
1

1

Human-like artificial creatures
9. Soar

Cyril Brom
Faculty of Mathematics and Physics

Charles University in Prague
brom@ksvi.mff.cuni.cz

(c) 5/2005

2

Soar – an architecture for human
cognition

1. External stimuli evoke internal
symbols (representation of an
environment)

• perceptual process
2. Central cognitive system "consults"

the representation and creates
motor symbols

• if-then rules
3. Internal symbols cause a body-

change (i.e. change in the
environment)

• motor process

• Other stuff...
– priorioception, encoding

productions...

central cognition

perceptual process

motor process

[Newell, 1990]

3

Soar – central cognition
1. Input phase

• inputs are stored in the working memory

2. Proposing phase
• various if-then rules propose what to do

next
3. Decision phase

• just one proposal is chosen
4. Applying phase

• new internal symbols or motor symbols
are created by an if-then rule

5. Output phase
• motor symbols are interpreted and the

state of the environment is changed

Central cognitive system

• the architecture involves
– a programming language
– a working memory (symbols -

"variables")
– a long-term memory (if-then

rules)
– a learning

4

Working memory
• Contains all of a Soar-entity's information about its world and its

internal reasoning.
• All information is organized as states

– the simplest applications need only one state
• Working memory is a graph structure with nodes, connected by

links.
– identifiers, constants

• if-then rules match the elements of the working memory (and
nothing else)

s1 i1
i2

i3
state

nil motor symbols

input symbols

^superstate

^type

^io ^output-link

^input-link

5

Proposing phase
• All rules firing in this phase create non-persistent structures in the working memory.
• When the condition change, the working memory element is retracted.
• An ordinary rule proposes an operator.

– "Auxiliary" rules are possible (e.g. elaboration rules)

sp {propose*move-north
(state <s> ^io.input-link.eater <e>)
(<e> ^x <x> ^y <y>)

-->
(<s> ^operator <o> +)
(<o> ^name move-north

^actions.move-north
)}

condition part

action part

a bounded variable

6

• The decision procedure decides in virtue of operators'
preferences
– acceptable: a+ (only acceptable proposals will be considered by the

decision procedure)
– indifferent: a = b
– better: a > b
– worse: a < b
– the best: a > all
– the worst: a < all
– reject: a-

• What happens if the procedure can not decide?
– an impass!

Decision phase

eaters

2

7

Applying phase
• Rules firing in this phase create persistent structures in the working memory.

– application rules, recording/deleting rules, ...
• An ordinary generic application rule just copies the action of selected operator to

the output-link
– the action of each operator instance can be copied only once (status completed)

sp {apply*operator*create-action-command
(state <s> ^operator.actions <att> <value>)
(^io.output-link)

-->
(^<att> <value>)
}

8

Impasses
• Situations that prevent Soar from "moving forward"
• Four types:

– operator no-change: an operator is proposed, but there is no apply-rule
that would match with the operator in the current situation

– state no-change: no operator is proposed
– operator tie: multiple operators are proposed, but insufficient preferences

to select between them
– operator conflict: multiple operators are proposed, and the preferences

conflict
• How does Soar solve an impass?

– a new state is automatically created

9

Substates and chunking
• Substates' purpose is to provide a context for selecting and applying

an operator to resolve an impasse.
• A context stack is maintained
• How to resolve an impass?

Soar allows for combination of various
kinds of solving an impass
– an additional rule can apply

• e.g. behavioural decomposition
– rules are evaluated by preferences – a selection problem and an evaluation

problem
• e.g. look ahead-planning, iterative deepening

• The impass resolution can be remembered: chunking learning
– a new rule is recorded into the long-term memory
– a backtracing algorithm
– an overgeneralization problem

sp {wander*propose*move
(state <s> ^superstate.operator.name wander
(^io.output-link.blocked forward no)

-->
(<s> ^operator <o> + =)
(<o> ^name move

^actions.move.direction forward
)}

soartank

10

Applications
• Steve

– an educational agent
– military scenarios

• Soarbot
– anticipation
– 100 operators (20 of them with

substates), 715 rules altogether
• bots for military simulations
• TacAir Soar

– agents for flight simulations
– 7500 rules

• cognitive research
• ...

11

Evaluation

PLUS
• Powerful programming vehicle
• Rules-matching algorithm based on

RETE
• Learning as an architectural build-in
• Universal

– combinations of reactive and
planning techniques allowed

• 20 years of history
– tutorials, documentations
– it works without bugs!
– current release: 8.6.0

• A formal theory underlies it

CONS
• Low-level

– hard for non AI experts
– "programming in Soar resembles

brain surgery"
• Fuzzy-rules not allowed
• Perception process / motor process

not addressed
– connecting Soar to an own world is

not straightforward

12

References

1. Newell Allen. Unified Theories of Cognition.
Harvard University Press, USA (1992)

2. Soar homepage (university):
http://sitemaker.umich.edu/soar

(tutorials, introductions, documentations)
3. Soar technology (industry):

http://www.soartech.com/company.php

