r

Upravy prednasky v letech 2011/12 a 2012/13 byly Castecné podporeny TS I £V ROPSKA
projektem CZ.2.17/3.1.00/33274, ktery je financovan Evropskym e | NG

socialnim fondem a rozpoctem hlavniho mésta Prahy.
'] Evropsky socialni fond

Praha & EU: Investujeme do vasi budoucnosti

Human-like artificial creatures

2. Reactive planning

Cyril Brom

Faculty of Mathematics and Physics
Charles University in Prague
brom@ksvi_mffF_cuni.cz

(c) 212013

D itline
\ & 4 i1

Ullll I\

Recapitulation

. action selection problem, artificial mind,
architecture of a virtual being

Reactive planning
lf-then rules

« simple reactive planning
« simple hierarchical reactive planning
« limitations
Finite state machines
* basic
« hierarchical
« probabilistic

Action selection prooiem

Artificial mind is a piece of code that decides "what to do next"

The problem of deciding what to do next is called the action
selection problem

To decide what to do next, the creature must perceive its
environment

An action causes a change in the environment, and it usually has
a feedback on the creature

Typically, all possible actions are predefined

seel—act]|

agent

environment

e
a virtual body

a virtual
environment

a virtual
environment

Overall architecture of a symbolic beast

Other Script\

modules library

Overall architecture of a
connectionist beast

Agent C decision) \
fEnvironment\/ %WN
— /

=

o D
GU.J

An artificial environment

recapitulation

accessible/inaccessible

— an agent cannot obtain accurate up-to-date information about the whole environment
deterministic/non-deterministic

— the outcome of some actions is not uniquely defined
static/dynamic

— the environment changes in ways beyond the agent's control
discrete/continuous in time/space:

— finite number of discrete states is guaranteed
real-time/step-based

— the agent has theoretically infinite time to make a decision
interactive/non-interactive

— the user can alter the simulation [Russell and Norwig, 1995]

2 - Human-like artificial agents

D itline
\ & 4 i1

Ullll I\

Recapitulation

. action selection problem, artificial mind,
architecture of a virtual being

Reactive planning

[f-then rules

« simple reactive planning
« simple hierarchical reactive planning
« limitations
Finite state machines
* basic
« hierarchical
« probabilistic

Reactive planning

An approach to action selection problem

Instead of calculating a plan in advance, the planner finds just the
next action in every instant

No unified definition

,Reactive planning ... chooses only the immediate next action, and
bases this choice on the current context. In most architectures

utilizing this technique, reactive planning is facilitated by the

presence of reactive plans. Reactive plans are stored structures
which, given the current context, determine the next act.”

[Bryson & Stein, 2000]
The choice must be made in a "timely fashion”

2 - Human-like artificial agents

D
I\

fals
od

 Areactive planner realizes a function: S x P — A
— S —the set of all possible internal states (including memory)
— P —the set of all possible actual percepts

— A -the set of all possible actions
* notice: A vs. P(A)

Techniques

— production rules
« flat, hierarchical, heterarchical

finite state machines

fuzzy modifications, probabilistic modifications
HEEROAMIE EIES

neural networks

2 - Human-like artificial agents

D itline
\ & 4 i1

Ullll I\

Recapitulation

. action selection problem, artificial mind,
architecture of a virtual being

Reactive planning

[f-then rules

« simple reactive planning
« simple hierarchical reactive planning
« limitations

Finite state machines
. basic
. hierarchical
« probabilistic

Conclusion

[f-then rules

If p then A

a precondition, an antecedent /
an action, an effect, a consequent...

2 - Human-like artificial agents

[f-then rules

A rule fires if its condition holds
A reactive plan consist of tens of if-then rules

All rules are "evaluated at once"
— think in parallel!

Technically, the parallelism must be "translated”
to a serial program.

2 - Human-like artificial agents

A
A

The regulator is set on 220°C:

1. IF temperature > 225°C,
THEN switch the heater off.

. |F temperature < 215°C,

THEN switch the heater on.

Why is the temperature tested for 225 / 215 instead of 220?

What to do when more rules fires in the same instant?

2 - Human-like artificial agents

Simple reactive planning

* Assign a priority to each rule:

A robot picking up mushrooms:

When starts: not at home && be i1In picking state
IT see obstacle then change direction
iIT basketful of m. and picking then stop picking
IT see mush. and picking then pick up the mush.
iIf midday and picking then stop picking
1T home then END
1T picking then move random

i1ITf not picking then move home What does the robot do when it
sees a mushroom, but it is

subsumption architecture: returning homef
[Brooks, 1986; Wooldridge, 2002]

Simple hierarchical reactive planning

1T blal and bla2 then SubGoall
1T not blal and bla3 then SubGoal2

3.1 if A then Sub2GoalA
3.2 if B then Sub?GoalB

1T blad then SubGoal3 3.3 if C then

3.4 if D then Sub2GoalD

1T not bla3 and bla2 then SubGoal4
1T blal and bla3 and bla8 then SubGoal5
1T blabla then SubGoalb6

iIT bla2z or (bla3 and not bla7) then
SubGoal7

- Think hierarchically!
[Bryson, 2001; Nilsson, 1994; etc.] 16

s A Arala

) ierarchical

reactive planning

Behaviour is decomposed hierarchically
— top-level goals, sub-goals, tasks, atomic actions

Every reactive plan is expressed by means of a set of
trees

Every root of a tree corresponds to a top-level goal
— AND trees, AND-OR trees
How to create a decomposition?

2 - Human-like artificial agents

Simple hierarchical reactive planning

(a hierarchical top-down decomposition)

Watering:

Appetitive Taxis Consumatory

Find & take + Gonextto « Waterthe + Empty the
d Can a dry bed bed can

Fill the can Put down
the can

...cycles are possible!
...an ethology model

2 - Human-like artificial agents

2
e

a decomposition

xample (watering)

the highest priority has the goal condition, the second highest is the cleaning
order the task in the normal/the reverse order [Bryson, 2001]

iIT garden_watered and cleaned then COMMIT
1T garden_watered then subGoal Clean

1T not hold any can then subGoal FindTakeCan
iIT can_i1In_hands and empty then subGoal FillUpTheCan

1T know_about dry bed & not stand nextTo theBed
then subGoal GoThere

1T stand nextTo_theBed and theBad dry then
atomicWatering

Simple hierarchical reactive planning
top-level goals
» How to select a top-level goal to perform?

— a schedule + interrupts
— drives + interrupts

— a drama manager (Facade)
— planning and future-directed intentions (BDI)

2 - Human-like artificial agents

Chess-like topology, 2% D world
Discrete time (time-steps)
— astep = 20 sec.

20 internal drives
— hunger, thirst,...

60 atomic actions
— aWalk, aPickUp, aWater, aEat,... [Bojar et al., 2002; 2005]

Two hands + an inventory

Face no particular direction in the world
— anillusion of orientation is caused by the GUI only

Understand a simplified version of Czech language
Driven by scripts in E language

syste

* 3 independent programs for
GU Jr Jr Linux |
Hurnan avatar 1 Hur‘{'uarﬁ avatar 2 — entiserver (ES) the server of a

virtual world

— entiprohlizec: the graphical user
_ interface
Environment

server — ent: the ent's control program
E (artificial mind)
* I|tis possible to instantiate
different world models

— we will use a model of a family
house 22

World model

toilet
(when | must go...)

gardener...

eating
(when I'm hungry)

watering

(true)

bumming around
(true) 5

23

0

Three active goals

{olle

"eating" script Is stafiédn|| must go)

"watering" IS Interrupted

eating
(when I'm hungry)

watering \
(true) J BM 3 intended

goals

l

bumming around
e 5

24

0

s on the top?

11 Gl IW

Bumming around

toilet
(when | must go)

eating
(when | am hungry)

watering

(true)

trapezoidal priority:

timeout expired,
"bumming around" is started

/ bumming around
e 5

25
0

| [|
1 I [] (7

Reactive planner in action

PyPOSH in Unreal Tournament

Unreal PyPOSH

IT & Gamebots ~ ™\
F 21 e PyPOSH

creature

K/

[IGN Entertainment,

| [Kwong, 2003]
1996-2006] [Adobatti et al., 2000]

2 - Human-like artificial agents

* Action pattern
— a sequence of actions that cannot be interrupted
— e.0., "baa" and look at it (sheep)

» A competence:{s; s is a competence step }
steps that can be performed in different orders (i.e., a set of

sequences)
one of the steps can be a goal step

the competence returns a value: + if the goal is
accomplished, L if none of its steps fire

a competence step: <p, r, a, [n]>
* a priority, a releaser, an action, a number of retries
« the action can be another competence

[Bryson, 2001]

2 - Human-like artificial agents 27

_—

BDYAYeJH P Iy I RSy e
rUonr = COMNuoOl strdCuure i

 Adrive collection: { d; d is a drive element }
— the root of the hierarchy
— adrive element: <p, r, a, A, [f]>
* p-a priority
* r—areleaser

 a-a currently active element of the drive element (a sub-element)
« A-the top element (i.e., a collection, action pattern, or an action) of the drive element
— slip-stack
f—a maximum frequency at which this drive element is visited
- e.g., jump every five seconds

— for any cycle of the action selection, only the drive collection itself and at most one
other POSH element will have their releasers examined

One drive element can suspend temporarily another drive element
— acompetence step cannot interrupt another competence step

When the suspending drive element terminates, the suspended drive element
continues

PyPOSH

(RDC life (goal((fail)))
(drives
(C hit(trigger((hit-object) (is-rotating False))) avoid))
(C follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

D itline
\ & 4 i1

Ullll I\

Recapitulation

. action selection problem, artificial mind,
architecture of a virtual being

Reactive planning
lf-then rules

« simple reactive planning
« simple hierarchical reactive planning
« limitations

Finite state machines
. basic
J hierarchical

FSM & HFSM (1)

SRS

Standard "finite-state machine"
(FSM) is a tuple:

<{<label, T, script>}, a >

<label, T, script> is a state
— alabel is a name of the state

— ascript is a code associated with the
state

T is a set of rules that trigger
transition to another state (i.e.
transition function)

a is a currently active state

\ 4

Hierarchical "finite-state machine"
(HFSM) is a tuple:
<{<label, T, sc>},A>
<label, T, sc> is a state

— alabel is a name of the state
— ascis either a code associated with the
state (i.e. a script), or a set of the names

of the state's substates

T is a set of rules that trigger transition to
another state (i.e. transition function)

A'is a set of currently active states
— a path from a root-state to a leaf-state

31

FSM & HFSM (2)

» FSM and HFSM are computationally equivalent
— HFSM avoids "spaghetti design”

b

Are finite state machines computationally
equivalent to Touring machines?

2 - Human-like artificial agents

[Isla, 2005]
[Champandard, 2003]

SRP vs. FSM

or o] g then C
o] § o] g then B
then A

4 Or o] g then D

* priorities
* "spaghetti design”

2 - Human-like artificial agents

High level decision
control only

In each FSM-node,
a bot chooses
among possible
goals associated
with the node

Standard FSM Battle Fight L attle ase E1trl~ Retreat

The if-then rules "in
each node" are

written in C van Waveren (c) 2001

[van Waveren, 2001]

In each FSM-node, a bot chooses among possible goals
associated with the node

— fuzzy decision (how much do | want to pick this weapon up?)

— long term-goals vs. short term goals

E.g. "battle fight":

— acquiring enemy

— selecting weapon

— aiming and approaching

— shooting

Different techniques can be used in each node
— low-level navigation

— voting system

— planning

van Waveren (c) 2001

Time Event or decision Current AI current goal
(seconds) node

18.1 | The bot named Grunt enters the game. Stand
T Bot spawns. Stand
_ Seek LTG _
Bot decides to retrieve 1tem. Seek LTG Retrieve rocket launcher
Bot decides to retrieve nearby 1tem. Seek LTG Retrieve rocket Tauncher
seek NBG rRetrieve bullets
Picked up buTTets. seek NBG Retrieve bullets
Seek LTG Retrieve rocket Tauncher
Bot decides to retrieve nearby 1tem. Seek LTG Retrieve rocket Tauncher
o ' ' Seek NBG Retrieve shotgun
Enemy in sight. Seek NBG Retrieve shotgun
) Battle NBG Kill the enemy & retrieve
_ _ shotgun. _ B
Picked up shotgun & bot wants to Battle NBG KilT the enemy & retrieve
retreat. shotgun.
' Battle Retreat Retreat & retrieve rocket
- - - _ launcher. _
Bot decides to retrieve nearby item. Battle Retreat Retreat & retrieve rocket
launcher.

_ Battle NBG Retrieve armor shard.
Picked up armor shard. Battle NBG Retrieve armor shard.
Enemy out of sight & bot decides to Battle Retreat Retreat & retrieve rocket
chase. _ launcher.

. . S 3 Battle Chase Chase enemy.
Bot decides to retrieve nearby 1tem. Battle Chase Chase enemy. _
Battle NBG Retrieve armor shard.
Picked up armor shard. Battle NBG Retrieve armor shard.
' B Battle Chase Chase enemy
Enemy in sight. Battle Chase Chase enemy.
- ' Battle Fight Kill the enemy.
Enemy out of sight. Battle Fight Kill the enemy.
. . Battle Chase Chase the enemy.
Enemy in sight. Battle Chase Chase the enemy.
Battle Fight KilT the enemy.
Enemy out of sight. Battle Fight Kill the enemy.
Battle Chase Chase the enemy.
Enemy in sight. Battle Chase Chase the enemy.

van Waveren (c) 2001

Probabilistic "finite-state machine" (PFSM) is a tuple:

<{<label, T?, script>}, a >
<label, TP, script> is a state
— alabel is a name of the state

— ascriptis a code associated with the state

— TPis a set of rules that trigger a transition to another state with a given
probability

a is the currently active state

2 - Human-like artificial agents

Reactive planning - recapitulation

2 - Human-like artificial agents

Cap ation

Reactive planning is a group of methods of driving behaviour of
virtual beings

Each method determines the next action in every instant in "a
timely fashion"

SHRP

— if-then rules
— priorities

— AND-OR trees
FSM

— states
— ftransitions

2 - Human-like artificial agents

Implementation

rationale:

. - ste
* Special-purpose languages: i ConEee- e 6 £
iIf someone-asked-me do { .. }
— rules if I-am-hungry do { .. }
iT I-need-toilet do { .. }
- JAM [Hubber, 1999] if I-am-sleepy do { .. }
: ste
= [BOJar et al-, 2002] it gomeone—shoot—at—me do { ..

PYPOSH [Kwong, 2003 T soneone-asked-me o { .- 3

ABL [Mateas, 2002 It 1 onstecpy do € 3
(Soar) ?;ngmggmgfghoot—at—me do { -.
- FSM it Foan-nonory do { 3
+ Al Implant.. I 1 anstecpy do € 3

» Softimage pick-up-mark
1T someone-shoot-at-me do { ..

2 - Human-like artificial agents 40

Simple hierarchical reactive planning

problems

Failures

Perceptual aliasing problem
Transition

It behaves in the same way
Compromise action
Proscription

Modification of a behavior
Integrating concurrent behavior
Interleaving

Sharp timeout

AS memory

AS memory [Brooks]

hard-coding, if-then + FSM [Sengers]
probabilistic approach

free-flow, voting [Tyrrell, 1993]
negative links, networks
metaparameters, floating priorities?
modifieres [Blumberg, 1995]
classical planning

BDI, fuzzy, perceptual motivation 7?7

.
.
.
.
.
.
.
.
.
.

Authoring vs. Learning
— perform a task in a new situation
— learn a new task
— adapt a task to a modified situation
— how long to try to perform a task

Implementation

» How exactly does it work?
— It depends on the implementation...

* Special-purpose languages
 "Emulation”...

2 - Human-like artificial agents

Chess-like topology, 2% D world
Discrete time (time-steps)
— astep = 20 sec.
Embodied
20 internal drives
— hunger, thirst,...

60 atomic actions [Bojar et al., 2002; 2005]
— aWalk, aPickUp, aWater, aEat,...

Two hands + an inventory

Face no particular direction in the world
— anillusion of orientation is caused by the GUI only

Understand a simplified version of Czech language
Driven by scripts in E language

syste

* 3 independent programs for
GU Jr Jr Linux |
Hurnan avatar 1 Hur‘{'uarﬁ avatar 2 — entiserver (ES) the server of a

virtual world

— entiprohlizec: the graphical user
_ interface
Environment

server — ent: the ent's control program
E (artificial mind)
* I|tis possible to instantiate
different world models

— we will use a model of a family
house 45

World model

ENTs - the control cycle
one time-step

Every ent sends one a-action to the ES at the
beginning of a time-step

ES waits till all a-actions are sent

ES computes the result of the time-step

Every ent receives “a world Aupdate” at the
end of the time step

2 - Human-like artificial agents

Watering a garden

* A simple behavioral script (b-script) in E language:

waterTheBedByTheCanOnce(hBed, hCan):-

aWaterPlants(hBed, hCan ;\\\:iiiiiii::\\

Input parameters —
an atomic instruction variables

2 - Human-like artificial agents

ct an ent?

Waterlng garden

 Watering is a continuous action, it lasts about 10 time steps!
* A b-script with a conditional cycle:

waterTheBedByTheCan(hBed, hCan):-
i1f state(hBed, "already watered"”) then

comiT,. ——
fi,
aWaterPlants(hBed, hCan),
RER

a memory query

It finishes the script

It runs the script once again

The memory is a list of facts, e.qg.:

to _be what where since(object, position, time)

Can the ent look at the world-map directly?

however,
"cheating" may
No, because the ent is an autonomous being! help a lot!

: A sensor
Virtual

environment \ /

A memory

a general handle

waterTheBedByTheCan(hBed, hCan):-
query_ObjectsAnywhere(["object' = "bed" :

“"room"™ = "garden" :
specirall™ = "dry"],/

a memory query 1.

sListDryBeds EXIST x : d(x) ?

:) where d means
an output: a list of dry beds "3 bed" &

"In the garden" &
"a dry object"

returnTheClosestOne(hDryBed, sListDryBeds) ,

/

an output

I—I
I—I

» Assigning a subgoal a set of scripts that
accomplish the subgoal

subGoal goTo(hBed) OR { ... },

aWaterPlants(hBed, hCan), \ a script for

a fail-case

Think hierarchically!

« Generally speaking, a task can be decomposed to subtasks recursively, until
some atomic actions are reached.

I—I
I—I

* Assigning a subgoal a set of scripts that

accomplish the subgoal
subGoal goTo(hBed) OR { ... },

aWaterPlants(hBed, hCan), \ a script for

a fail-case

What should an ent do if someone begins watering
the bed that the ent has just chosen? The bed might
be already watered when the ent comes next to it!

* reactive planning!!!

A structure of a subgoal

* Every subgoal has:

— prerequisites — a conjunction of atomic conditions
that must hold before the subgoal is executed

— a context — a conjunction of atomic conditions that
must hold until the subgoal is accomplished

— an effect — an expected result of the goal

‘\

planning background

2 - Human-like artificial agents

language facilitates interrupts and conditions...

* An action can be triggered by activating an interrupt
* Prerequisites can be test by means of if-then condition

setting the interrupt the local priority of

the interrupt
1T(nét\intNextTo(hBed)
{

«

localHook(not st hBed, 'already watered"),
“PRIO_MAX™, the trigger

{ --. }s script

interruptNotWatered
subGoal goTo(hBed) OR { ... }, the id of the

}, interrupt 54

top-level goal

The tree of

active subgoals
O <>/':' O (in time t)

accomplished Sl future subgoal
subgoal

<><‘% Interrupts

sub?-goal

A stack of
! active
O subgoals

subs3-goal

atomic
instruction

top-level goal

The tree of

active subgoals
O <>/':' O (in time t+5)

accomplished Sl future subgoal
subgoal

<><‘% Interrupts

sub?-goal

top-level goal

The tree of

active subgoals
Q < Q (in time t+8)

accomplished Sl future subgoal
subgoal

top-level goal

O <
accomplished sub-goal
subgoal

@) ==

sub?-goal

The tree of

active subgoals
O (in time t+12)

future subgoal

accomplished

restored
behaviour

Hierarchical reactive planning in E
(a template)

top_levelGoal WaterAllBeds :-
/I if everything is watered, try to put the can and commit
1T GOAL_COND then { try sgPutCan, COMMIT } fi,

/Il if you are not holding a can, find it and take it; then activate the local interrupt that tests whether
the can is still at hands -- if not, restart the watering
1T ! holdCan then sgFindAndTakeCan fi,
localHook(! holdCan, localPrioMax-1, { RERUN }, 1dl),

/Il if you are not holding an empty can, fill it; then activate the local interrupt that tests whether the
can is not empty -- if it is, restart the watering
1T holdCan and canlnHandEmpty then sgFillCan fi,
localHook(holdCan and canlnHandEmpty, localPrioMax-2, { RERUN }, 1d2),

// the same follows for other subgoals...

 When an interrupt fires, restart the current script
» Perform the cleaning also as a transition

A subgoal is not a b-script
What is the difference?

There may exist more ways of accomplishing a subgoal

When the subgoal is instantiated, one b-script from a set of b-
scripts is chosen to accomplish the task

— a utility function

If the b-script fails, another b-script is chosen
The subgoal fails if all of its variants fall
Remember: AND-OR trees vs. AND trees

2 - Human-like artificial agents

subGoalEat $- subGoalEat $-
stateEnt("hunger', hunger), 1T lunchTime or DinnerTime
iIT hunger > 15 return 2 return 1 .

-

else return 0O . /

subGoalEat : subGoalEat :-

M a utility
R function

AND-OR tree for

one top-level goal _
What will be performed

next in the case of a
success/failure? A, B, C

finished or nothing? -
performed

2 - Human-like artificial agents

POSH & BOD

» Behavioural oriented design
— behavioural decomposition

» POSH: Parallel-rooted, Ordered Slip-stack Hierarchical

— a method that exploits hierarchical if-then rules
— several languages

'y DNQU: in lien Ar 1L
FuUoll. diliop vl v i

« PyPOSH: Python implementation
» JyPOSH: Jython implementation (interoperates with Java)

[Bryson et al., 2001 - 2006]

2 - Human-like artificial agents 63

PyPOSH in Unreal - architecture

Unreal PyPOSH

IT & Gamebots e ™\
& — " PyPOSH

creature
\ J

[Adobatti et al., 2000] [Kwong, 2003]

[IGN Entertainment,
1996-2000]

2 - Human-like artificial agents

Control structure

fEnvironment

"can_27"

"bread_12"
: "door_47"

"plateéOZ" BOdy

Dﬁ Image action selection mechanism,
e.g. POSH reactive planninggs

Behaviours as objects

* Object Behaviour
— properties/variables — states/variables (memory)

— methods — primitive elements of the
reactive plan which present
the interface to the behaviour

* Senses
* acts

— learning

2 - Human-like artificial agents

* Action pattern
— a sequence of actions
- e.g., "baa" and look at it (sheep)

» A competence:{s; s is a competence step }
steps that can be performed in different orders (i.e., a set of

sequences)
one of the steps can be a goal step

the competence returns a value: + if the goal is
accomplished, L if none of its steps fire

a competence step: <p, r, a, [n]>
* a priority, a releaser, an action, a number of retries
« the action can be another competence

[Bryson, 2001]

2 - Human-like artificial agents 67

_—

BDYAYeJH P Iy I RSy e
rUonr = COMNuoOl strdCuure i

 Adrive collection: {d; d is a drive element }
— the root of the hierarchy
— adrive element: <p, r, a, A, [f]>
* p-a priority
* r—areleaser

 a-a currently active element of the drive element (a sub-element)
« A-the top element (i.e., a collection, action pattern, or an action) of the drive element
— slip-stack
f—a maximum frequency at which this drive element is visited
- e.g., jump every five seconds

— for any cycle of the action selection, only the drive collection itself and at most one
other POSH element will have their releasers examined

One drive element can suspend temporarily another drive element
— acompetence step cannot interrupt another competence step

When the suspending drive element terminates, the suspended drive element
continues

\

def i1nit_senses(self):
seif.add_sense(“see-piayer’, self.see piayer)

def init_acts(self):
self.add_act(""move-player', self.move-player)

def see player(self): y

top-level

\ - -
(RDC life (goal((Fail))) checking period R

(drives
prio: 1 (C hit(trigger(* (hit-object)(is-rotating False))) avoid]
2 ((follow(trigger((see-player))) follow-player))

3 ((wander(trigger((succeed))) wander-around))

))

timeout condition terminate condition
(C wander-around (minutes 10) (goal((see-player)))
(elements
((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

) i then

v

def 1nit_senses(self): PVPOSH
) J

seif.add_sense(“see-piayer’, self.see piayer)

def init_acts(self):
self.add_act(""move-player', self.move-player)

def see player(self):

(RDC Life (goal((fail)))
(drives
(C hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))
((wander(trigger((succeed)))

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

def i1nit_senses(self):
seif.add_sense("see-piayer’

D (minutes 10) (goal(

((close-enough(trigger((close-to-player))) stop-bot))

((move(trigger((see-player))) move-player))
D)

def i1nit_senses(self):
seif.add_sense("see-piayer’

(minutes 10) (goal(

((close-enough(trigger((close-

((move(trigger((see-player)))
D)

PRA|HA
“
PRA|GA
A REA EVROPSKA UNIE

Evropsky socialni fond
Praha & EU: Investujeme do vasi budoucnosti

Questions?

2 - Human-like artificial agents

References

- BOD, POSH

— Joanna Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. In:
Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services,
pages 61-79, Springer LNCS 2592, Berlin, Germany, 2003.

Kwong, A. A Framework for Reactive Intelligence through Agile Component-Based
Behaviours. Master thesis, University of Bath (2003)

Joanna Bryson. Intelligence by Design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology,
2001.

« Gamebots:

— Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world test-
bed for multi-agent research. In: Proceedings of the 2" International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Canada (2001)

« ENTs

— 0. Bojar, C. Brom, M. Hladik, V. Toman: The Project ENTs: Towards Modeling Human-like
Artificial Agents. In SOFSEM 2005 Communications, pages 111-122, Liptovsky Jan, Slovak
Republic, January 2005.

— Project Ent homepage: http://ckl .ms.mff.cuni.cz/~bojar/enti/

2 - Human-like artificial agents

References

Waveren, J. M. P. van: The Quake Ill Arena Bot. Master thesis. Faculty ITS, University of
Technology Delft (2001)

Champandard, A.J.: Al Game Development: Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)

Softimage, Bahavior: http://www.softimage.com/products/behavior

Facade, ABL

Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Carnegie Mellon University (2002)

Other

Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney (1991) 569-595

Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd
International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243

Soar project:

Isla, D.: Handling Complexity in the Halo 2 Al. Game Developers Conference, GDC 2005,
http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml

2 - Human-like artificial agents

References

Al & agents

S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ.

M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons, 1995

Other

Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991
International Joint Conference on Artificial Intelligence, Sydney (1991)
569-595

Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous
Agents (Agents'99). Seatle (1999) 236-243

2 - Human-like artificial agents

