
Úpravy přednášky v letech 2011/12 a 2012/13 byly částečně podpořeny
projektem CZ.2.17/3.1.00/33274, který je financován Evropským

sociálním fondem a rozpočtem hlavního města Prahy.p y
Evropský sociální fond
Praha & EU: Investujeme do vaší budoucnosti

Human-like artificial creaturesu a e a t c a c eatu es
2. Reactive planning

Cyril Brom
Faculty of Mathematics and Physics Faculty of Mathematics and Physics

Charles University in Prague
brom@ksvi.mff.cuni.cz

(c) 2/2013

2 - Human-like artificial agents 1

OutlineOutline
1 Recapitulation1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning• simple reactive planning
• simple hierarchical reactive planning
• limitations

4. Finite state machines
• basic
• hierarchical hierarchical
• probabilistic

2 - Human-like artificial agents 2

Action selection problemAction selection problem
• Artificial mind is a piece of code that decides "what to do next"• Artificial mind is a piece of code that decides what to do next
• The problem of deciding what to do next is called the action

selection problemp
• To decide what to do next, the creature must perceive its

environment
• An action causes a change in the environment, and it usually has

a feedback on the creature
• Typically all possible actions are predefined• Typically, all possible actions are predefined

see act readagent read

cook
draw

watering

explore

eat
sleep

2 - Human-like artificial agents 3
environment

A virtual being vs an avatarA virtual being vs. an avatar
a being

a virtual artifical

a being

a virtual body a virtual
environmentmind

 i t l

an avatar

a virtual
environmenta virtual bodyhuman

brain

2 - Human-like artificial agents 4

O ll hit t f b li b tOverall architecture of a symbolic beast

Other ScriptOtherAgent Other
modules

SensorSensor ShortShort termterm

Script
library

Other
modules

Environment

Agent

learning
Sensor, Sensor,
eefffectorfector

ShortShort--term term
memorymemory

ReasoningReasoning

"can_27"

"bread_12"
"door_47"

Active Active
behaviorsbehaviors

Body"plate_02"

Image GUI
2 - Human-like artificial agents 5

Image GUI

Overall architecture of a
connectionist beast

decisionAgent decision

+ -Environment

"can_27"

"bread_12"
"door_47"

perception
Body"plate_02"

Image GUI
2 - Human-like artificial agents 6

Image GUI

A tifi i l i tAn artificial environment
recapitulation

• accessible/inaccessible
– an agent cannot obtain accurate up-to-date information about the whole environment

• deterministic/non-deterministic
– the outcome of some actions is not uniquely defined

• static/dynamic
– the environment changes in ways beyond the agent's control

• discrete/continuous in time/space:
– finite number of discrete states is guaranteed

• real-time/step-based
– the agent has theoretically infinite time to make a decision

• interactive/non-interactive
– the user can alter the simulation [Russell and Norwig, 1995]

2 - Human-like artificial agents 7

OutlineOutline
1 Recapitulation1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning• simple reactive planning
• simple hierarchical reactive planning
• limitations

4. Finite state machines
• basic
• hierarchical hierarchical
• probabilistic

2 - Human-like artificial agents 8

R ti l iReactive planning
• An approach to action selection problem
• Instead of calculating a plan in advance, the planner finds just the

next action in every instant
• No unified definition

• „Reactive planning ... chooses only the immediate next action, and
bases this choice on the current context In most architectures bases this choice on the current context. In most architectures
utilizing this technique, reactive planning is facilitated by the
presence of reactive plans. Reactive plans are stored structures

hi h i th t t t d t i th t t “ which, given the current context, determine the next act.“
[Bryson & Stein, 2000]

• The choice must be made in a "timely fashion"
2 - Human-like artificial agents 9

• The choice must be made in a timely fashion

Reactive planningReactive planning
• A reactive planner realizes a function: S × P → A• A reactive planner realizes a function: S × P → A

– S – the set of all possible internal states (including memory)
– P – the set of all possible actual percepts

f– A – the set of all possible actions
• notice: A vs. P(A)

• Techniques
– production rules

• flat, hierarchical, heterarchical
– finite state machines
– fuzzy modifications, probabilistic modifications
– free-flow hierarchiesfree flow hierarchies
– neural networks
– ...

2 - Human-like artificial agents 10

OutlineOutline
1 Recapitulation1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning• simple reactive planning
• simple hierarchical reactive planning
• limitations

4. Finite state machines
• basic
• hierarchical hierarchical
• probabilistic

5. Conclusion

2 - Human-like artificial agents 11

If-then rules

if th Aif p then A

a precondition, an antecedentp ,
an action, an effect, a consequent...

2 - Human-like artificial agents 12

If-then rules

• A rule fires if its condition holds
• A reactive plan consist of tens of if-then rules
• All rules are "evaluated at once"• All rules are evaluated at once

–– think in parallel!think in parallel!
• Technically, the parallelism must be "translated"

to a serial program.to a serial program.

2 - Human-like artificial agents 13

A thermostatA thermostat

220oCThe regulator is set on 220oC:

1. IF temperature > 225oC,
THEN switch the heater offTHEN switch the heater off.

2. IF temperature < 215oC,
THEN switch the heater onTHEN switch the heater on.

Why is the temperature tested for 225 / 215 instead of 220?Why is the temperature tested for 225 / 215 instead of 220?

What to do when more rules fires in the same instant?What to do when more rules fires in the same instant?
2 - Human-like artificial agents 14

What to do when more rules fires in the same instant?What to do when more rules fires in the same instant?

Si l ti l iSimple reactive planning
• Assign a priority to each rule:

A robot picking up mushrooms:

When starts: not at home && be in picking state

A robot picking up mushrooms:

1. if see_obstacle then change_direction
2. if basketful_of_m. and picking then stop_picking
3 if h d i ki th i k th h3. if see_mush. and picking then pick_up_the_mush.
4. if midday and picking then stop_picking
5. if home then END
6. if picking then move_random
7. if not_picking then move_home What does the robot do when it What does the robot do when it

2 - Human-like artificial agents 15
sees a mushroom, but it is sees a mushroom, but it is

returning home?returning home?subsumption architecture:
[Brooks, 1986; Wooldridge, 2002]

Simple hierarchical reactive planning
1. if bla1 and bla2 then SubGoal1
2. if not bla1 and bla3 then SubGoal22. if not bla1 and bla3 then SubGoal2

3 if bla4 then SubGoal3

3.1 if A then Sub2GoalA
3.2 if B then Sub2GoalB

3 3 if C th S b2G lC
.

3. if bla4 then SubGoal3 3.3 if C then Sub2GoalC

3.4 if D then Sub2GoalD

.

.

4. if not bla3 and bla2 then SubGoal4
5. if bla1 and bla3 and bla8 then SubGoal5
6. if blabla then SubGoal6
7. if bla2 or (bla3 and not bla7) then

SubGoal7

Think hierarchically!Think hierarchically!
2 - Human-like artificial agents 16

•• Think hierarchically!Think hierarchically!
[Bryson, 2001; Nilsson, 1994; etc.]

Simple hierarchical read
sleepSimple hierarchical

reactive planning cook
draw

watering

explore

eat sleep

p g

• Behaviour is decomposed hierarchicallyBehaviour is decomposed hierarchically
– top-level goals, sub-goals, tasks, atomic actions

• Every reactive plan is expressed by means of a set of • Every reactive plan is expressed by means of a set of
trees
E t f t d t t l l l• Every root of a tree corresponds to a top-level goal
– AND trees, AND-OR trees

• How to create a decomposition?

2 - Human-like artificial agents 17

Si l hi hi l ti l iSimple hierarchical reactive planning
(a hierarchical top-down decomposition)

Watering: the garden is
wateredgoal:

Appetitive ConsumatoryTaxis Clean

watered

Appetitive ConsumatoryTaxis Clean

• Find & take G t t W t th E t th • Find & take
a can

• Fill the can

• Go next to
a dry bed

• Water the
bed

• Empty the
can

• Put down Fill the can • Put down
the can

2 - Human-like artificial agents 18...cycles are possible!
...an ethology model

Simple hierarchical reactive planningSimple hierarchical reactive planning
a decomposition example (watering)

• the highest priority has the goal condition, the second highest is the cleaning
• order the task in the normal/the reverse order [Bryson, 2001]

1. if garden_watered and cleaned then COMMIT
2

Clean
2. if garden_watered then subGoal_Clean

3. if not_hold_any_can then subGoal_FindTakeCan App_ _ _ _
4. if can_in_hands and empty then subGoal_FillUpTheCan

5 if know about dry bed & not stand nextTo theBed

App.

Taxi5. if know_about_dry_bed & not_stand_nextTo_theBed
then subGoal_GoThere

Taxi

2 - Human-like artificial agents 19

6. if stand_nextTo_theBed and theBad_dry then
atomicWatering

Cons.

Si l hi hi l ti l iSimple hierarchical reactive planning
top-level goals

• How to select a top-level goal to perform?
– a schedule + interrupts
– drives + interruptsdrives interrupts
– a drama manager (Façade)

l i d f t di t d i t ti (BDI) – planning and future-directed intentions (BDI)

2 - Human-like artificial agents 20

ENTs
• Chess-like topology 2½ D world

ENTs
• Chess-like topology, 2½ D world
• Discrete time (time-steps)

– a step = 20 sec.p
• 20 internal drives

– hunger, thirst,...
• 60 atomic actions

– aWalk, aPickUp, aWater, aEat,...
• Two hands + an inventory

[Bojar et al., 2002; 2005]
• Two hands + an inventory
• Face no particular direction in the world

– an illusion of orientation is caused by the GUI onlyan illusion of orientation is caused by the GUI only
• Understand a simplified version of Czech language
• Driven by scripts in E language

2 - Human-like artificial agents 21

y p g g

ENTsENTs
system architecture

• 3 independent programs for 3 independent programs for
Linux
– entiserver (ES): the server of a

virtual world
– entiprohlizec: the graphical user

interfaceinterface
– ent: the ent's control program

(artificial mind)
• It is possible to instantiate

different world models
 ill d l f f il

2 - Human-like artificial agents 22
– we will use a model of a family

house

Top-level goalsTop level goals
Four intended top-level goals of the gardener…

toilet
(when I must go...) 70

eating
(when I'm hungry)

(g) 70

watering
(t)

(when I m hungry) 50

(true)
30

bumming around
(tr e)

2 - Human-like artificial agents 23

(true) 5

0

What is on the top?What is on the top?
Three active goals

toilet
(when I must go) 70"eating" script is started"eating" script is started

eating
(when I'm hungry)

(g) 70g pg p
"watering" is interrupted"watering" is interrupted

watering
(t)

(when I m hungry) 50

(true)
30 3 intended

goals

bumming around
(tr e)

2 - Human-like artificial agents 24

(true) 5

0

What is on the top?What is on the top?
Bumming around

toilet
(when I must go) 70

eating
(when I am hungry)

(g) 70

watering
(t)

(when I am hungry) 50

(true)
30 trapezoidal priority:

timeout expired,
"bumming around" is started

bumming around
(tr e)

g

2 - Human-like artificial agents 25

(true) 5

0

Reactive planner in actionReactive planner in action
PyPOSH in Unreal Tournamenty

Unreal

Gamebots

PyPOSH

Gamebots
API PyPOSH

creature

[Kwong, 2003][IGN Entertainment,
1996-2006] [Adobatti et al., 2000]

2 - Human-like artificial agents 26

POSH control structure IPOSH - control structure I
• Action pattern• Action pattern

– a sequence of actions that cannot be interrupted
– e g "baa" and look at it (sheep)e.g., baa and look at it (sheep)

• A competence: { s; s is a competence step }
– steps that can be performed in different orders (i.e., a set of p p (,

sequences)
– one of the steps can be a goal step

the competence returns a value: if the goal is – the competence returns a value: ┬ if the goal is
accomplished, ┴ if none of its steps fire

– a competence step: <p, r, a, [n]> p p p []
• a priority, a releaser, an action, a number of retries
• the action can be another competence

[B 2001]
2 - Human-like artificial agents 27

[Bryson, 2001]

POSH control structure IIPOSH - control structure II
• A drive collection: { d; d is a drive element }• A drive collection: { d; d is a drive element }

– the root of the hierarchy
– a drive element: <p, r, a, A, [f]>

 i it• p – a priority
• r – a releaser
• a – a currently active element of the drive element (a sub-element)
• A the top element (i e a collection action pattern or an action) of the drive element • A – the top element (i.e., a collection, action pattern, or an action) of the drive element

→ slip-stack
• f – a maximum frequency at which this drive element is visited

– e.g., jump every five seconds
– for any cycle of the action selection, only the drive collection itself and at most one

other POSH element will have their releasers examined
• One drive element can suspend temporarily another drive elementp p y

– a competence step cannot interrupt another competence step
• When the suspending drive element terminates, the suspended drive element

continues

2 - Human-like artificial agents 28

continues

PyPOSHy
(RDC life (goal((fail)))

(d i(drives
((hit(trigger((hit-object) (is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))(((gg (()))))

))

2 - Human-like artificial agents 29

OutlineOutline
1 Recapitulation1. Recapitulation

• action selection problem, artificial mind,
architecture of a virtual being

2. Reactive planning
3. If-then rules

• simple reactive planning• simple reactive planning
• simple hierarchical reactive planning
• limitations

4. Finite state machines
• basic
• hierarchical hierarchical

2 - Human-like artificial agents 30

FSM & HFSM (1)()

aa
a

Standard "finite-state machine"
(FSM) is a tuple:

Hierarchical "finite-state machine"
(HFSM) is a tuple:

• <label, T, script> is a state • <label, T, sc> is a state
a label is a name of the state

(FSM) is a tuple:
< { <label, T, script> }, a >

(HFSM) is a tuple:
< { <label, T, sc> }, A >

– a label is a name of the state
– a script is a code associated with the

state
T is a set of rules that trigger

– a label is a name of the state
– a sc is either a code associated with the

state (i.e. a script), or a set of the names
of the state's substates– T is a set of rules that trigger

transition to another state (i.e.
transition function)

• a is a currently active state

– T is a set of rules that trigger transition to
another state (i.e. transition function)

• A is a set of currently active states
 th f t t t t l f t t

2 - Human-like artificial agents 31

– a path from a root-state to a leaf-state

FSM & HFSM (2)

• FSM and HFSM are computationally equivalent
– HFSM avoids "spaghetti design"

b
a a

b

[I l 2005]

Are finite state machines computationally Are finite state machines computationally
i l t t T i hi ?i l t t T i hi ?

[Isla, 2005]
[Champandard, 2003]

2 - Human-like artificial agents 32

equivalent to Touring machines?equivalent to Touring machines?

SRP vs. FSM

1. if ac or bc or dc then C A Bab ba

2. if ab or cb or db then B
3. if ba or ca or da then A
4. if ad or bd or cd then D

ac ad bc bd

4. if ad or bd or cd then D

a note: zx also tests whether the FSM is in state Z C D

da

dc

dbca
cb

ccd

• priorities
• "spaghetti design"

2 - Human-like artificial agents 33

FSM exampleFSM example
Quake bot

• High level decision
control onlycontrol only

• In each FSM-node,
a bot chooses
among possible among possible
goals associated
with the node

• Standard FSM
• The if-then rules "in

each node" are each node are
written in C van Waveren (c) 2001

2 - Human-like artificial agents 34
[van Waveren, 2001]

HFSM exampleHFSM example
Quake bot

• In each FSM-node, a bot chooses among possible goals
associated with the nodeassociated with the node
– fuzzy decision (how much do I want to pick this weapon up?)
– long term-goals vs. short term goals

• E.g. "battle fight":
– acquiring enemy

selecting weapon– selecting weapon
– aiming and approaching
– shooting

van Waveren (c) 2001

• Different techniques can be used in each node
– low-level navigation

voting system

van Waveren (c) 2001

2 - Human-like artificial agents 35

– voting system
– planning

2 - Human-like artificial agents 36
van Waveren (c) 2001

Probabilistic FSM modelsProbabilistic FSM models
0,7[a]
1[b] 0 8[e]

i
0,9[a]

0,1[a] 1[b]

0,3
[a]

1
[c]

1[c d]

0,8[e]

0,2[e]1[a]

• Probabilistic "finite-state machine" (PFSM) is a tuple:

1[c, d]

Probabilistic finite state machine (PFSM) is a tuple:
< { <label, Tp, script> }, a >

• <label, Tp, script> is a state, , p
– a label is a name of the state
– a script is a code associated with the state

Tp is a set of rules that trigger a transition to another state with a given – Tp is a set of rules that trigger a transition to another state with a given
probability

• a is the currently active state

2 - Human-like artificial agents 37

Reactive planning - recapitulation

2 - Human-like artificial agents 38

RecapitulationRecapitulation
• Reactive planning is a group of methods of driving behaviour of

virtual beings
• Each method determines the next action in every instant in "a

timely fashion"
• SHRP• SHRP

– if-then rules
– priorities
– AND-OR trees

• FSM
t t– states

– transitions

2 - Human-like artificial agents 39

I l t tiImplementation
rationale:rationale:

• Special-purpose languages:
rules

step
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if h d { }– rules

• JAM [Hubber, 1999]
• E [Bojar et al., 2002]

if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }
step
if someone-shoot-at-me do { }E [Bojar et al., 2002]

• PyPOSH [Kwong, 2003]
• ABL [Mateas, 2002]

if someone shoot at me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
if I-need-toilet do { .. }
if I-am-sleepy do { .. }

• (Soar)
– FSM

py
pick-up-mark
if someone-shoot-at-me do { .. }
if someone-asked-me do { .. }
if I-am-hungry do { .. }
i i• AI. Implant...

• Softimage

if I-need-toilet do { .. }
if I-am-sleepy do { .. }
pick-up-mark
if someone-shoot-at-me do { .. }

2 - Human-like artificial agents 40

...

Simple hierarchical reactive planningp p g
problems

• Failures → AS memoryFailures
• Perceptual aliasing problem
• Transition
• It behaves in the same way

→ AS memory
→ AS memory [Brooks]
→ hard-coding, if-then + FSM [Sengers]
→ probabilistic approach• It behaves in the same way

• Compromise action
• Proscription
• Modification of a behavior

→ probabilistic approach
→ free-flow, voting [Tyrrell, 1993]
→ negative links, networks
→ metaparameters floating priorities?• Modification of a behavior

• Integrating concurrent behavior
• Interleaving

Sh ti t

→ metaparameters, floating priorities?
→ modifieres [Blumberg, 1995]
→ classical planning

BDI f t l ti ti ???• Sharp timeout

• Authoring vs. Learning

→ BDI, fuzzy, perceptual motivation ???

– perform a task in a new situation
– learn a new task
– adapt a task to a modified situation

h l t t t f t k
2 - Human-like artificial agents 41

– how long to try to perform a task

EndEnd

2 - Human-like artificial agents 42

Implementation

• How exactly does it work?
– it depends on the implementation...

• Special-purpose languages• Special-purpose languages
• "Emulation"...

2 - Human-like artificial agents 43

ENTs an example

• Chess-like topology 2½ D world

ENTs an example

• Chess-like topology, 2½ D world
• Discrete time (time-steps)

– a step = 20 sec.p
• Embodied
• 20 internal drives

– hunger, thirst,...
• 60 atomic actions

aWalk aPickUp aWater aEat
[Bojar et al., 2002; 2005]

– aWalk, aPickUp, aWater, aEat,...
• Two hands + an inventory
• Face no particular direction in the worldFace no particular direction in the world

– an illusion of orientation is caused by the GUI only
• Understand a simplified version of Czech language

2 - Human-like artificial agents 44

p g g
• Driven by scripts in E language

ENTsENTs
system architecture

• 3 independent programs for 3 independent programs for
Linux
– entiserver (ES): the server of a

virtual world
– entiprohlizec: the graphical user

interfaceinterface
– ent: the ent's control program

(artificial mind)
• It is possible to instantiate

different world models
 ill d l f f il

2 - Human-like artificial agents 45
– we will use a model of a family

house

ENT th t l lENTs – the control cycle
one time-step

1. Every ent sends one a-action to the ES at the
beginning of a time-step

2 ES waits till all a-actions are sent2. ES waits till all a actions are sent
3. ES computes the result of the time-step
4. Every ent receives “a world Δupdate” at the

end of the time stepend of the time step

2 - Human-like artificial agents 46

How to instruct an ent?How to instruct an ent?
Watering a garden

• A simple behavioral script (b-script) in E language:

waterTheBedByTheCanOnce(hBed, hCan):-

aWaterPlants(hBed, hCan)
.

input parameters –
variablesan atomic instruction

2 - Human-like artificial agents 47

How to instruct an ent?How to instruct an ent?
Watering a garden

• Watering is a continuous action, it lasts about 10 time steps!
A b script ith a conditional c cle• A b-script with a conditional cycle:

waterTheBedByTheCan(hBed, hCan):-y (,)

if state(hBed, "already watered") then
COMMIT

a memory query
fi,
aWaterPlants(hBed, hCan),

a memory query

RERUN

.
it finishes the script

2 - Human-like artificial agents 48
it runs the script once again

A memoryA memory
• The memory is a list of facts, e.g.:

to_be_what_where_since(object, position, time)

Can the ent look at the worldCan the ent look at the world--map directly?map directly?
however

No, because the ent is an autonomous being!

however,
"cheating" may

help a lot!

A sensor
Virtual

environment

A sensor
A mind

2 - Human-like artificial agents 49
A memory

How to query the memory?How to query the memory?
Find a dry bed

l h dl

waterTheBedByTheCan(hBed, hCan):-
Obj t A h ([" bj t" "b d"

a general handle

query_ObjectsAnywhere(["object" = "bed" :
"room" = "garden" :
"special1" = "dry"],p y],

[],
sListDryBeds EXIST x : d(x) ?

a memory query

) , where d means
"a bed" &
"in the garden" &

d b

an output: a list of dry beds

returnTheClosestOne(hDryBed, sListDryBeds) ,
"a dry object"

2 - Human-like artificial agents 50an output

How to come next to the bed?How to come next to the bed?
We need subgoaling…

• Assigning a subgoal a set of scripts that
accomplish the subgoal

subGoal_goTo(hBed) OR { ... },
accomplish the subgoal

aWaterPlants(hBed, hCan), a script for
a fail-case

Think hierarchically!Think hierarchically!yy

• Generally speaking, a task can be decomposed to subtasks recursively, until
some atomic actions are reached

2 - Human-like artificial agents 51

some atomic actions are reached.

How to come next to the bed?How to come next to the bed?
We need subgoaling…

• Assigning a subgoal a set of scripts that
accomplish the subgoal

subGoal_goTo(hBed) OR { ... },
accomplish the subgoal

aWaterPlants(hBed, hCan), a script for
a fail-case

What should an ent do if someone begins watering What should an ent do if someone begins watering
h b d h h h j h ? Th b d i h h b d h h h j h ? Th b d i h the bed that the ent has just chosen? The bed might the bed that the ent has just chosen? The bed might

be already watered when the ent comes next to it!be already watered when the ent comes next to it!

2 - Human-like artificial agents 52• reactive planning!!!

A t t f b lA structure of a subgoal

• Every subgoal has:
– prerequisites – a conjunction of atomic conditions

that must hold before the subgoal is executed
– a context – a conjunction of atomic conditions that

must hold until the subgoal is accomplishedg p
– an effect – an expected result of the goal

planning background

2 - Human-like artificial agents 53

How to test the context and prerequisites?How to test the context and prerequisites?
E language facilitates interrupts and conditions…

• An action can be triggered by activating an interrupt
Prereq isites can be test b means of if then condition• Prerequisites can be test by means of if-then condition

the local priority of setting the interrupt

if(not entNextTo(hBed)
{

p y f
the interrupt

setting the interrupt

{
localHook(not state(hBed, "already watered"),

"PRIO_MAX", the trigger
{ ... },
interruptNotWatered)

bG l T (hB d) OR { }

gg
script

2 - Human-like artificial agents 54

subGoal_goTo(hBed) OR { ... },
},

the id of the
interrupt

The tree of top-level goal The tree of
active subgoals

(in time t)

future subgoalaccomplished sub-goal
f g

subgoal

interrupts

sub2-goal
A stack of

ti

sub3-goal

active
subgoals

sub goal

2 - Human-like artificial agents 55
atomic
instruction

The tree of top-level goal The tree of
active subgoals

(in time t+5)

future subgoalaccomplished sub-goal
f g

subgoal

interrupts

sub2-goal

sub3-goalsub goal

i t t di t t d
2 - Human-like artificial agents 56

atomic
instruction

interruptedinterrupted

The tree of top-level goal The tree of
active subgoals

(in time t+8)

future subgoalaccomplished

99

sub-goal
f g

subgoal

98 interrupts

97

sub2-goal

96

sub3-goalsub goal

i t t di t t d
interruptedinterrupted

2 - Human-like artificial agents 57
atomic
instruction

interruptedinterrupted

The tree of top-level goal The tree of
active subgoals

(in time t+12)

future subgoalaccomplished

99

sub-goal
f g

subgoal

98 interrupts
97

sub2-goal
accomplished

96

sub3-goal
restored
behavioursub goal

i t t di t t d

behaviour

2 - Human-like artificial agents 58
atomic
instruction

interruptedinterrupted

Hi hi l ti l i i EHierarchical reactive planning in E
(a template)

top_levelGoal_WaterAllBeds :-
// if everything is watered, try to put the can and commit

if GOAL COND then { try sgPutCan, COMMIT } fi,_ { y g , } ,

// if you are not holding a can, find it and take it; then activate the local interrupt that tests whether
the can is still at hands -- if not, restart the watering

if ! holdCan then sgFindAndTakeCan fi,g
localHook(! holdCan, localPrioMax-1, { RERUN }, id1),

// if you are not holding an empty can, fill it; then activate the local interrupt that tests whether the
can is not empty -- if it is, restart the wateringp y f , g

if holdCan and canInHandEmpty then sgFillCan fi,
localHook(holdCan and canInHandEmpty, localPrioMax-2, { RERUN }, id2),

// the same follows for other subgoals...// the same follows for other subgoals...

• When an interrupt fires, restart the current script
2 - Human-like artificial agents 59

p p
• Perform the cleaning also as a transition

A b l i t b i tA subgoal is not a b-script
What is the difference?

• There may exist more ways of accomplishing a subgoaly y p g g
• When the subgoal is instantiated, one b-script from a set of b-

scripts is chosen to accomplish the task
– a utility function

• If the b-script fails, another b-script is chosen
• The subgoal fails if all of its variants fail
• Remember: AND-OR trees vs. AND trees

2 - Human-like artificial agents 60

subGoalEatsubGoalEat

subGoalEat $-
stateEnt("hunger", hunger),
if hunger > 15 return 2

subGoalEat $-
if lunchTime or DinnerTime

return 1 .
else return 0 .

subGoalEat :-
ili

subGoalEat :-
subGoalEatWhatever-

FromTheFridge .

a utility
function

subGoalEatInRoom .

AND-OR tree for
t l l lone top-level goal

A B C

What will be performed What will be performed
next in the case of a next in the case of a
success/failure? A B C success/failure? A B C

2 - Human-like artificial agents 61
performedfailedfinished

success/failure? A, B, C success/failure? A, B, C
or nothing?or nothing?

POSH

2 - Human-like artificial agents 62

POSH & BOD
• Behavioural oriented design

b h i l d iti– behavioural decomposition
• POSH: Parallel-rooted, Ordered Slip-stack Hierarchical

 th d th t l it hi hi l if th l– a method that exploits hierarchical if-then rules
– several languages

• POSH: in lisp or C++• POSH: in lisp or C++
• PyPOSH: Python implementation
• jyPOSH: Jython implementation (interoperates with Java)

[Bryson et al 2001 - 2006]
2 - Human-like artificial agents 63

[Bryson et al., 2001 2006]

PyPOSH in Unreal - architecture

Unreal

Gamebots

PyPOSH

Gamebots
API PyPOSH

creature

[Kwong, 2003][IGN Entertainment,
1996-2006] [Adobatti et al., 2000]

2 - Human-like artificial agents 64

Behavioural oriented creatureBehavioural oriented creature

ControlControl structurestructureAgent

Environment SensorSensor EffectorEffectorMemoryMemory

"can_27"

"bread_12"
"door_47"

SensorSensor EffectorEffectorMemoryMemory

Body"plate_02"
SensorSensor EffectorEffectorMemoryMemory

Image GUI ti l ti h i
2 - Human-like artificial agents 65

Image GUI action selection mechanism,
e.g. POSH reactive planning

Behaviours as objects

• Object • Behaviour
– properties/variables
– methods

– states/variables (memory)
– primitive elements of the

ti l hi h t reactive plan which present
the interface to the behaviour

• senses• senses
• acts

– learninglearning

2 - Human-like artificial agents 66

POSH control structure IPOSH - control structure I
• Action pattern• Action pattern

– a sequence of actions
– e g "baa" and look at it (sheep)e.g., baa and look at it (sheep)

• A competence: { s; s is a competence step }
– steps that can be performed in different orders (i.e., a set of p p (,

sequences)
– one of the steps can be a goal step

the competence returns a value: if the goal is – the competence returns a value: ┬ if the goal is
accomplished, ┴ if none of its steps fire

– a competence step: <p, r, a, [n]> p p p []
• a priority, a releaser, an action, a number of retries
• the action can be another competence

[B 2001]
2 - Human-like artificial agents 67

[Bryson, 2001]

POSH control structure IIPOSH - control structure II
• A drive collection: { d; d is a drive element }• A drive collection: { d; d is a drive element }

– the root of the hierarchy
– a drive element: <p, r, a, A, [f]>

 i it• p – a priority
• r – a releaser
• a – a currently active element of the drive element (a sub-element)
• A the top element (i e a collection action pattern or an action) of the drive element • A – the top element (i.e., a collection, action pattern, or an action) of the drive element

→ slip-stack
• f – a maximum frequency at which this drive element is visited

– e.g., jump every five seconds
– for any cycle of the action selection, only the drive collection itself and at most one

other POSH element will have their releasers examined
• One drive element can suspend temporarily another drive elementp p y

– a competence step cannot interrupt another competence step
• When the suspending drive element terminates, the suspended drive element

continues

2 - Human-like artificial agents 68

continues

PyPOSHdef init_senses(self):
lf dd (" l " lf l)

y
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see player(self):

Python

def see_player(self):
...

(C lif (l((f il)))

top-level

checking period(RDC life (goal((fail)))
(drives

((hit(trigger(* (hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))

prio: 1
2

checking period

((wander(trigger((succeed))) wander-around))
))

(C wander-around (minutes 10) (goal((see-player)))

3

terminate conditiontimeout condition "Lisp"
(C wander around (minutes 10) (goal((see player)))

(elements
((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

2 - Human-like artificial agents 69

))
if then

PyPOSHdef init_senses(self):
lf dd (" l " lf l)

y
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see player(self):def see_player(self):
...

(C lif (l((f il)))(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))(C wander around (minutes 10) (goal((see player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

2 - Human-like artificial agents 70

))

PyPOSHdef init_senses(self):
lf dd (" l " lf l)

y
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see player(self):def see_player(self):
...

(C lif (l((f il)))(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))(C wander around (minutes 10) (goal((see player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

2 - Human-like artificial agents 71

))

PyPOSHdef init_senses(self):
lf dd (" l " lf l)

y
self.add_sense("see-player", self.see_player)
...

def init_acts(self):
self.add_act("move-player", self.move-player)
...

def see player(self):def see_player(self):
...

(C lif (l((f il)))(RDC life (goal((fail)))
(drives

((hit(trigger((hit-object)(is-rotating False))) avoid))
((follow(trigger((see-player))) follow-player))
((wander(trigger((succeed))) wander-around))

))

(C wander-around (minutes 10) (goal((see-player)))(C wander around (minutes 10) (goal((see player)))
(elements

((close-enough(trigger((close-to-player))) stop-bot))
((move(trigger((see-player))) move-player))

2 - Human-like artificial agents 72

))

Questions?

2 - Human-like artificial agents 73

References
• BOD, POSH

– Joanna Bryson. The Behavior-Oriented Design of Modular Agent Intelligence. In:
Proceedings of Agent Technologies Infrastructures Tools and Applications for E Services Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-Services,
pages 61-79, Springer LNCS 2592, Berlin, Germany, 2003.

– Kwong, A. A Framework for Reactive Intelligence through Agile Component-Based
Behaviours. Master thesis, University of Bath (2003)
Joanna Bryson Intelligence by Design: Principles of Modularity and Coordination for – Joanna Bryson. Intelligence by Design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agents. PhD thesis, Massachusetts Institute of Technology,
2001.

• Gamebots:
Ad bb ti R M h ll A N S h l A d T j d S G b t A 3d i t l ld t t– Adobbati, R., Marshall, A. N., Scholer, A., and Tejada, S.: Gamebots: A 3d virtual world test-
bed for multi-agent research. In: Proceedings of the 2nd International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS, Canada (2001)

• ENTs
– O. Bojar, C. Brom, M. Hladík, V. Toman: The Project ENTs: Towards Modeling Human-like

Artificial Agents. In SOFSEM 2005 Communications, pages 111–122, Liptovský Ján, Slovak
Republic, January 2005.

– Project Ent homepage: http://ckl.ms.mff.cuni.cz/~bojar/enti/

2 - Human-like artificial agents 74

j p g p j

References
• FSM

– Waveren, J. M. P. van: The Quake III Arena Bot. Master thesis. Faculty ITS, University of
Technology Delft (2001) Technology Delft (2001)

– Champandard, A.J.: AI Game Development: Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)

– Softimage, Bahavior: http://www.softimage.com/products/behavior
• Façade ABL• Façade, ABL

– Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Carnegie Mellon University (2002)

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint

Conference on Artificial Intelligence, Sydney (1991) 569-595
– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd

International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243g (g) ()
– Soar project: http://www.eecs.umich.edu/~soar/
– Isla, D.: Handling Complexity in the Halo 2 AI. Game Developers Conference, GDC 2005,

http://www.gamasutra.com/gdc2005/features/20050311/isla_01.shtml

2 - Human-like artificial agents 75

References
• AI & agents

– S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach. S. J. Russell and P. Norvig: Artificial Intelligence: a Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ.

– M. Wooldridge: An Introduction to MultiAgent Systems. John Wiley &
Sons, 1995

• Other
– Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991

International Joint Conference on Artificial Intelligence, Sydney (1991) International Joint Conference on Artificial Intelligence, Sydney (1991)
569-595

– Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In:
Proceedings of the 3rd International Conference on Autonomous g
Agents (Agents'99). Seatle (1999) 236-243

2 - Human-like artificial agents 76

