complete storytelling framework that supports the author along the way of the story
construction but to provide a way for the behavior coordination. Nevertheless, the
solution should be created with the whole picture in mind.

20

6 Story authoring
This chapter is discussing the authoring of actors' behaviors. Behaviors are
categorized as interactive or sequential. The storytelling framework should allow
actors to switch between behaviors of these two types. It is illustrated on the example
of the story of Hansel and Gretel.

6.1 Actors' behaviors
The story authoring happens in two steps. Firstly, the author has to sketch the

story into a sequence of story events. Secondly, the author rewrites the story using
a definition language of a storytelling framework.

Let's say that the author is creating the story of Hansel and Gretel and intends
the player to be Gretel. The author sketches the story to follow this sequence of
events:

1. Hansel and Gretel are left in the woods,

2. they find the gingerbread house,

3. the witch imprisons Hansel and enslaves Gretel,

4. Gretel tricks the witch, sets free Hansel,

5. they are trying to escape the witch.

Now, the author has to categorize behaviors of virtual actors into two
categories:

1. interactive behaviors

2. sequential behaviors

The former behavior is expressed when the actor needs to interact with the
player as it must react to player's actions. The latter behavior is expressed when
virtual actors are interacting with each other. Creating interactive behavior is much
more complex then creating sequential behaviors. This should be clear as sequential
behaviors are just the list of actions that actors should perform, while interactive
behavior must contain many decisions points that reflect the possibilities of
players' (or other actors) behavior.

For instance, the sequential behavior can be used when the witch wants to
imprison Hansel as it is a behavior that is expressed only by two virtual actors. This
is the case when the storytelling framework should allow the author to express this
behavior as simply as possible.

On the other hand, the author will need to create an interactive behavior for
the witch when she will need to interact with the player in the role of
Gretel. Reactive plans are widely used for this approach. Reactive plans can be
thought of as a list of if-then-rules, which are being periodically evaluated. If the
storytelling framework is written only as character-centric, then it will force the
author to express sequential behaviors inside these if-then-rules (see fig. 8).

21

Witch's plan Hansel's plan
1. yell at Hansel 1. wait for witch's yelling
2. wait for Hansel to come near me 2. go to the witch
3. grab the Hansel 3. wait for the witch to grab

 me
4. go to the cage 4. go to the cage
5. order Hansel to go inside 5. wait for the command
6. wait for Hansel to go inside 6. go inside the cage
7. lock him up 7. cry

Figure 8 – Two plans that must be created in order to perform joint-behavior
in character-centric approach using interactive behaviors.

Figure 9 shows how the same behavior may be expressed with author-centric
approach and sequential behavior.

Joint-behavior of the witch and Hansel
1. witch: yell at Hansel
2. Hansel: go to the witch
3. witch: grab the Hansel
4. witch + Hansel: go to the cage
5. witch: order Hansel to go inside
6. Hansel: go inside the cage
7. witch: lock him up, Hansel: cry

Figure 9 – Plan that coordinates behaviors of the witch and Hansel written as
sequential behavior for both actors. It contains half lines then the same behavior

written with character-centric approach.

It may seem that the author-centric approach should work the best for the
storytelling applications as we may create one reactive plans for all actor. That is not
true. If we would like to express all actors behaviors within one plan we would face
the combinatorial explosion of situations that results from the combination of all
actors' plans into one big plan. If we think about the character role as a list of if-then-
rules (condition->action) and role A has N rules and role B has M rules. If we merge
these two roles into one, we will need to provide N*M rules in the worst case. After
checking the condition for the role A we will have to go through conditions of role B.

Therefore the combined approach should be used to spare the author of
unnecessary work. The storytelling framework has to allow interleaving interactive
behaviors of respective actors and sequential joint-behaviors.

Chapter 9 shows how the presented framework and its language StorySpeak
supports interleaving of these two types of behaviors.

22

6.2 Abstraction of the story world
There is a gap between definition of actors' roles (behaviors) and the virtual
environment. The author could use the interface of the virtual environment only to
define actors' behaviors but this interface will be rather low-level. For instance, the
Unreal Tournament 2004 provides only simple actions such as “move directly
to”, “jump”, “say”. If the author wants Hansel to follow Gretel, he will need to
decompose such action further to use only low-level actions that are provided by
UT04. Such decomposition will face implementation details, e. g., obstacles
avoidance. The objective of the author is to create the story and not to compute
movement vectors for actors. Therefore we have to provide a layer of abstraction
between virtual environment and the author. We should create an abstract world of
the story (the story world). This layer abstraction should not be only in the terms of
actor's actions but also in the terms of the story world perception due to the same
reason. For instance, 3D virtual environment represents the locations of actors in
absolute terms as triples x,y,z. The author should not count distances in space
between locations of two actors, when he wants to find out whether they are near to
each other. The storytelling framework should supply him with these facts
automatically.

Unfortunately, we can not really say which facts about the world the author
will need during the definition of actors' behaviors. Therefore the storytelling
framework will have to support their definition and it will become the part of the
story authoring process – to formalize the author's story world into story facts that
describes it.

6.3 Story entities, facts and relations
The story world will surely contain places, objects8 and actors.

Every place, object or actor will have some kind of characteristics - the set of
properties that defines the story entity. We will call them story facts. The
actors' characteristics may be their positions, what items they currently have or their
current mood. The objects' characteristics may be their weight or form. The places
may be described by their boundaries within the virtual world and be labeled as
forest or the gingerbread house. They are all up to the author to define and author
should define all story facts that are relevant to the story. They will make the
basis, which the author will define situations upon.

For instance, if the author will need to express the situation “when the Hansel
is near the door to the gingerbread house” it will need to know: where is the
gingerbread house, where it has door and what is the position of
Hansel. Additionally, the relation “is near” would have to be expressed.

Apart from the base characteristics, there could be relations between
entities. The wicked witch's characteristics may be “at position x,y,z of the world”
and also “at the gingerbread house”. But the gingerbread house is one of the places in
the world thus it will have its own characteristic – “is the cube of virtual space of
coordinates x,y,z,x,y,z”. This makes “at the gingerbread house” a relation between
the wicked witch and the gingerbread house because it may be inferred from the facts
that the position of the witch is inside the cube that makes the gingerbread
8 Objects are not really needed as we may have purely conversational stories but they are likely to be
there.

23

house. I will call those relations – story relations. There may also be seen as
predicates that describes the story world.

Interestingly, stories in books are never told in terms of base facts but always
in terms of relations. At least, I have never read: “And Hansel who was at 120,233,20
with rotation 120,20,0 saw the witch that had appeared at 0,233,20. Hansel changed
his velocity from 10,–10,0 to 100,0,0.”

Introduction of story relations will allow the author to specify situations more
clearly. For instance, if the author provides relation “near”, he will not need to
compare distances of various objects over and over again.

Moreover the previous example of Hansel and the wicked witch is much
more readable when using relations: “And Hansel who was approaching the
gingerbread house saw the witch in the window. Hansel started to run
away.” Although the storytelling framework will not understand English, there will
still be places where the author will be able to specify the situations more briefly
using relations.

There may also be relations that are inferred from other relations. It has to be
allowed but there must not be a cycle in the inference or relations. For instance, we
may have relation “actor A facing actor B”, which may be inferred from
actors' positions and rotations and base fact “actor A says to actor B” which results in
relation “actor A is talking to actor B”.

Thus the story world is defined by:

1. the set of story entities - places, objects and actors

2. the set of story facts that describe the entities

3. the set of story relations between entities

The list of story entities, actual values of their story facts and actually valid
story relations make the state of the story world. The idea of story facts and story
relations will be useful later when I will discuss sensing and the perception of the
actors.

6.4 Story actions
As we have defined the state of the story world as the set of all places, objects, actors
and story facts, it is easy to define story action as anything that changes the state of
the story world. The behavior is defined as a sequence of story actions then. Typical
story actions will be: “run to”, “say”, “perform a gesture”, “follow”. All story actions
will surely be parametrized. “run to” action will need a place as an
argument, “say” will need a text.

6.5 Story situations and boundary problem
Every situation means a condition. Every condition defines a set of story world states
that satisfy the condition. And every such a set G has a boundary that can be seen as
the set of story facts which are similar to at least one of the states from G but do not
satisfy the condition. It is this boundary where a behavior of an actor will be
switched from one to another, which brings two new problems:

24

1. If these two behaviors are totally different, the result will be funny.

2. If the state of the story world is oscillating on the boundary, the actor will
be switching between these two behaviors, which will harm the
believability of the actor's character.

For instance, let's say that the wicked witch will pursue everybody she can
see and is not too far from her (e. g., their distance from the witch is less then 200m).
Here comes a player that has elven boots and can run faster then the witch. Having
these elven boots the player may dance on the boundary of these 200m making the
fool of the witch. He may watch the witch how she always starts to run towards him
and when he runs a bit away and becomes “too far” for the witch, watch her
returning to house. Should he be scared by such a witch? He has just discovered the
algorithm of her behavior. She is not a witch but dumb computer! This is likely to be
the conclusion of the player.

This could be partially solved by giving the author an option to define
a second situation when the behavior of an actor should be abandoned. Thus every
situation definition will consist of two conditions:

1. First condition expresses a situation when the actor has to begin the
behavior.

2. Second condition expresses a situation when the behavior should be
abandoned.

Additionally, the author should be able to access the history of executed
behaviors and situations that triggered them. Having this history the author will be
able to express the situation when a player already tried to approach the house
several times and specify a different behavior for this case.

6.6 Story authoring
We have discussed the story world definition in the previous paragraphs. This
definitions may be ordered into the sequence of author's tasks that must be done
before the story could be executed:

1. The author chooses the virtual environment (e. g., Unreal Tournament
2004).

2. The author creates the concrete

3. The virtual environment will determine to which extent the author may:

a) define story actions,

b) define the set of base story facts that may be sensed by the actors.

4. The author defines story relations.

5. The author defines roles by specifying role pair.

6. Finally the author will define the plot.

7. Story may be executed, played and evaluated.

25

Every level of abstraction lays a basis, which the next layer operates upon. Available
story actions are determined by virtual environment. Story relations are inferred from
base story facts. Roles are defined using story facts, relations and actions. This is
a good sign for the future work as every layer can be solved separately creating
a software library and visual tools.

6.7 Chapter conclusion
This chapter has categorized actors' behaviors between interactive and
sequential. Virtual actors need to express interactive behaviors when dealing with the
player and sequential behavior when performing joint-behavior. Furthermore, the
author need to formalize the story world before he may define the actors' roles. The
story world is defined as an environment consisting of story entities. Story entities
are described with story facts and may be related to each other. Except for entities,
the story world also consists of the set of story actions that can be used to change its
state.

The introduction of the story facts helped us to define the situation as the
condition over the story facts' values and actually valid relations. This brought the
boundary problem that should be eased by allowing the author to specify situation
that should trigger the behavior and situation when the behavior should be
abandoned. Further behavior switching refinement is left to the author to handle by
providing reactive behaviors defined by different tools.

How should the authors be supported on their way up to the story execution?

Before describing implemented solution, I would like to state that every level
of abstraction could be talked through many times before we will come up with
acceptable solution9 (if such thing is even possible without the experience from
higher levels). Therefore the rest of the thesis is derived by informed decisions as
well as intuition. Presented storytelling framework is an experiment that probes the
presented ground of the story authoring process.

9 Starting with the presentation of the list of up–to–date closed/partially–opened/open source 3D
virtual environment and discussing their pros and cons.

26

7 Architecture
The thesis moves to the implementation grounds starting with this chapter. It will
follow the steps of the story authoring tasks as presented in (ch. 6.6). I will start with
the chosen virtual environment and proceed up to the definition of the roles and plot.

7.1 Step 1 – Virtual environment
The storytelling platform is being built over the Pogamut platform that is providing
an environment of the Unreal Tournament 2004 (UT04). UT04 is a commercial first-
person-shooter game. It allows the player to be present in the environment as an
passive observer or one of the actor. UT04 gives a limited way of interaction
between player and other actors. Being a first person shooter game, the player may
only talk to other character through the console or shoot them. This is a limiting
factor for the storytelling application but there is already an ongoing bachelor thesis
of Radim Vansa from Charles University at Prague that will address this
limitation. Pogamut currently supports maximum of 8 actors. Therefore the
storytelling framework will not be suitable for large stories.

7.2 Step 2 – Sensing and acting in the environment
Pogamut is implemented partially in Java and partially in UnrealScript (native
language of the UT04). The UnrealScript part of the platform - GameBots2004
(GB04) - provides a means for the remote control of UT04 avatars for anybody who
implements GB04 textual protocol. The protocol is carried over TCP/IP, which
allows the author to run the logic of actors on a different machine then UT04. Figure
10 provides a high–level architectural overview of the Pogamut platform picturing an
iteration of sense–reason–act mechanism. There is the UT04 server with GB04 on
the left and two bots (Tom and Sheena) inhabiting the virtual world. When GB04
notices that Tom can see Sheena, it generates an event for the Tom's mind and sends
it via TCP/IP (1). The event is caught by the Pogamut's library GaviaLib and
translated into thr Java object that is presented to the Tom’s agent as an sense event
SeePlayer (2). The Tom’s reasoning algorithm (that is to be implemented by the user
of Pogamut) decides that he should greet Sheena (3) and issues the SayPrivate
command (4). The command is translated into the GB04 message (5) that is picked
up by the GB04 that makes Tom’s avatar to do it (6).

Additionally, Pogamut features a server control connection that allows to
observe the environment from the position of the omniscient bodiless agent. This
connection could be utilized by the story manager.

27

Figure 10 – The high–level architecture of the Pogamut 3 platform

What does the use of the Pogamut imply?

1. The set of the senses is fixed, implied by the UT04.
• self awareness (location, rotation, velocity), limited actor vision

(objects, other avatars, players – no world geometry is included)

2. There is no support for tagging the environment with names of places.

3. The period of the sense updates is fixed.
• 200 ms

4. The UT04 provides only low-level actor actions.
• move to (absolute) location, turn to, jump, say
• no support for remotely controlled skeletal animations

5. GB04 speaks in the terms of events not facts.

How does it affect the storytelling framework?

1. The set of base story facts will be rather limited. For instance, if the
author will require to simulate states like hunger, boredom or mood, he
will have to provide own simulation mechanism.

2. We will have to provide a mechanism for the definition of the places
inside the virtual environment. The places are the only kind of story
entities that are not directly supported by UT04.

3. Period of the sense updates dooms our agents to look a bit clumsy. The
absence of world geometry information means that avatars will not be
able to recognize obstacles in the path of their movement.

4. Absence of high level movement actions means that we will have to
define path planning and path following story actions.

5. The storytelling framework needs to take care of the translation of the
events into facts.

Although all mentioned points are the matter of implementation, it shows us
how choosing concrete virtual environment affects latter story authoring steps.

To look on the Pogamut from the bright side – we do not need to implement
the rendering engine, ray casting, collision detection, actor remote
control, etc. Additionally, we have an option to seamlessly implement a story
manager using server control connection.

28

Story entities
The UT04 directly supports the recognition of objects and actors inside the
environment. The abstraction of places (like house or park) is provided as an
additional mechanism by the storytelling framework.

Base story facts
The UT04 allows actors to sense these properties:

1. Absolute location, rotation and the velocity of the actor in the form of
triples
• note that the virtual environment should not need to express those

values and may provide only a string identification of the location
together with the graph of the location

2. what the actor can see (other actors or items)
3. what the actor can hear

Story actions
The story actions will (again) depends on the chosen virtual environment (UT04) that
allows only for low–level move actions and no controlled skeletal animations thus
we will not be able to create custom gestures and provide mimics in the latter steps
unless we alter the UT04.

7.3 Step 3 – Actor's perception and story relations
To define story relation means to define two things:

1. define the structure of the fact – what it comprises of

2. define the relation's condition

The first point requires the author to decide the structure of the story
relation. For instance, if the author is up to define the story relation “near” that will
bind two objects and/or actors then story relation will have to consist of two
references to objects and/or actors at least. But the author might also decide that there
should also be an exact distance incorporated into the relation as it will help him
during the definition of the situations' conditions.

The second point is obvious – the framework needs to know how to infer the
fact from the current knowledge base. The story relations' conditions bring another
boundary problem that is similar to the one discussed in (ch 6.5). I have to stress that
the framework should allow defining two conditions for each fact: 1) trigger
condition and 2) still–valid condition. The former should be used to check whether
the relation has appeared. The latter should be used to check whether the fact is still
valid. It will allow the author to relax the boundary problem.

Solution for the inferring of the story relations
We are in the situation where we need to evaluate the set of rules – conditions of the
story relations – over the knowledge base of story facts. The naive implementation
might check each rule against the known facts as long as some rules are firing. This
would be clearly too slow. Even if we have a small set of rules we will have to run
those rules for each actor to infer story relations from their respective knowledge
bases. Thus we should seek different algorithm.

29

The popular algorithm for the time efficient evaluation of the set of rules
(forward chaining) is RETE [Forgy82] that was designed by Charles L. Forgy and
published in 1974. The idea of RETE is to create a generalized trie out of the logic
expressions. This will create a tree of nodes where every node represents a part of the
condition from one rule. Every branch of the tree (path from the root to the leaf)
represents one rule. Every new fact that is inserted into the knowledge base is
propagated along the tree. If a fact arrives to a terminal node then an appropriate rule
will fire.

Figure 11 – Example of the story relation “near”.

Hammurapi rules
A few existing Java implementation of the RETE algorithm can be found. Before
choosing the right library I have to note that we need the implementation to have
these three features (see fig. 11):

1. It has to allow inferring new story relations from new base story facts
using is-triggered condition of the relation.

30

2. It has to allow removal of story relations when existing facts are dropped
or changes in the way that breaks still-valid condition of the relation.

3. Story relations can not appeared silently inside the knowledge base of
RETE as we will be processing them further when they appear or
disappear.

We may consider again the story relation “near” that is inferred from an actor
named Mr. X and object Weapon. In the beginning, we have only one fact that is
describing the location of the Mr. X. As soon as the object Weapon appears in the
field of view of Mr. X we require the RETE algorithm to check whether the
“near” trigger condition is satisfied. Meanwhile Mr. X will continue walking in
direction of the Weapon so the location of the Mr. X is changing and the rule “near”
must be rechecked. Whenever the distance to the Weapon is smaller then defined
threshold, the RETE algorithm should produce new fact “near”.

Nevertheless, it does not stop here. We also need to be notified by RETE
algorithm that the relation should be deleted when the distance becomes greater then
the threshold of the still-valid condition.

There exist a few Java implementations of the RETE algorithm. The most
well known is the implementation of Drools from the JBoss group, which is
unfortunately unusable as it does not support for relations' removal – additional it
requires the user to learn another language for condition definition.

Another Java implementation of the RETE algorithm is Hammurapi rules
from Hammurapi. It supports all three mentioned requirements. It uses plain Java for
the rule definition that is done by subclassing10 the Hammurapi's Rule class allowing
the user to provide arbitrary definition of the rule's condition. I have chosen them
because their rule definition is simple and flexible.

7.4 Step 4 – Role definition
The role definition follows the main idea about the virtual acting – more situations
the actor will recognize the better acting it will perform.

Situations
The first outlook on situations has presented them as conditions that must be true in
order to the situations may be considered as “happening”. But additionally the
situation should be also determined by the event that has triggered the recognition of
the situation. This is the way the author will think usually. “When the witch saw
Hansel eating gingerbread she...”, “When the witch heard that somebody is
outside...” Those sentences always begin with sensing some information (an event)
from the environment. Every event always happens in some context. “When the
witch saw Hansel eating gingerbread she yelled out of the window.” or “when the
witch saw Hansel eating gingerbread she start running to him out of the forest.”
Context of the former outcome is “the witch is in the house” while the latter is “the
witch is in the forest”. The context is nothing else then already mentioned situation
condition. Therefore the previous definition of the situation should be extended to be
the condition and triggering event.
10 The term for inheriting a specific class that is used in OOP. The term was introduced by C++
creator Bjarne Stroustrup, who found this term more intuitive than the traditional nomenclature.
Result of subclassing a class X is a subclass Y that is a descendant of the class X.

31

Behavior
The behavior was presented as sequence of intentional actions that are performing
some narrative part of the plot. The narrative may require one or more
actors. Narratives that require one actor may be expressed in the actor's role while
narratives that require more then one actor should be expressed inside story manager
(ch 5.4).

7.5 Step 5 – Plot definition
The plot definition is similar to the role definition as it requires specifying
situation/behavior pair. The difference is that the plans will be written for the
bodiless entity – story manager – and have to provide additional features then
running story actions:

1. influence other actors by ordering them to do a specific behavior

2. coordinate behaviors of two or more actors

Specific language StorySpeak has been created for the role and plot definition.
The language will be discussed in details in (ch. 9, 10).

7.6 Step 6 – Story execution
The story execution is clearly an implementation of the story definition's
interpretation. Discussing the inner architecture of the implementation is out of the
scope of this thesis.

7.7 Summarization
1. Pogamut is used to control actors inside Unreal Tournament 2004. It

limits the story to 8 actors.

2. The base story facts are determined by the environment, they are:

a) absolute location, rotation and velocity of an actor

b) information what an actor can see and hear.

The story places must be additionally defined by the author on the second
layer of story abstraction because UT04 does not support tagging of
places in the environment.

3. The RETE algorithm, namely its implementation Hammurapi rules, will
be used to infer relations between story entities. Those rules will be
specified as specific Java classes.

4. The role/plot definition language StorySpeak will be presented in the next
two chapters.

5. Story execution is a matter of implementation and should not be discussed
further.

32

8 StorySpeak origin
The rest of the thesis is about StorySpeak language and its interpret. StorySpeak has
been developed to support switching between interactive and sequential
behavior. Moreover it allows the actors to switch their behavior depending on an
observed situation. Situations are expressed as events that happen around the actor
together with the context of the event. The idea behind StorySpeak is based on the
BDI model of human practical reasoning that was developed by Michale Bratman
[Bratman99] more precisely on its formalization AgentSpeak(L) [Rao06].

StorySpeak is based on BDI architecture and can be viewed as an extension to
the AgentSpeak(L) language. Firstly, I will first present the BDI idea and give
AgentSpeak(L) overview together with its open–source implementation Jason
[Bordini06]. Secondly, I will provide a list of features AgentSpeak(L) is lacking to
be a language that could be useful to the idea of role / plot definition. Finally, I will
show how StorySpeak extends AgentSpeak(L). Chapter 11 will present a few story
scripts that will show how StorySpeak could be used to define roles and plots.

8.1 BDI architecture
The BDI architecture is a model of reasoning for implementation of software
intelligent agents. It divides agent's mind into three categories: beliefs, desires and
intentions. Following explanation of those three categories does not reflect the
Bratman's theory completely. It is a traditional interpretation of the BDI architecture
for the needs of software intelligent agents.

Beliefs
Beliefs can be viewed as a knowledge base of the agent – it contains every
information the agent knows about the environment and itself. Bratman notes that
agent's beliefs need not to be true. They represent agent's subjective world-
view. I would like to note that StorySpeak does not exploit this and every actor will
contain only beliefs that are true.

Desires
Desires express agent's goals. Goals are states of the world the agent wants to reach.
The goals may be expressed 1) explicitly by the definition of the state of the
world, or 2) implicitly inside agents' intentions.

Intentions
Intentions express agent's ways how to satisfy its desires.

33

Figure 12 – BDI model of reasoning.

The BDI architecture is traditionally extended with plans (BDI+P), which are
sequence of actions or another intentions that leads to satisfaction of the desire. The
agent may have different desires, which may even be conflicting with each
other. Therefore the agent contains also the intention–selection mechanism that
chooses which intention should be executed.

Plans may contain not only actions but also references to other plans. They
usually contain 1) preconditions and 2) during-conditions that must be satisfied
1) prior the execution of the plan and 2) during the execution of the plan. Hierarchy
of plans and plans' condition is making BDI+P architecture quite similar to HTN
planning (Hierarchical task network) planning [Silva04].

The BDI+P alone is not a software framework and needs further
formalization. Today there exists several such formalization11 for example JAM,
3APL and AgentSpeak(L).

8.2 AgentSpeak(L)
AgentSpeak(L) is a programming language based on a restricted first–order language
with events and actions. A behavior of an agent is expressed as AgentSpeak(L)
programs. The language can be viewed as a formalization of the BDI architecture
and allows agent programs to be written and interpreted in a manner similar to that of
horn–clause logic programs. It was invented by Anand S. Rao and he has shown how
to perform derivations in its logic in AgentSpeak(L) original paper. The paper starts
with giving a formal definition of the language but it is soon clear that the language
can be thought of as an extension of the logic programming. The belief base of the
agent is the set of ground (first–order) atomic formula. The AgentSpeak(L) program
represents plans how to satisfy agent's desires. Every plan represents a way how to
respond to events that are happening around an agent. When a plan is selected for
the execution, we say that it has been instantiated. Instantiated plans represent agent's
intentions.

+location(waste,X) … Head
: location(robot,X) & location(bin,Y) … Context
<– pick(waste); … Body (1)

!location(robot,Y); (2)
drop(waste). (3)

Figure 13 – Example plan from the Rao's paper that is about waste disposing robot.
11 http://en.wikipedia.org/wiki/BDI_software_agent [16. 4. 2009]

34

Every plan consists of three parts: head, context and body. The head of the
plan is formed by the event that consists of triggering symbol (addition “+” or
deletion “–”) and event term (the Prolog term). The agent receives events in form of
+terms from the environment that are matched against event terms from addition
plans head. Whenever an unification (mgu) of the event and head exists, the plan's
context is checked whether it holds in agent's belief base. If so then the plan is
instantiated as an intention.

We may interpret example plan (see fig. 13) as follows: If waste is spotted at
location X (head) and the location of robot is the same and location of garbage bin is
Y (context), then pickup the waste (body 1, atomic action), execute the plan
location(robot, Y) (body 2, supposed to move the robot to location Y) and
drop the waste (body 3, atomic action).

Rao then compares the AgentSpeak(L) language with logic programming12:

In summary, a designer specifies an agent by writing a set of base beliefs and
a set of plans. This is similar to a logic programming specification of facts and rules.
However, some of the major differences between a logic program and an agent
program are as follows:

• In a pure logic program there is no difference between a goal in the body of
a rule and the head of a rule. In an agent program the head consists of a
triggering event, rather than a goal. This allows for a more expressive
invocation of plans by allowing both data–directed (using addition/deletion
of beliefs) and goal–directed (using addition/deletion of goals) invocations.

• Rules in a pure logic program are not context–sensitive as plans.
• Rules execute successfully returning a binding for unbound variables;

however, execution of plans generates a sequence of ground actions that
affect the environment.

• While a goal is being queried the execution of that query cannot be
interrupted in a logic program. However, the plans in an agent program can
be interrupted.

AgentSpeak(L) interpretation
Finally, Rao provides formal operational semantics for the language. For the sake of
brevity I will only provide an AgentSpeak(L) interpretation diagram (see
fig. 14). Through out the following text I will refer to the language interpretation as
the agent's reasoning.

12 Following text is cited from [Rao96].

35

Figure 1413 – Reasoning algorithm of the AgentSpeak(L) agent

Whenever an event (in the form of ground term) arrives via agent's
perception, it is stored within the list of events and the belief base is updated of this
event. The event processing is done during the reasoning of the agent. Events are
internal or external. External events are all events that are sensed from the
environment. Internal events are events produced during the reasoning of an
agent. The reasoning algorithm works as follows:

1. The event E is selected from the event list using event selecting function
Se.

2. The plan library is searched for all plans, which head unifies with the
event E, creating a list of possible plans LP.

3. Context of the plans from LP is checked. Plans which context holds are
put into the list of applicable plans LA

4. Option selection function So selects one plan P from the list LA and: either
a) If the event E is external, new intention is added to the intention list
b) If the event E is internal event from the intention I, the plan P is added

on top of the actions from intention I.
5. The intention selection function Si selects one of the intention to execute,

the action may be:
a) belief base change
b) belief base check

• if belief base check fails, the intention fails (the intention is
removed from the list) and an deletion event –term(E), where E is
the head of the intention's plan, is added to the event list

c) agent atomic action14

13The figure is based on one the figure from [Bordini01].
14 Atomic from AgentSpeak(L) point of view.

36

d) plan call
• produces an internal event

Note that the Rao's paper does not provide concrete mechanism for the case
when there is no plan for deletion event. The concrete implementation is further
provided by Jason.

It is clear that the program written in AgentSpeak(L) will produce actions as
long as it is fed by events it has plans for.

We can see from the fig. 14, that AgentSpeak(L) uses three functions during
the reasoning algorithm, Se, So and Si without specifying them further or giving hints
what the specification could be.

Plans as situation/behavior pair
The event–context-plan idea of the AgentSpeak(L) language is similar to the
situation / behavior pair from (ch. 5.3). Events are informing the agent about changes
in the environment allowing the agent to match a new situation according to his
plans. The situation is defined by the plan's head and the context. The plans' bodies
represent actors' behaviors to perform.

The plans in AgentSpeak(L) are interruptible. It will allow to switch between
interactive and sequential behavior without destroying the intention of the actor.

8.3 AgentSpeak(L) extensions
Although Rao's AgentSpeak(L) is a fine formalism of the BDI architecture, it is far
from being useful as an actor's role definition language (and any agent in general) as
it lacks several things:

1. The formalism speaks only in Prolog terms, which really limits the
context definition of the plan. The author of the story should be given
a way to perform more checks (e.g. distance(X) < 100) inside the
context definition.

2. Even though the instantiated plans (intentions) are interruptible it does not
offer any mechanism for checking the context again when the execution
returns to the interrupted plan. There are three states the resumed
intention may be in:
a) The desire has been meanwhile satisfied and there is no need to

continue the execution of the intention.
b) The situation around the agent changed in a way, which prevents the

execution of the intention. Let us consider the plan for the waste
disposal. If the plan is interrupted right after the second call (see
fig. 13, body row 2) with intention that drives the robot from the
location Y, then returning to the plan will prove fatal. The waste
disposal plan will execute drop(waste) at different place then Y.

c) The situation around the agent is still valid for the behavior to
continue its execution.

AgentSpeak(L) always assumes the third option.

37

3. The only way to specify plans' priorities is through the means of intention
selection function Si. Unfortunately, the Si is not given additional
information about the plan's priority. The grammar of the language should
be extended for the author to specify a plan's priority.

4. AgentSpeak(L) does not allow to write plans for events in the context of
executed intention explicitly. We can not write plans that may be
instantiated only during the execution of certain plan. This would allow
for finer control over the events that are passed to an agent. This
extension would allow us to write subplans handling appearance of new
waste while the agent is in the middle of example plan.

5. There is no way to express plans' timeouts.

6. There is no mechanism for providing a plan that should be executed
whenever there is no intention inside intention list and no events inside
event list. This will allow definition of a default actor's behavior.

7. The expressions that are allowed inside the body should be extended too,
at least to allow simple if–then–else check; otherwise we would have to
write actions or plans (that can perform if–then–else check via context)
for every situation whenever a simple decision is needed.

8. Plans can not directly return values, which prevent creating plans
subroutines with decision points.

StorySpeak implementation contains many extensions to original
AgentSpeak(L) solving those problems plus providing additional features. Through
out the following text, I would refer to these points as AgentSpeak(L) extensions
(ASLe) together with specific number.

Jason – Java implementation of AgentSpeak(L)
Rather straightforward implementation of AgentSpeak(L) is Jason. It is described in
the paper [Bordini01]. Jason provides a Prolog implementation for the belief base
and provides a Java bindings15 for finer control over executed intentions and plans
that should be instantiated. The plan may be annotated with key/value pair hat may
serve as the basis for the definition of the selection methods. These annotations
makes the basis for the implementation of the selection functions. This gives the user
a way to control the selection functions.

Also Jason is defining the deletion event processing in very sensible way.
When the action fails, Jason does not remove the whole intention from the intention
list as AgentSpeak(L). Instead, only the actions from the top instantiated plan P is
removed from the intention and deletion event -term(P) is generated. If the deletion
event is chosen to be processed and no applicable plan is found, then next top plan in
the intention(P) fails. This mechanism is quite similar to the exception handling from
Java.

15 The user has to subclass the Jason's agent to provide a specific implementation for the selection
functions.

38

Other Java BDI implementations
Other popular BDI implementations in Java are JACK and JAM.

JACK is an industrial platform therefore it is closed–source. Even though the
JACK is also based upon BDI idea it is more suitable for multi–agent system
according to Wooldridge as the system is based upon the negotiation between
respective JACK agents. Thus it would allow only for author–centric approach where
the JACK agent would be a story manager that controls all the actors at once
otherwise writing joint–behaviors will be cumbersome.

The JAM [Huber99] language was created for the control of mobile robots. It
contains while cycle but it has a rather ugly syntax that is mixing prefix and infix
notation.

9 StorySpeak
StorySpeak is based upon the idea of AgentSpeak(L) but provides a different
grammar and extended semantics for its language. It is incompatible with
AgentSpeak(L) or its Jason implementation. StorySpeak is the name of the language
as well as the interpret implementation in Java. It was designed to support all
mentioned AgentSpeak(L) extensions (ASLe) from (ch. 8.3). It also implements ideas
presented in (ch. 5.5). The reasoning cycle of StorySpeak agent is very similar to the
one from fig. 14, the differences are:

1. Functions Se, So and Si have fixed implementation but customizable
through the plan annotations (plan annotations idea is borrowed from
Jason).

2. StorySpeak agent does not have an intention list but the intention trees
and Si picks the plan with the highest priority from all leaf plans among
intentions (will be explained later).

3. StorySpeak does not evaluate only top action from the plan it
executes, but it executes the whole batch of actions – how long the batch
would be is up to the author. This provides a flexible way how to express
atomic operations inside plans.

9.1 Additional StorySpeak extensions
Except for ASLes (the list from ch. 8.3 may serve as additional list of

StorySpeak features), StorySpeak provides extensions that allows the author to
provide both interactive and sequential actors' behaviors. StorySpeak implements
these additional extensions (SPes):

1. The possibility to write so–called template plans.

Template plan is a plan that should be executed by more then one agent
together allowing the author to write coordinated joint–behavior plans.

2. Issuing plan delegation in parallels that allows the author to control actors
directly from the story manager plans.

39

Plan delegation allows the story manager to order an actor to execute plan
that is defined in the story manager library. This feature is also needed
during the definition of a joint-behavior plan.

3. Tight bindings to Java language.

The interpreter may work with any class or object directly within
StorySpeak program16, which enables endless extension of the language
by Java libraries. StorySpeak also allows writing Java expressions inside
the plan context or body17.

4. Framework for writing Java Prolog beans.

Java Prolog beans are automatically translated into Prolog terms, may be
matched by Prolog unification and are automatically translated back into
beans if needed. Additionally any object may be part of the Prolog term
via string translation allowing Prolog terms to store references to concrete
Java objects. This feature allows the author to easily express story
relations as simple Java classes.

5. Usage of tuProlog18 for the belief base.

StorySpeak uses tuProlog as a simple database engines. It does not exploit
the use of Prolog predicates. Also StorySpeak does not use Prolog lists at
all.

Rather then to formally define a lot of StorySpeak terms, I will present all
StorySpeak features that target the ASLes (ch 8.3) and SPes together with their
informal semantics. This presentation will be followed by the explanation of
StorySpeak interpretation algorithm. The following syntax definition19 is only
a subset from the complete StorySpeak language syntax. The complete syntax can be
found in Appendix B.

The following text is using “Prolog term” in a restricted sense. It may be any
Prolog term except for the list.

9.2 StorySpeak plans and basic expressions
Every StorySpeak actor contains own library of plans. The notion of StorySpeak plan
is to provide a way for specification of one situation/behavior pair.

Every StorySpeak actor file is a list of plans separated with #. Every plan
must have a head and a body – a context may be omitted. A head consists of
a triggering symbol + or – as in AgentSpeak(L) followed by ! and a Prolog term that
is unified with incoming events. If mgu exists the plan is relevant for the event. The
body consists of batches of expressions. Batches are separated with ; and
expressions inside a batch with ,. The batch plays a role of the atomic operation
from the StorySpeak point of view, unless it is interrupted by plan call.

16 Via Java Reflection API.
17 Everything except bit operations, array access operators, operator new and class names.
18 Open–source (LGPL) implementation of Prolog in pure Java .

http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/ [16. 4. 2009]
19 Syntax definition is written in EBNF.

40

Plan syntax definition:20

plan = ('+'|'–')'!'prolog_term … head
[':' logic_expression] … context
'<–' plan_body … body

'#'
plan_body = expression (',' expression)*

(';' expression (',' expression)*)* [';']

logic_expression = …
The logic expression syntax is similar to the syntax of Java
expressions (using &&, ||, ? :, brackets, etc.) additionally the author
may use belief checks (?prolog_term) inside them.

Every StorySpeak actor maintains a plan library where the plans are sorted
according to their relevance (specified via plan annotations, ch 9.9). When an event
is processed, StorySpeak searches for an applicable plan that has the highest
relevance (which defines So function from AgentSpeak(L)). The plan is applicable if
it is addition plan, the head of the plan unifies with the event (mgu) and the plan's
context holds (evaluates to true). If the context of the plan is missing StorySpeak
assumes it evaluates to true. The plan's head and context specifies the
situation, while the body defines the behavior.

Deletion events are handled differently in contrast to AgentSpeak(L). When
some plan fails, StorySpeak does not produce a deletion event but immediately
searches the plan library for applicable deletion plan. If such plan is not found, the
failure is propagated as in Jason (ch 8.2).

In fact, the algorithm that chooses applicable plan for the event is more
complicated then iterating through the agent's plan library and will be explained later
in (ch. 9.11).

First few StorySpeak expressions (those which are present also in
AgentSpeak(L), see ch. 8.3):

1. belief checks = '?'prolog_term
Belief checks perform Prolog queries over the belief base of the actor. Provided
term may contain unbound or already bound variables (begins with upper–case
letter) or anonymous variables _. If belief check fails, it will not trigger failure
of the plan (as in AgentSpeak(L)). It will return a boolean value instead that may
be tested with ternary operator ? : and fail() method may be used to trigger
the failure of the plan.

2. plan call = '('priority')''!'prolog_term
This will try to instantiate a new plan as a child of the current one (explained
later). If no suitable plan is found, the caller plan will fail. The plan's priority
may be specified.

20 Following syntax definition of the plan is partial, the syntax for the plan is richer and allows to
define conditions to be checked during the execution or conditions for early success of the plan.

41

3. method calls = method_name'(' arguments ')'
StorySpeak language may be extended with arbitrary number of methods. These
methods may be used for anything the user wants and may contain variable
number of arguments. They can not be overloaded. Method names always begin
with lower–case letter and they are implemented in Java. Writing a new
StorySpeak method is as simple as subclassing specific class within Java.

4. belief base change = ('+'|'–')prolog_term
Belief base change is used to alter the belief base. The author may assertz21 or
retracts a fact from the belief base of the actor or story manager.
Moreover, Appendix B is containing a syntax that allows to change the belief
base of any StorySpeak actor.

Thus we may rewrite an example plan from the Rao's paper as follows:

+!location(waste,X) … Head
: ?location(robot,X) && ?location(bin,Y) … Context
<– … Body

pick(“waste”), (1)
!location(robot,Y), (2)
drop(“waste”); (3)

#

Figure 15 – Rewritten example plan from [Rao96] assuming that user has specified
methods pick/1 and drop/1. Quotes around the waste are notable. StorySpeak

forbids using Prolog atoms anywhere else then inside Prolog terms. Also notice that
logic conjunction is using && as in Java.

9.3 Additional expressions
Apart from basic expressions that was present in the original
AgentSpeak(L), StorySpeak allows additional types of expressions.

1. assignment = variable_name'='expression
This is used to assign a value to a variable – keywords null, unbound or
self may be used to assign null value, unbound the variable or gain a reference
to the executor of the plan (note that with plan delegation an executor does not
need to be the same as the owner of the plan), keywords – true, false may
be used to assign logic values. All variables must begin with an upper–case
letter.

2. if–then–else = expression '?' then_expression
 [':' else_expression]

Sometimes, it is needed to assign a value based on a logic expression or check
whether some variable has been already bound or not – therefore there exists
ternary operator ? :. This operator may be used in the context as well. It may
also be nested inside then or else branch. The else branch is
optional. Additionally, when this ternary operator is part of the plan body, it is
allowed to insert batches of expressions into branches. The batches have to be
wrapped with curly brackets.

21 The term assertz is used to express a fact that a new term is added to the end of the belief base .

42

3. full set of binary and unary operators
relation <, >, ==, !=
logic &&, ||, !
arithmetic +, –, *, /, %, ++, ––
assignment +=, –=, *=, /=
Note that StorySpeak features lazy evaluation of logic expression and that the
operator precedence is the same as in Java.

+!see(person(Name)) (1)
: ?greeted(Name, Time) ? Time < time()–10 : true(2)
<– say(“Hello ” + Name), (3)

Time ? –greeted(Name, Time), (4)
+greeted(Name, time()); (5)

#
Figure 16 – plan with more complex context and body

The figure 16 deserves a bit of explanation. The plan defines a behavior for
greeting people and takes special care not to greet them too often. The head (1)
assumes that agent may receive an event see with the object as its first argument –
successful unification with a see event bounds the Name variable. The context (2)
will check, whether we have not already greeted the person. If so, it will check
when (method time() returns current time in seconds). If the actor does not greet
person yet, it will return true. (3) will say aloud the greeting (concatenating the
strings). (4) will check whether the variable Time is bound (note that unbound
variable evaluate to false), if so, retracts the fact from the belief base. (5) assertz
information about greeting the person Name at time() to the belief base.

The context in the figure 15 makes an example for the ASLe 1 and shows that
StorySpeak is more flexible then AgentSpeak(L) or Jason.

9.4 Variables and unification
StorySpeak is working with Prolog terms therefore it is natural to express variables
as any identifier starting with upper–case symbol. StorySpeak is interpreted language
and one of its aims is to be as brief as possible. That is why there is no need to
declare variables before hand22 and first usage of the variable creates a variable in
current execution context with value unbound. Unbound value means that the
variable will be evaluated into a free variable during the unification. Once bound, the
variable will represent a specific value inside Prolog terms as well as in other
expressions. The author may use a keyword unbound to make the variable free
again.

22 This makes the language to be type–unsafe.

43

+! eatLunch(Food)
<– ?at(“fridge”, Location), (1)

goTo(Location), (2)
open(“fridge”), (3)
take(“fridge”, Food), (4)
Location = unbound, (5)
?at(“table”, Location), (6)
goTo(Location), (7)
?see(Chair) (8)
sitdown(Chair), (9)
eat(Food); (10)

#

Figure 17 – example of the plan with belief base queries. Terms beginning with ? are
belief checks (or queries). Belief query at (1) bounds the variable Location and if

we did not unbound the variable at (5) the belief query at (6) would fail and the agent
won't move to the table with method goTo at (7). Of course the user may use

another variable, e. g., Location2.

9.5 Calling Java methods, accessing Java fields
One of the feature of StorySpeak is the utilization of Java Reflection API to invoke
methods on the objects and accessing their public fields dynamically. The grammar
is the same as in Java.

1. accessing field = Variable'.'fieldName |
'('expression')''.'fieldName

2. java method call =
Variable'.'methodName'('args')' |
'('expression')''.'methodName'('args')'

Additionally, StorySpeak provides a simple access to getters – if field is not
found on the Java object a getter with the same name is tried. For
instance, self.location refers to a field location of the executor of the plan or
(if the field location is not present) to a method getLocation() of the executor.
The user may chain those calls, e. g., it is possible to write
self.actions.say(“Hello”).

Where StorySpeak is lacking is 1) accessing static methods on classes,
2) working with arrays and 3) instantiation of new objects. The first problem can be
overcome by inserting a global variable into StorySpeak with a value containing Java
class23. Second problem can be solved by using Java collections and third one (if
really needed) may be solved by creating a new StorySpeak method that would
invoke constructors.

Presented feature is not available in the Jason language, where the user is
forced to define Jason's methods for such cases.

23 There is already present a global variable System that refers to the System class from Java.

44

9.6 Template plans, plan delegation and parallel expressions
Template plans introduce the notion of master/slave actors. The template plan
always contains an executor actor (master) and contains a list of slave actors.
If a slave actor is about to execute the template plan, it will not do anything and let
the master actor to control him. This control is in terms of belief base querying and
alteration, executing story actions or ordering the actor to execute some other
plans. Together with the ability to delegate execution of a certain plan to a slave
actor, the template plans may be used to write coordinated joint–behaviors.

Additionally, StorySpeak allows user to write parallel expressions that are
crucial in order to write joint–behavior plans. The author would not be able to
specify actions that should be executed in parallel without them.

1. parallel behavior =
'||' '(' expression (',' expression)*

(';' expression (',' expression)*)*
')'

Parallel behavior is expressed inside brackets prefixed with two vertical
bars. Batches of expressions inside those brackets will be executed in
parallel. Batches are separated with ; and actions are separated with ,.

2. plan delegation = Actor !! prolog_term
The plan delegation differs from ordinary plan call with additional ! and
variable name that should contain an instance of an actor. Every actor in
StorySpeak has its unique name and is accessible via actor(name) method.

3. template plan =
(+|–)!
[variable (, variable)*] … template
prolog_term

[:logic_expression]
<– plan_body

#
Template plan definition differs from the ordinary plan by the template part
inside square brackets where the names of the slave agents are expressed. Slave
agents will be available in the template plan body under variables that are
defined in template.

4. template plan call =
! [expression (, expression)*] prolog_term

Similarly to the template plan definition, we have to specify slave actors during
the template plan call. Expression must evaluate to an actor object. There also
exists a template plan delegation variant with !!.

+![Agent1, Agent2] moveCouch(Couch, Room)
<–

Parallel = ||(
Agent1!!goTo(Couch.location),
Agent1!!grab(Couch);

Agent2!!goTo(Couch.location),

45

Agent2!!grab(Couch)
),
Parallel.waitAll(),
Parallel = ||(

Agent1!!move(Room);
Agent2!!move(Room)

),
Parallel.waitAll(),
||([Agent1]!!drop(Couch), [Agent2]!!drop(Couch));

#

Figure 18 – Example of the joint–behavior plan to take the couch and move it to
another room. Expressions inside ||(...) are done in parallel and the master

agent waits on the completion of the inner expressions at the next row. The
semicolon separates batches. !! stand for plan delegation and the term after !! is

plan of the master or respective slave agents. StorySpeak is utilizing its bindings to
Java. The waitAll() is public Java method of the parallel handle class from Java.

9.7 Failing plans
StorySpeak contains two types of plans (as is the case of AgentSpeak(L)). Addition
plans beginning with '+' and deletion plan beginning with '–'. Whenever an event
is being processed by StorySpeak or the plan call is being evaluated inside the
body, StorySpeak will search for appropriate plan among addition plans. Whenever
a plan fails (due to the failure of atomic action or called plan, or method
fail()), StorySpeak searches for the deletion plan to execute instead of the plan
that has failed. This mechanism may be used to provide an alternative plan when the
original plan fails. If the deletion plan fails, the failure is propagated to the plan that
originally called the one that has failed. If no such plan exists then the failed plan
was the first instantiated plan of the intention and the whole intention is dropped.

+!eatLunch(Food)
: Food == “apple”
<–

?at(“fridge”, Location), (1)
goTo(Location), (2)
open(“fridge”), (3)
take(“fridge”, Food), (4)
close(“fridge”), (5)
eat(Food); (6)

#

–!eatLunch(Food)
: Food == “apple” && at(self, “fridge”) &&

?opened(“fridge”) && ?inside(“fridge”, “orange”) (7)
<– take(“fridge”, “orange”), (8)

close(“fridge”), (9)
eat(“orange”); (10)

#

Figure 19 – Example of the deletion plan that provides an alternative for the plan
eatLunch(“apple”). Let's say that the action (4) fails because there is no apple
inside the fridge. This failure will cause the plan to fail and StorySpeak will try to

46

search for the deletion plan with the same head (or more precisely it will try to find
deletion plan with the head that unifies with the original event that triggered the

addition plan that has just failed). Ultimately StorySpeak finds the deletion plan as
defined above, checks its context and instantiate it.

Note that the deletion plans could be used for the endless execution of the specific
plan creating plan: –!plan() <– !plan() #.

9.8 Subplans and handling of events inside instantiated plan
StorySpeak allows writing plans that may be instantiated only in the context of the
execution of specific plan. These plans are called subplans. Every subplan has an
owner plan.

Extended plan syntax:

plan = ('+'|'–')'!'prolog_term
[':'logic_expression]
'<–' plan_body
['{'

(plan)+ … subplans
'}']

'#'

Every subplan may be executed only if the owner plan is currently being
executed by the agent. Thus we have a mechanism for creating different behaviors in
the context of executed plans. This allows for finer control over the executed plans.

9.9 Plan annotations
Every plan may contain an arbitrary number of annotations. Annotations are defined
right after the plan head inside square brackets. Every defined annotation is also
present as a variable during the plan body execution. There exists a few annotations
with specific meaning such as Relevance. Relevance annotations order the plans
inside an actor's plan library. If more then one plan is applicable, the one with the
highest relevance is instantiated. Another notable annotation is Timeout that may be
used to limit the maximum execution time the plan is given (in seconds).

plan = ('+'|'–')'!'prolog_term
'[' annotation (',' annotation)* ']' … annotations

[':' logic_expression]
'<–' plan_body

'#'
annotation = variable '=' expression
Note that all annotation names must start with an upper–case letter too and that they

are present as variables in the execution context of the plan.

+!see(person(Name)) [Relevance = 10]
: at(“kitchen”)
<– say(“Hello “ + Name + “! Are you hunting the fridge

again?”);
#

47

+!see(person(Name)) [Relevance = 20]
: at(“kitchen”) && state(“hungry”)
<– say(“Hello ” + Name + “, are you hungry as much as

me?”);
#

Figure 20 – Example plans with Relevance annotation. When the agent is in the
kitchen, is hungry and encounters a person, context of both plans is true. StorySpeak
will use the value from Relevance annotation in such cases and instantiate the plan

that has the highest relevance. If Relevance annotation is not present, a plan
receives default relevance of 1000.

9.10 Definitions
Now I will informally define a several terms in order to be able to present
a reasoning algorithm of StorySpeak.

Plans
Plans are of two types: standard and template plans – both of them may be referred
simply as plans. Every plan has its executor and in the case of template plan also
subordinates (or slaves). Also every plan is either an addition plan (prefix '+') or
failing plan (prefix '–') and consists of a head, a context and a body and may have
during conditions and early success conditions specified. Additionally, every plan
may have subplans. Every subplan has an owner plan. If a plan is present in any plan
node, it is called instantiated plan. If the plan still contains actions to execute, it is
called unfinished plan. If the plan has no actions to execute it is called finished plan.

Events
Every event that is passed into StorySpeak contains a Prolog term and possibly
a priority.

Intention trees
Intentions in StorySpeak are quite different from the concept of AgentSpeak(L).
Intentions in AgentSpeak(L) are list of actions, which resides in the intentions list –
even though this is partial true for StorySpeak as well (we have to store the plan's
actions somewhere). Nevertheless, instantiated plan's actions are not stored in an
intention, but they are wrapped by the plan node, which resides in the intention tree.
Root of the intention tree corresponds to the agent's desire as it contains a plan that
was instantiated according to some event.

Why can not we do without intention trees? After all, actor will need to
maintain the list of plans, it wants to execute, sorted according to their
priority, which can be viewed as priority queue? That is because we need to track
two things:

48

1. Whenever a plan fails we have to propagate the failure of the plan down
the intention tree in search for a failing plan. Thus every plan node must
maintain a reference to its caller (except the root of the intention tree).

2. Every plan may contain a plan delegation expression, thus every plan
may have more children and it needs to store their references in case it
fails so it will be able propagate failure to its children.

StorySpeak recognizes two types of links (edges between nodes) inside
intention trees – strong and weak. Child that is connected to a parent with a strong
link is called strong child. Child that is connected to a parent with a weak link is
called weak child.

We need to differentiate between three types of nodes to track which nodes
are subjects for executions:

1. strong leafs
• nodes that have no children at all

2. weak leafs
• nodes that have no strong child and at least one weak child

3. plan node
• nodes that have at least one strong child

When an actor performs a reasoning it chooses a leaf plan with the highest
priority, where the agent is an executor or the slave, and executes its next batch of
actions. We can not execute plan nodes as they have issued a plan call and we have
to wait for its strong child to complete (or fail).

Figure 21 – Example of the story manager intention tree “party” (1). The intention
tree is describing an intention tree of the story manager, that should order actors
chris and ben to party. The story manager first executes template plan +[A,B]

party() (2) bounding chris as A and ben as B. Then the story manager orders ben to
drink (3) and chris to dance (4). because ben does not holding any drink then he sets

out to find one (5). The story manager has delegated plans +drink() and

49

+dance() to ben and chris respectively. Therefore ben and chris has been removed
from actors that are executing the +[A,B] party(). Plans 1 and 3 are nodes.

Plan 2 is a weak child and plans 4 and 5 are strong children.

Actor
Every StorySpeak actor has:

1. a plan library PL

• Plan library is made of list of plans that is sorted according to the
plans' relevancies.

2. a forest of intention trees FI

3. list of leaf plans LL sorted according to the priorities

4. a list of events E
• All incoming events between the reasoning iterations are stored here.

9.11 Interpretation algorithm
An interpretation algorithm is periodically called by the storytelling framework for
every actor that is present in the story world. The framework is multi-threaded and
uses ScheduledThreadPoolExecutor.

reasoning():
Ec = copy(E)
E = 0
while Ec != 0: (1)

process_event(front(Ec))
pop(Ec)

if peek(LL) != 0: (2)
Plan = peek(LL)
execute(Plan)

else:
process_event(noPlan_event) (3)
if peek(LL) != 0:

Plan = peek(LL)
execute(Plan)

end

The reasoning method does three things:
1. it processes all events that have come since the last execution of the

algorithm,
2. it executes a next batch of actions from the leaf plan with the highest

priority where the agent is an executor or the slave.
3. if the actor has no plans to execute, the noPlan_event is produced

and the plan library is searched for the plan with default behavior of
the actor.

50

process_event(Event):
if peek(LL) != 0: (1)

ApplicablePlan = find_plan(+, Event, peek(LL))
if ApplicablePlan != 0:

new_strong_child(ApplicablePlan, peek(LL))
else: (2)

ApplicablePlan = find_plan(+, Event)
if ApplicablePlan != 0:

new_intention(ApplicablePlan)
end

Processing of an event depends on the current plan of the agent. If the actor
already executes some plan, it searches for a new plan in the context of the
current plan (1). Otherwise it just searches the actor's plan library (2).

find_plan(Trigger, Term):
if peek(LL) != 0:

return find_plan(Trigger, Term, peek(LL))
else:

searches the plan library for an applicable plan for Trigger/Term
end

find_plan(Trigger, Term, Node):
while Node != 0:

searches subplans of the Node.plan for an applicable plan for the
Trigger/Term; if the plan is found, return it
if Node.plan.hasAnnotation(

PropagateEvents == false
):

return 0
Node = Node.parent

searches the plan library for an applicable plan for Trigger/Term
end

When the event is processed in the context of some node, the subplans of the
node's plan are first searched for the applicable plan. The algorithm then
continues with node's parents. Every plan may contain an annotation
PropagateEvents == false to prevent the propagation of the event higher. This
may be used to create uninterrupted plans.

new_strong_child(NewPlan, Node):
The NewPlan is wrapped with the intention tree node and added as a strong
child to the Node.

end

51

new_intention(NewPlan):
New intention tree is inserted into actor's FI. The created tree has a NewPlan
in the root.

end

execute(Plan):
if Plan is template && Plan.executor != self:

return
if plan early success condition evaluates to true:

succeed(Plan)
if plan during condition evaluates to false:

fail(Plan)
if plan timed out:

fail(Plan)
execute_next_batch(Plan)

end

Every time a plan is scheduled for execution its early success
condition, during condition and timeout is checked (if defined). Template
plan is executed only by its executor, if the agent is the slave of the current
plan, it does nothing.

execute_next_batch(Plan):
Batch = plan.next_batch()
while Batch.hasNext(): (1)

if Plan != peek(LL): (2)
pushBack(Plan, Batch)
return

Expression = Batch.next()
Batch.remove()
evaluate(Expression)

if Plan.noMoreBatches():
succeed(Plan)

end

The batch is executed as long as 1) it contains next action (1), 2) the batch's
plan is the same as the leaf plan with highest priority (2).

evaluate(Expression) may encounter these actions:

1. belief base query / belief base change
2. method call / java expression / if-then-else / etc.
StorySpeak defines various methods for performing story actions.

3. parallel expressions
Perform evaluation of expression batches in parallel. The execution of the
actions will not wait for the parallel expression to finish. Nevertheless, the
parallel expression returns a handle, which the user may synchronize on calling
Java methods waitAll() or waitOne().

52

4. plan call
\

Searches the plan library for the plan to instantiate. If plan is not found, fails the
plan. If plan is found, creates new plan node and connect it with current plan
node with a strong link. Updates LL of the executor.

5. template plan call
As 5) but updates LL of slaves as well.

6. plan delegation
As 5) but connects the new node with weak link and updates LL of the agent the
plan is delegated to.

7. template plan delegation
As 5) but connects the new node with weak link and updates LL of the executor
and slaves.

Execution of the batch of actions may have these results:
1. no result

The batch has been evaluated and it was not the last one.

2. the plan has succeeded
The plan may succeed due to these reasons:
a) there are no more batches of actions to execute,
b) method success() is called,
c) early success condition of the plan evaluates to true.

3. the plan has failed
Plan may fail due to the one of these reasons:
a) story action fails,
b) method fail() is called,
c) plan timed out,
d) during condition evaluates to false

succeed(Plan):
if Plan.node is strong leaf:

removes the Plan.node from the intention tree, removes Plan from LL of
executor (and slaves)

elseif Plan.node is weak leaf:
removes Plan from LL of executor (and slaves), hibernates Plan.node
(will be removed automatically when it becomes a strong leaf)

else:
can't reach here as only leaf plans may be executed

end

53

fail(Plan):
remove all Plan.node children, update respective LL (1)
if Plan is deletion plan:

remove Plan.node, update LL
fail(Plan.node.parent) (2)

else:
ApplicablePlan = (3)

find_plan(-, Plan.term, Plan.node.parent)
if ApplicablePlan != 0:

Plan.node.switchPlan(ApplicablePlan)
else:

remove Plan.node, update LL (4)
fail(Plan.node.parent)

end
When the plan fails, it removes recursively all Plan.node children updating
the lists of leaf plans (1).
If the plan is a deletion plan, it fails completely and propagates the failure to
the plan's node parent (2).
If the plan is addition plan, it tries to locate a deletion plan and switch the
plan inside the nodes. (3) If deletion plan is not found, it fails completely and
propagates the failure to the plan's node parent (4).

This ends the explanation of the interpretation algorithm of StorySpeak.

9.12 Extending StorySpeak
StorySpeak is designed to be easily extended by the author–based methods and
libraries. There are two ways how to do it.

The first way is to create custom methods that may be called directly from
StorySpeak at any place where the expression is accepted (plan context, during/early
success conditions, plan's body). The extension is done by subclassing the SPMethod
class and definition of the evaluate() method. The method has access to the full
context of the method execution and may even alter the stack of actions of the
instantiated plan allowing the author to schedule and execute arbitrary code.

The second way is through the means of global variables and custom Java
libraries. It is easy to create an object before the execution of the story and insert it
into the framework as a global variable under a certain name. Such variable will be
accessible at all places where the variable is allowed (plan context, during/early
success conditions, plan's body). Additionally, StorySpeak is able to call
objects' Java methods and access their public field.

54

10 Storytelling framework
Finally, we have assembled all pieces of the puzzle together. The storytelling
framework should be utilized by the author as follows:

1. Use UT04 map editor to create a desired environment.

2. Define story places.

• The UT04 represents the environment as a graph of navigation points.
The author may assign a name to the list of navigation points. The
framework will automatically provide facts at(place_name).

3. Define story actions.

4. Define story relations and provide Hammurapi rules allowing the
framework to infer them.
• The framework will automatically take care of them, raising all

events, modifying belief bases, etc.

5. Define roles and a plot using the StorySpeak language.

6. Create a simple XML file with the story configuration.

10.1 Additional infrastructure work
Except the implementation of StorySpeak interpret, there is a lot of infrastructure
work that allows simple handling of the story facts and relations.

Firstly, the framework must provide automatic translation of Java beans into
Prolog terms (Java collections / Prolog lists are not supported yet) and vice versa.
Even more, these Java beans will be author–defined (story relations) therefore
a general mechanism must have been provided.

Secondly, the framework must provide methods for inserting, updating and
removing facts from the system. Every such operation triggers the update of
appropriate belief bases, Hammurapi rules and produce event for StorySpeak.
Additionally, all facts that are accessible by the actors must be reachable by the story
manager as well.

Thirdly, the framework provides the information about the story fact and
relation origin and its state. The state can be:

1. new – the fact or relation has just appeared

2. updated – the fact or relation has been updated

3. dropped – the fact or relation has been dropped

The fact/relation state information is crucial for the situations matching as the
actor may need to perform differently in the case (for instance) that somebody
approaches the actor (“near” fact is created) and when somebody leaves the vicinity
of the actor. The author would have to simulate it with three different facts without
this mechanism.

55

Fourthly, the implementation is multi–threaded to utilize modern CPUs with
multiple cores. The implementation is much more difficult then it would be for the
single thread application.

Fifthly, there are a lot of StorySpeak methods that allows the author to
perform story actions in various ways (blocking, non–blocking, sequences, etc.).

Sixthly, the framework offers logging as a debugging tool. The framework is
logging:

1. the reasoning of the actors – which events it process and plans it executes,

2. belief base queries and alterations,

3. execution of the story actions,

4. information about the performance of the whole framework (storing time
that was needed to process facts, perform reasoning and execute actions).

Performance analysis
The performance analysis is offering this list of values (taken from the output of the
utility program for performance analysis).

General legend:
Iterations# ... number of iterations of reasoning counted
Format of values ... min < average +/– variance > max

Story manager performance legend:
Total (ms) ... total time of one iteration of SM
Rules (ms) ... time of Hammurapi rules (SM perception)
Reason (ms) ... time of StorySpeak reasoning iteration
Rules objs# ... number of objects inside Hammurapi rules

 (SM perception)
Believes # ... number of facts inside SM belief base

Actor performance legend:
Total (ms) ... total time of one iteration of actor logic
Batch (ms) ... time of -batch processing (messages from

GB2004)
Messages # ... number of messages processed during the

GB2004 batch
Facts # ... number of facts that has been changed

(inside rules/belief base)
during the batch

Rules (ms) ... time of Hammurapi rules (actor perception)
Reason (ms) ... time of StorySpeak reasoning iteration
Action (ms) ... time of story actions
Rules objs# ... number of objects inside Hammurapi rules

(actor perception)
Believes # ... number of facts inside director belief

base

56

11 Evaluation
The storytelling framework is evaluated with four simple story scripts that are
presenting its features. Each script is targeted at specific feature(s). I will provide
their description according to the intended workflow as presented in chapter 9.

Every story script contains only one image snapshot that does not tell much
about the actors' behaviors. More snapshots may be found in the Appendix B. There
are also videos available on the enclosed CD that illustrates the behaviors much
better.

All performance tests from this chapter were run on the notebook ASUS
M50Vc, Intel Core2 Duo P7350 2GHz, 3GB RAM and Windows Vista 32–bit. The
UT04 dedicated server were running on the same computer (without UT04 gui that
eats a lot of system resources). Every story script was evaluated for two minutes.

The legend for the performance analysis output is available in previous
chapter.

11.1 Shared parts
Much of the code base is shared by all story scripts on the first three abstraction
layers.

Virtual environment
All scripts are using one of the default map from the UT04 and that is DM–
TrainingDay. The map is very basic thus suitable for the evaluation as actors may
meet each other very often.

57

Figure 22 – Map DM–TrainingDay, yellow lines represents the default path the
actors are walking along (GB04 feature).

Actor perception – base story facts
The UT04 allows actors to sense those story facts24:

1. self(state, origin, location(x,y,z),
rotation(roll, yaw, pitch),

velocity(x,y,z))
• contains information about the actor itself, updated every 200ms

2. see(state, origin, object, location(x,y,z),
rotation(roll, yaw, pitch),

velocity(x,y,z))
• information about the object or person that is in the actor's field of the

view

• objects may be:
◦ person(name)
◦ item(type, ut04identifier)

3. hear(state, origin, from, to, text)

Actor's perception – story relations
1. at(state, origin, place)

• provides relation between actor's position and labeled place inside the
story world, places are configurable

24 Note that the facts are included only to make following story scripts more readable, I do not include,
for instance, type information as they can be easily obtained from the Javadoc.

58

2. near(state, origin, object, object)
• information that two objects are near to each other

• objects may be:
◦ person(name)
◦ item(type, ut04identifier)

Story actions
1. run around map

• moves around the provided location at random
• implements dodging behavior

2. turn to
• turns to other objects in the story world (person or item)

3. say
• actor says aloud some message

11.2 Story script 1 – Simple greetings
The first story script is featuring two simple plans. First one is triggered whenever
the actor has no plan and the second one when the actor become near to another
player. Note that this player does not need to be another actor but human player as
well.

Demonstrated features
1. actors may use story relations as a trigger for the behavior

2. actors may be given a default behavior when no situation is matching

3. Prolog unification of events with plan's head

4. various expression features of StorySpeak

Actors' plans
All actors in this story script have these two plans:

+!near("New", self, self.person, person(Name)) [Priority = 10] (1)
<–

do(self.actions.say(text("greeting", Name))); (2)
#

+!noPlan() [Priority = 1] (3)
<–

perform(self.actions.runAround(place("map"))); (4)
#

There is one situation/behavior pair specified at (1) and default behavior for
the actor at (3). Translated to English, the (1) is saying: whenever a story relation
near appears as a “new” fact (1st argument) in the belief base, it is me who sense it
(2nd argument), it is me who is near something/somebody (3rd argument) and the
other object is another person with some Name, then greet the person (2).

The default behavior is just performing the running around the map (4).

59

Notice the Priority annotations of the plans that are saying that the
behavior triggered by the near fact has the bigger priority then the default behavior.

(1) is demonstrating feature 1 and 3, (3) is demonstrating feature 2, (2) and
(4) is demonstrating the feature 4.

Snapshots

Figure 23 – Actors are meeting in the center of the map in the first picture. The
second picture shows how actor may react to the player Jimmy.

60

Performance analysis
The performance analysis contains values from one actor only because all actors are
running according to the same plans.

Time of simulation: 119,697 secs
Actor 'Mao' performance ...
Iterations#: 598
Total (ms): 3,785 < 16,300 +/– 13,357 > 75,723
Batch (ms): 2,753 < 13,190 +/– 10,595 > 72,539
Messages #: 13 < 21,371 +/– 3,724 > 36
Facts #: 1 < 2,262 +/– 1,249 > 12
Rules (ms): 0,007 < 0,368 +/– 1,477 > 17,456
Reason (ms): 0,398 < 2,056 +/– 5,088 > 22,531
Action (ms): 0,000 < 0,687 +/– 1,067 > 17,130
Rules objs#: 4,000 < 10,162 +/– 3,746 > 23,000
Believes #: 3,000 < 9,190 +/– 3,721 > 22,000

Longest batch:
Perf: total 75,723 ms, batch 70,215 ms (m20, f1), rules 0,045 ms,
reason 5,138 ms, action 0,326 ms, ruleobjs 6, believes 5

The longest part of the whole iteration takes the processing of the GB04 batch of
messages. This number is a bit strange as it sometimes takes even 170ms to finish
and depends more on the nature of GB04 then storytelling framework. The GB04
sometimes pauses the production of the messages for a certain amount of time, which
results in such values.

11.2 Story script 2 – Greetings with replies
The second story script is extending the plan for greeting. The actors will now wait
for the reply. If the other actors replies to the greeting (saying anything), they will
say good bye to each other and continue their walking.

Demonstrated features
1. extensibility by additional story relations

2. plan context

3. belief base querying

4. belief base alteration

5. synchronization of the actors through the means of waitfor method

6. ternary operator implementing if–then–else

New story relation
This story script is introducing another story relation - “heard”. This relation is
tracking the last heard sentence of other actors as well as the time when the sentence
was heard.

61

Actors' plans
All actors in this story script has these two plans:
+!near("New", self, self.person, person(Name)) [Priority = 10]

:
?greeted(Name, Time) ? Time < time()–50 : true (1)

<–
self.actions.clear(),
Time ? –greeted(Name, Time), (2)

sequence((3)
self.actions.face(actor(Name)),
self.actions.say(text("greeting", Name))

),

+greeted(Name, time()), (4)

waitfor((5)
 ?heard(_, self, Name, To, _, HeardTime) (6)
&& (To == self.name || To == "everyone")
&& time()–3 < HeardTime,
3

) ?
do(self.actions.say(text("bye", Name)))

: do(self.actions.say(text("ignore", Name)));
#

+!noPlan() [Priority = 1]
<–

perform(self.actions.runAround(place("map")));
#

The plan for meeting other person has been extended of a context. The context (1) is
querying the belief base – asking, whether the actor already greeted the person with
Name. If not – the context is valid, if so – the time of the greeting is checked and
must not be older then 50 (measured in seconds) for the plan to be instantiated. There
are also a few lines in the plan's body that deserves attention. (2) is querying whether
the variable Time has been bound and if so removes the fact is removed from the
belief base. (3) is performing StorySpeak method sequence that waits the end of the
list of actions. (4) adds the information about greeting the person and (5), (6) wait for
3 seconds (the 2nd argument of the waitfor method) whether the other person
replies (the reply should not be older 3 seconds), note that method waitfor returns
true if the condition we were waiting for were satisfied and false otherwise.

(1) is demonstrating feature 2, (2) and (4) are demonstrating features 3 and 4,
(5) is demonstrating feature 5, (2) and (6) are demonstrating feature 6. (6) is also
demonstrating feature 1.

62

Snapshot

Figure 24 – Actors are greeting and saying good bay to each other.

Performance analysis

Time of simulation: 119,925 secs

Actor 'Ben' performance ...

Iterations#: 599
Total (ms): 2,803 < 16,047 +/– 12,467 > 102,070
Batch (ms): 2,070 < 12,966 +/– 10,914 > 86,290
Messages #: 13 < 22,687 +/– 3,944 > 32
Facts #: 1 < 2,493 +/– 1,482 > 12
Rules (ms): 0,007 < 0,263 +/– 0,850 > 13,846
Reason (ms): 0,364 < 2,153 +/– 4,055 > 24,005
Action (ms): 0,000 < 0,666 +/– 0,829 > 9,583
Rules objs#: 7,000 < 25,050 +/– 7,506 > 44,000
Believes #: 6,000 < 11,947 +/– 4,016 > 32,000

Longest batch:
Perf: total 102,070 ms, batch 86,290 ms (m31, f6), rules 0,905 ms,
reason 14,482 ms, action 0,392 ms, ruleobjs 36, believes 14

Comparing numbers with previous results we may see that number of rules objects
and believes increased. That is a result of the new story relation that is present inside
belief bases as well as Hammurapi rules. Time of StorySpeak reasoning does not
changed much with the presence of the context of the greeting plan.

63

11.3 Story script 3 – Story manager orders actors to party!
The third script introduces a story manager that contains a template plan that orders
the actors to party when two of them meet somewhere.

Demonstrated features

1. story manager

2. plan start execution block

3. template plans

4. calling plan with a specific priority

Story manager plans

+!near("New", _, person(Name1), person(Name2)) (1)
:

 !actor(Name1).locked (2)
&& !actor(Name2).locked
&& (

?party(Name1, Name2, Time1) (3)
?

Time1 < time()–80
:
(

?party(Name2, Name1, Time2)
 ?

Time2 < time()–80
: true

)
)

<<
actor(Name1).lock(), actor(Name2).lock() (4)

<–
?party(Name1, Name2, Time3) ? –party(Name1, Name2,

 Time3),
?party(Name2, Name1, Time4) ? –party(Name2, Name1,

 Time4),
+party(Name1, Name2, time()),
(2000) ! [actor(Name1), actor(Name2)] party(); (5)

#

+![A, B]party() (6)
<–

do(A.actions.say(text("party"))), (7)
do(B.actions.say(text("party"))),
do(A.actions.jump()),
A.unlock(), B.unlock(); (8)

#

Plans for the story manager have the same syntax as for the actor. The first plan (1)
matches any near event that originates from any actor and has rather complex
context. First we are checking whether the actors were already locked for the plan
execution (2). If not we check whether they did not partied recently (3), notice the
rather ugly double checking of the belief base. (4) contains expressions that are
executed right after plan instantiation making the checking of the lock state and

64

locking actions an atomic operation from StorySpeak perspective. (5) contains the
template plan call with priority 2000.

Next plan (6) is the template plan that has two slave actors – A and B. The
plan (7) is ordering the actors (notice the use of actors' variables A and B) to say
some cheerful sentence and one actor to jump. The plan ends with unlocking the
actors (8) to allow them to party with somebody else.

The story manager has been introduced thus presenting feature 1. (4)
demonstrates the feature 2. (5) is presenting feature 3 and (6) is presenting feature 4.

Actors' plans
Actors' plans are the same as in (ch 11.2).

Snapshot

Figure 25 – Snapshot picturing the actor Mao in the middle of the jump saying
a party message.

Performance analysis

Time of simulation: 120,336 secs

Story manager performance ...

Iterations#: 2347
Total (ms): 0,020 < 1,808 +/– 5,968 > 93,411
Reason (ms): 0,020 < 1,808 +/– 5,968 > 93,411
Active as.#: 0,000 < 0,020 +/– 0,142 > 1,000
Dormant a.#: 0 < ... > 1
Believes #: 13,000 < 45,575 +/– 10,078 > 77,000

65

Longest batch:
Perf: total 144,411 ms,reason 144,411 ms, believes 76

The reasoning time of the story manager is very high sometimes – it is not because of
StorySpeak but due to the synchronization. Whenever the story manager is executing
the template plan it waits for the actor's avatar to finish his last action sometime.

11.4 Story script 4 – Ignorant Gregory
The last story script is not using the story manager but features two different kinds of
roles. There are three actors Chris, Mao and Kira who are kind and reply to
greetings. The last actor is Gregory that has been labeled as Ignorant because he
never replies to greetings. That is because Gregory is too shy and runs away every
time it gets near to somebody.

Demonstrated features

1. deletion (failing) plans

2. plan's during condition

3. subplans

Additional story actions
To allow Gregory to run we have to implement additional story actions.

1. set walk
• sets the mode of moving to walking

2. set run
• sets the mode of moving to running

Kind actors' plans

+!near("New", self, self.person, person(Name)) [Priority = 10] (1)
:

?greeted(Name, Time) ? Time < time()–50 : true
!

?near("New", self, self.person, person(Name)) (2)
<–

self.actions.clear(),
Time ? –greeted(Name, Time),

sequence(
self.actions.face(actor(Name)),
self.actions.say(text("greeting", Name))

),

+greeted(Name, time()),

waitfor(
 ?heard(_, self, Name, To, _, HeardTime)
&& (To == self.name || To == "everyone")

66

&& time()–3 < HeardTime,
3

) ?
do(self.actions.say(text("bye", Name)))

: do(self.actions.say(text("ignore", Name)));
#

–!near("New", self, self.person, person(Name)) [Priority = 10] (3)
<–

do(self.actions.say(text("rude", Name))); (4)
do(self.actions.jump());

#

+!noPlan() [Priority = 1]
<–

perform(self.actions.runAround(place("map")));
#

Kind actors' plans are similar to those from (ch. 11.2). The differences are in the head
of the first plan and the deletion plan. The first plan (1) contains so–called during
condition (2) that must be true during the execution of the plan. If the condition fails
the plan fails. When that happens, the deletion plan (3) will be executed and the actor
will say something rude about the person that has walked away and will also jump in
fury.

(2) is presenting the feature 2, (3) is demonstrating feature 1.

Gregory's plans

+!near("New", self, self.person, person(_)) [Priority = 10] (1)
<–

self.actions.setRun(); (2)
#

+!near("Drop", self, self.person, person(_)) [Priority = 100] (3)
:

!(?near("New", self, self.person, person(_))) (4)
<–

waitfor(false, 2), (5)
self.actions.setWalk(); (6)

{
+!near("New", self, self.person, person(_)) (7)
<–

self.actions.setRun(), (8)
fail(); (9)

#
}
#

+!noPlan() [Priority = 1]
<–

perform(self.actions.runAround(place("map")));
#

Gregory is a shy guy therefore he pays attention to people that get too near to him
by running away. Therefore there is the first plan (1) that will execute the (2)
setRun() action which makes him run. When the near fact is “Drop”ped
(disappears from the belief base) (3) and there is noone else who is near (4)

67

Gregory will keep running for two seconds (5) and then he will start walking again
(6). But as was said in (ch. 9.11), whenever an event occurs it is matched in the
context of the plan. Plans (except for noPlan) do not propagate events to the plan
library. Therefore, we have to handle situation when the plan (3) is being executed
and new near fact appears. Thus we will define a subplan (7) for plan (3) handling
such appearance by start running (8) again and failing (9) the whole plan. This failure
will be propagated to the higher plan (3) by StorySpeak tearing it down.

(7) is demonstrating feature 3.

Snapshots

Figure 26 – A comics based on the presented story script featuring Furious Mao and
Ignorant Gregory – perhaps Mao is a bit hot–headed due to the lava that is boiling

under her feet?

Performance analysis

Time of simulation: 119,795 secs

Actor 'Mao' performance ...

Iterations#: 599
Total (ms): 3,480 < 11,049 +/– 7,936 > 84,035
Batch (ms): 2,073 < 8,367 +/– 6,704 > 81,457
Messages #: 13 < 21,962 +/– 4,159 > 34
Facts #: 1 < 2,533 +/– 1,414 > 12
Rules (ms): 0,008 < 0,285 +/– 0,764 > 11,210
Reason (ms): 0,382 < 1,861 +/– 2,968 > 33,467
Action (ms): 0,000 < 0,537 +/– 0,669 > 5,216
Rules objs#: 6,000 < 26,372 +/– 8,852 > 47,000
Believes #: 5,000 < 11,005 +/– 3,693 > 23,000

68

Longest batch:
Perf: total 84,035 ms, batch 81,457 ms (m27, f4), rules 0,170 ms,
reason 2,408 ms, action 0,000 ms, ruleobjs 36, believes 10

Actor 'Ignorant Gregory' performance ...

Iterations#: 599
Total (ms): 2,893 < 8,591 +/– 4,278 > 21,983
Batch (ms): 1,530 < 6,911 +/– 2,462 > 19,976
Messages #: 13 < 21,448 +/– 4,115 > 31
Facts #: 1 < 2,328 +/– 1,370 > 8
Rules (ms): 0,007 < 0,250 +/– 0,563 > 4,094
Reason (ms): 0,276 < 1,050 +/– 2,287 > 5,903
Action (ms): 0,000 < 0,380 +/– 0,364 > 3,271
Rules objs#: 7,000 < 29,382 +/– 10,894 > 50,000
Believes #: 5,000 < 11,023 +/– 3,648 > 25,000

Longest batch:
Perf: total 21,983 ms, batch 19,976 ms (m24, f4), rules 0,167 ms,
reason 1,551 ms, action 0,289 ms, ruleobjs 36, believes 18

There is no big difference between Mao and Gregory in execution times – except that
Gregory was lucky and did not experience a GB04 lag.

69

12 Conclusion
This thesis has introduced the field of virtual interactive storytelling together with its
two main problems: 1) narrative-interactive tension, 2) story definition. It was shown
that the definition of the story is in fact definition of actors' behaviors. These
behaviors are of two types: 1) interactive, 2) sequential. The author of the story has
to be able to specify both of them. Therefore the actors' behaviors definition
language must allow actors to switch between them. This was achieved by creating
and implementing the StorySpeak language.

The story definition has been discussed in (ch. 6). It identified that the story
definition has six layers of abstraction beginning in the virtual environment and
ending at story execution. The layers are described in (ch. 6.6). These layers are:

1. Virtual environment

2. Sensing and acting in the environment

3. Actor's perception

4. Role definition

5. Plot definition

6. Story execution

The framework is built on top of Pogamut that utilizes Unreal Tournament
2004 virtual environment. Storytelling framework then allows the author to writer
arbitrary number of story actions in Java using base commands that are recognized
by the UT04. These story actions may contain reactive plans to express interactive
behaviors.

The third layer has been implemented by using RETE algorithm
implementation for inferring story relations. New rules and facts may be by the
author as she see fit for the definition of the story world. Chosen RETE algorithm
implementation is providing belief revisions of actors as well.

To facilitate fourth and fifth abstraction layer new language for actors'
behaviors definition has been created that allows the author to write situation
matching rules that triggers the behavior of the actor. The same language may be
used to specify plans for the story manager that may use template plans to produce
sequential behaviors for more actors and orders the actors to behave as the plot
requires them to. The language allows the author to define situation-behavior pair.

Bringing everything together, the user may define simple XML files to define
the whole story.

The storytelling framework has been evaluated with four short story scripts
that have shown how behaviors may be specified using StorySpeak and how story
manager may perform sequential behaviors with actors. During the evaluation the
framework was extended by new story relation (heard), two new actions (set run and
set walk) that has shown that the framework is easily extensible.

70

13 Future work
Currently, StorySpeak is not really suitable as an interactive behavior specification
language. The interactive behavior must be implemented inside a story action. The
future work should revisited the StorySpeak language and provide perhaps an
additional grammar with refined language semantics to support reactive behaviors or
utilize some reactive planner such as POSH [Byson01].

The utilization of tuProlog could also be improved. tuProlog is an open
source Prolog implementation therefore it should not be that hard to extend it to
support Java sets. Sets would be quite useful for simple specification of the
symmetric facts (e.g. near(Name1, Name2) is the same as near(Name2,
Name1)). This could also be solved by providing the author a way to define
predicates that should be present in actors' belief bases.

Finally the next big goal would be to exploit use of planners and extend the
definition of roles of constraints that the role wants to be held in the known state of
the story world.

71

Literature

[Adobbati01]
Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world
test-bed for multi-agent research. In: Proceedings of the 2nd Int. Workshop on Infrastructure
for Agents, MAS, and Scalable MAS, Montreal, Canada, 2001.

[Bae08]
Bae, B., Young, R.: A Use of Flashback and Foreshadowing for Surprise Arousal in
Narrative Using a Plan-Based Approach. In: Proceedings of First Joint International
Conference on Interactive Digital Storytelling, ICIDS 2008, Erfurt, Germany, 2006.

[Bordini06]
Bordini, R. H., and Hübner, J. F.: BDI agent programming in AgentSpeak using Jason.
In: Proceedings of the Sixth International Workshop on Computational Logic in Multi–Agent
Systems (CLIMA VI), 143–164, 2006.

[BotPrize08]
http://botprize.org/2008.html [16. 4. 2008], computer bot contest, Perth, Australia, 2008.

[Bratman99]
Bratman, M.: Intention, Plans, and Practical Reason. CSLI Publications. ISBN 1-57586-192-
5, 1999.

[Bryson01]
Bryson, J.J.: Inteligence by design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agent. PhD Thesis, MIT, Department of EECS, Cambridge,
MA, 2001.

[Cavazza01]
Cavazza, M., Charles, F., J. Mead, S.: Characters in Search of an Author: AI–Based Virtual
Storytelling. In: Proceedings of the International Conference on Virtual Storytelling: Using
Virtual Reality Technologies for Storytelling (ICVS01), London, UK, 145–154, 2001.

[Clarke01]
Clarke, A., Mitchell, G.: Film and the development of Interactive Narrative. In: Proceedings
of the International Conference on Virtual Storytelling: Using Virtual Reality Technologies
for Storytelling (ICVS01), Avignon, France, 2001.

[Dastani03]
Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.: A Programming Language for
Cognitive Agents: Goal Directed 3APL. In: Proceedings of the First Workshop on
Programming Multiagent Systems: Languages, frameworks, techniques, and tools
(ProMAS03), 2003.

[Forgy82]
Forgy, C.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. In: Artificial Intelligence, 17-37, 1982

[Gazolla06]
Gazolla, G., Carrasco, R.: Implementation of Intelligent Agents to Unreal using Pogamut 2.
Master thesis, Computer Science on the Federal University of Viçosa, MG, Brazil.

72

http://www.dur.ac.uk/r.bordini/Publications/bapauj-LNCS-CR.pdf
http://en.wikipedia.org/wiki/Artificial_Intelligence_%5C(journal%5C)
http://www.cs.uu.nl/3apl/publication/goal.pdf
http://www.cs.uu.nl/3apl/publication/goal.pdf
http://www.dur.ac.uk/r.bordini/Publications/bapauj-LNCS-CR.pdf

[Hubber99]
Huber, M. J.: International Conference on Autonomous Agents. In: Proceedings of the third
annual conference on Autonomous Agents, Seattle, Washington, United States, 1999.

[Johnson07]
Johnson, W. L., Wang, N., Wu, S.: Experience with serious games for learning foreign
languages and cultures. In: Proceedings of the SimTecT Conference, Australia, 2007 .

[Kadlec08]
Kadler, R.: Evolution of intelligent agent behaviour in computer games. Master thesis,
Computer Science Department, Charles University of Prague, Czech Republic, 2008.

[Keller06]
Keller, J.: Úvod do sociologie, publisher SLON, ISBN 978-80-86429-39-7, 80-86429-39-3,
EAN: 9788086429397, 2006.

[Kopp05]
Kopp, S., Gesellensetter, L., C. Krämer, N., Wachsmuth, I.: Conversational Agent as
Museum Guide - Design and Evaluation of a Real-World Application. In: The 5th
International Working Conference on Intelligent Virtual Agents (IVA'05), 2005.

[Magerko05]
Magerko, B.: Story Representation and the Interactive Drama. In: 1st Annual Artificial
Intelligence for Interactive Digital Entertainment Conference, Marina del Rey, California,
2005.

[Rao06]
Rao, A. S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Agents Breaking Away, Lectures Notes in Computer Science, Volume 1038/1996, 2006.

[Ruth06]
Hall, L., Woods, S., Aylett, R.: FearNot! Involving Children in the Design of a Virtual
Learning Environment. In: International Journal of Artificial Intelligence in Education,
Volume 16 , Issue 4, 327-351, 2006.

[Silva04]
De Silva, L., Padgham., L.: A Comparison of BDI Based Real–Time Reasoning and HTN
Based Planning. In: In 17th Australian Joint Conference on Artificial Intelligence, 1167–
1173, 2004.

[Turner92]
Turner, S.R.: Minstrel: A computer model of creativity and storytelling. Technical Report
UCLA-AI-92-04, Computer Science Department, University of California, 1992.

[Riedel03]
Riedel, M. O., Young, R. M.: Character-Focused Narrative Generation for Execution
in Virtual Worlds. In: Virtual Storytelling, Proceedings of ICVS 2003: International
Conference on Virtual Storytelling

[Wooldridge95]
Wooldridge, M., Jennings, N. R.: Intelligent Agents - Theories, Architectures and
Languages. In: Volume 890 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
1995.

73

http://lcc.gatech.edu/~bmagerko6/papers/AIIDE05MagerkoB.pdf
http://www.tacticallanguage.com/files/Johnson_Wang_Wu-SimTecT_2007-Experience_with_serious_games_for_learning_foreign_languages_and_cultures.pdf
http://www.tacticallanguage.com/files/Johnson_Wang_Wu-SimTecT_2007-Experience_with_serious_games_for_learning_foreign_languages_and_cultures.pdf

Appendix A – Related work

I am aware only of two tools for creating virtual stories inside 3D environment:
Machinima and Inscape.

Machinima
Friedrich Kirschner's Machinima is a tool for making sequences of behaviors for
avatars from Unreal Tournament 2004. The tool is allowing the user to specify
sequences of actions that avatars should do. The definition is done inside UT04
environment where the user may directly specify the actions by interactively assign
commands to the avatars.

Kirschner's Machinima is meant to produce in-game movies not interactive
stories. The interactivity could be introduced only by coding the avatar directly in
UnrealScript (native language of the Unreal Tournament 2004 game).

Inscape
The Inscape is the environment for the complete authoring of the virtual interactive
story. It is an industrial platform therefore it offers visual authoring environment.
The author may create the story starting with modeling the 3D virtual environment of
the story and ending with the definition of the actors' behaviors. The Inscape is
superior to the presented storytelling framework but it is an industrial platform that is
closed-source and thus being in the different league.

Figure A1 – The Inscape authoring environment

74

Appendix B – The StorySpeak language grammar
This chapter contains a specification of the StorySpeak grammar in EBNF25 form
(not entirely, some expansion are given in regular expressions26, written in italic)
that is widely used for that purpose. First I will provide the grammar without
comments and then I will go through every derivation explaining it step–by–step.

Initial symbol of the StorySpeak language is Plans.

Plans = (Plan '#')*

Plan =
('+' | '-' | '~')
'!'
['[' Actors ']']
Term
['[' Annotations ']']
[':' Context]
['!' DuringCondition]
['$' EarlySuccess]
['->' Variables]
['<<' StorySpeakExpressionSequence()]
'<-'
PlanBody
['{' Plans '}']

Actors = Actor (',' Actor)*

Actor = (SelfLiteral | Variable)

PlanName = Functor

Functor = ['a'-'z'] (['A'-'Z','a'-'z','0'-'9'] | '_')*

Annotations = Annotation (',' Annotation)*

Annotation = Variable '=' Expression

Context = Expression

DuringCondition = Expression

EarlySuccess = Expression

Variables = Variable (',' Variable) *

Variable = ['A'-'Z'] (['A'-'Z','a'-'z','0'-'9'] | '_')*

PlanBody = StorySpeakExpressionSequences

StorySpeakExpressionSequences =

StorySpeakExpressionSequence
(';' StorySpeakExpressionSequence)*
[';']

25 As defined by ISO/IEC 14977, http://www.iso.ch/cate/d26153.html [13.11.2008]
26 As used by JavaCC, https://javacc.dev.java.net/doc/javaccgrm.html [13.11.2008]

75

StorySpeakExpressions =
StorySpeakExpression
(';' StorySpeakExpression)*
[';']

StorySpeakExpressionSequence =
StorySpeakExpression (',' StorySpeakExpression)*

StorySpeakExpression =
(

ParallelExecution | PlanCall | BeliefChange
AssignStorySpeakExpression

)

ParallelExecution =
[Variable '=']
'||'
'(' StorySpeakExpressionSequences ')'

PlanCall =
['(' Variables ')' '=']
[FixedPlanPriority]
[

'[' Expression ']'
|
Variable

]
('!!' | '!')
['[' ExpressionSequence ']'
]
Term
['/' 's']

FixedPlanPriority =

'(' Expression ')'

BeliefChange =

[
('[' ExpressionSequence ']'
|
(Variable)

]
('+' | '-')
Term

AnonymousVariable = '_'

ExpressionSequence = Expression (',' Expression)*

Expression = AssignExpression

AssignExpression =
[

Variable
AssignOperator

]
ConditionalExpression

AssignStorySpeakExpression =

76

[
Variable
AssignOperator

]
ConditionalStorySpeakExpression

AssignOperator =
('=' | '*=' | '/=' | '%=' | '+=' | '-=' | '&=' | '^='
| '|=')

ConditionalStorySpeakExpression =
ConditionalOrExpression
[

 '?'
 (

'{' StorySpeakExpressions '}'
 |

StorySpeakExpression
)

 [
':'
(

'{' StorySpeakExpressions '}'
|
StorySpeakExpression

)
]

]

ConditionalExpression =
 ConditionalOrExpression
 [
 '?' ConditionalOrExpression
 ':' ConditionalOrExpression
]

ConditionalOrExpression =
 ConditionalAndExpression ('||' ConditionalAndExpression)*

ConditionalAndExpression =
 ExclusiveOrExpression ('&&' ExclusiveOrExpression)*

ExclusiveOrExpression =
 BeliefOrEqualityExpression ('^' BeliefOrEqualityExpression)*

BeliefOrEqualityExpression():
(BeliefCheck | BeliefChange | EqualityExpression)

BeliefCheck =
['<' ExpressionSequence '>' | Variable] '?' Term

PrologTerm =
Term

Term = Functor ['(' [TermArguments] ')']

TermArguments = TermArgument (',' TermArgument)*

TermArgument =
(MethodCall | Term | Expression | AnonymousVariable
 | Functor
)

77

EqualityExpression =
RelationalExpression
(('==' | '!=') RelationalExpression)*

RelationalExpression =
AdditiveExpression
(('<=' | '>=' | '<' | '>') AdditiveExpression)*

AdditiveExpression =

MultiplicativeExpression
(

 ('+' | '-') MultiplicativeExpression
)*

MultiplicativeExpression =
 UnaryExpression (('*' | '/' | '%' UnaryExpression)*

UnaryExpression =
(

(('+' | '-') UnaryExpression)
|

 PreIncrementExpression
|

 PreDecrementExpression
|

 UnaryExpressionNotPlusMinus
)

PreIncrementExpression = '++' PrimaryExpression

PreDecrementExpression = '--' PrimaryExpression

UnaryExpressionNotPlusMinus =

(
'!' UnaryExpression

|
PostfixExpression

)

Expression = PrimaryExpression [('++' | '--')]

PrimaryExpression =
(MethodCall | Variable | Literal
|
'(' AssignExpression ')'
)
(

'.' (Functor | Variable)
'(' [ExpressionSequence] ')'
|
'.' (Functor | Variable)

)*

MethodCall =
Functor '(' [ExpressionSequence] ')'

Literal =
(

<INTEGER_LITERAL>
|

78

<DOUBLE_LITERAL>
|

<STRING_LITERAL>
|

BooleanLiteral
|

UnboundLiteral
|

NullLiteral
|

SelfLiteral
)

BooleanLiteral =
 (

'true'
|
'false'

)

UnboundLiteral = 'unbound'

NullLiteral = 'null'

SelfLiteral = 'self'

79

Appendix C – Enclosed CD
The enclosed CD contains the sources of the StorySpeak along with a PDF

version of this text. The directory structure of the CD is described in a readme.txt in
the root directory. The sources provided on the CD can be used freely, without any
license restrictions except for the Pogamut platform that has own license available at
http://artemis.ms.mff.cuni.cz/pogamut.

The only request is to quote the author of this thesis when using any of his
work in any way.

80

	1	Introduction
	2	Area of the thesis
	2.1	Pogamut platform
	2.2	Thesis's terms and abbreviations

	3	Structure of the thesis
	4	Goals
	5	Virtual interactive storytelling
	5.1	Believability of the story
	5.2	Role-plot duality
	5.3	Role definition
	5.4	Story definition approaches
	5.5	Chosen approach

	6	Story authoring
	6.1	Actors' behaviors
	6.2	Abstraction of the story world
	6.3	Story entities, facts and relations
	6.4	Story actions
	6.5	Story situations and boundary problem
	6.6	Story authoring
	6.7	Chapter conclusion

	7	Architecture
	7.1	Step 1 – Virtual environment
	7.2	Step 2 – Sensing and acting in the environment
	7.3	Step 3 – Actor's perception and story relations
	7.4	Step 4 – Role definition
	7.5	Step 5 – Plot definition
	7.6	Step 6 – Story execution
	7.7	Summarization

	8	StorySpeak origin
	8.1	BDI architecture
	8.2	AgentSpeak(L)
	8.3	AgentSpeak(L) extensions

	9	StorySpeak
	9.1	Additional StorySpeak extensions
	9.2	StorySpeak plans and basic expressions
	9.3	Additional expressions
	9.4	Variables and unification
	9.5	Calling Java methods, accessing Java fields
	9.6	Template plans, plan delegation and parallel expressions
	9.7	Failing plans
	9.8	Subplans and handling of events inside instantiated plan
	9.9	Plan annotations
	9.10	Definitions
	9.11	Interpretation algorithm
	9.12	Extending StorySpeak

	10	Storytelling framework
	10.1	Additional infrastructure work

	11	Evaluation
	11.1	Shared parts
	11.2	Story script 1 – Simple greetings
	11.2	Story script 2 – Greetings with replies
	11.3	Story script 3 – Story manager orders actors to party!
	11.4	Story script 4 – Ignorant Gregory

	12	Conclusion
	13	Future work
	Literature
	Appendix A – Related work
	Machinima
	Inscape

	Appendix B – The StorySpeak language grammar
	Appendix C – Enclosed CD

