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Abstract There is ample experimental evidence describing

changes of tonotopic organisation in the auditory cortex due

to environmental factors. In order to uncover the underly-

ing mechanisms, we designed a large-scale computational

model of the auditory cortex. The model has up to 100 000

Izhikevich’s spiking neurons of 17 different types, almost

21million synapses, which are evolved according to Spike-

Timing-Dependent Plasticity (STDP) and have an architec-

ture akin to existing observations. Validation of the model

revealed alternating synchronised/desynchronised states and

different modes of oscillatory activity. We provide insight

into these phenomena via analysing the activity of neuronal

subtypes and testing different causal interventions into the

simulation. Our model is able to produce experimental pre-

dictions on a cell type basis. To study the influence of en-

vironmental factors on the tonotopy, different types of audi-

tory stimulations during the evolution of the network were

modelled and compared. We found that strong white noise

resulted in completely disrupted tonotopy, which is con-

sistent with in vivo experimental observations. Stimulation

with pure tones or spontaneous activity led to a similar de-

gree of tonotopy as in the initial state of the network. In-

terestingly, weak white noise led to a substantial increase in

tonotopy. As the STDP was the only mechanism of plastic-
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ity in our model, our results suggest that STDP is a sufficient

condition for the emergence and disruption of tonotopy un-

der various types of stimuli. The presented large-scale model

of the auditory cortex and the core simulator, SUSNOIMAC,

have been made publicly available.

Keywords Auditory cortex · Large-scale model · Spiking

neuron · Oscillation · STDP · Tonotopy

1 Introduction

Much energy has been invested into the research of neural

plasticity in the auditory cortex (AC). One aspect of this has

been aimed at addressing changes in tonotopy (the spatial

organisation of the AC according to sound frequency) dur-

ing the critical period and its dependence on the acousti-

cal environment and external stimulation (de Villers-Sidani

et al., 2007; Nelken, 2014; Zhou et al., 2008; Zhang et al.,

2001; Kim and Bao, 2009). The AC of animals reared under

normal laboratory conditions (including a normal acoustical

environment) develops properly, however under certain arti-

ficial acoustical conditions, the arrangement of the AC fails

to develop normally, especially under relatively loud contin-

ual white noise (Zhang et al., 2002; Chang and Merzenich,

2003; Insanally et al., 2010). As the outcomes of in vivo

research in this field are still more descriptive than explana-

tory, the fundamental mechanisms underlying such observa-

tions remain poorly understood.

What are the principles underlying the development of

tonotopy under normal conditions and its disruption during

noise rearing? How does tonotopy emerge in the non-input

layers of the AC? Does it emerge inherently based on the

network architecture, or is it dependent on some specific

stimuli? Is it that the noise present in rearing actually dis-

rupts tonotopy, or is it that it is merely preventing its forma-

tion? What mechanisms are responsible for the disruption of
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tonotopy? Can we replicate in silico the lack of tonotopy as

a consequence of noise rearing using simple learning rules

(such as Spike-Timing-Dependent Plasticity)?

In order to address these questions, we designed a com-

putational spiking neuron model of the primary auditory cor-

tex (A1), presented several different inputs to the main input

layer (layer IV, further referred to as L4) and observed the

resulting tonotopy of the network. Besides the study of the

development of tonotopy, we also investigated basic princi-

ples of functioning of a cortical network with a possibility

to perturb the system and observe the causal consequences.

Further we wanted our results to be straightforwardly com-

parable with the observations from in vivo experiments on

a neuronal type basis. We emphasise that our model is not

intended to be a minimal model replicating the studied phe-

nomena, but rather a universal and extensible model that can

be used to study a wide range of phenomena and give new

hypotheses that can be later tested in vivo.

Computational modelling of the AC is a rather unex-

plored topic. Despite the existence of several published

models, there are far fewer in comparison to visual cortex

models or models of the lower stages of the auditory path-

way. To the best of our knowledge, there are currently only

four spiking neuron models of A1 as summarised in Table 1,

all of which have very limited sizes and variety of neuronal

types and connectomes. In their particular case, the models

seem appropriate and sufficient. Three of the models use the

Leaky Integrate and Fire (LIF, I&F) model of the neuron

(Lapicque, 1907; Knight, 1972) which is considered to be

one of the least plausible spiking neuron models, unable to

replicate the most fundamental properties of cortical spiking

neurons (Izhikevich, 2004). Of the four, only the model by

Pinho et al. (de Pinho and Roque-da Silva, 1999; de Pinho

et al., 2006) was used to observe tonotopy, but the descrip-

tion of their experiments and results seems incomplete and

leads to very difficult reproducibility.

Our proposed model differs from the previous works

in several aspects. It adopts the Izhikevich neuron model

(Izhikevich, 2003, 2007), considered to be one of the most

plausible models applicable in the modelling of large-scale

neural networks (Izhikevich, 2007; Schutter, 2009). In ad-

dition, the model contains synapses with axonal conduction

delays and synaptic weights that evolve according to long

term plasticity in a form of the Spike-Timing-Dependent

Plasticity (STDP) learning rule (Markram et al., 1997; Yuste

and Denk, 1995; Song et al., 2000). The network architec-

ture of our model was adapted from the large-scale model of

the mammalian cortex proposed by Izhikevich and Edelman

(2008), in which the numbers and probabilities of particular

synaptic connections were based on real observations from

cat visual cortex (Binzegger et al., 2004). Throughout our

experiments, we used networks with at least 50 000 neurons

in order to obey the numbers and types of synaptic connec-

tions as described in (Izhikevich and Edelman, 2008). On

the other hand, as we focused on experiments with devel-

opment, we also needed rather long simulations. Altogether,

we decided to use a spiking neuron model (with the basic

units being synapses and neurons) as an ideal trade-off be-

tween level of detail and computational efficiency. Up to 100

000 neurons with almost 21 million synapses and 17 neu-

ronal types are included in the model.

Our main experiments focus on the arrangement of the

developing neural network during the critical period, which

in real rodents can take up to two weeks (de Villers-Sidani

et al., 2007; Chang and Merzenich, 2003). Therefore, the

length of simulation was maximised within our capabili-

ties. We modelled evolutions as long as 12 hours of simu-

lated time. Although this might seem too short, we observed

strong differences in degree of tonotopy due to the different

types of stimulation.

Our model also proved to be robust enough to enable

observing the individual cortical mechanisms at a cellular

level. As a proof of concept we performed two types of net-

work perturbations and discuss their consequences. In the

first case, we manipulate the conduction delays between bas-

ket cells in the layer L2/3 and discuss the effects of this

perturbation on gamma oscillations. In the second case, we

switch off one of the cell types and show that this perturba-

tion substantially changes the behaviour of the system both

on second and millisecond time scales.

To make our findings reproducible, we conform to the

guidelines suggested by Nordlie et al. (2009) when describ-

ing the model. In addition all the used code and parameters

are open source. A simulator SUSNOIMAC (Simulator Us-

ing Spiking Neurons Originally Intended for Modelling Au-

ditory Cortex) was developed for simulating and analysing

spiking neural networks. SUSNOIMAC can be used for fur-

ther experiments with the presented model of A1 via user-

friendly parameterisation. The simulator is designed in a

way that more modules can be later connected. New models

can be developed and simulated using the simulation core of

SUSNOIMAC with only intermediate knowledge of Java.

2 Methods

2.1 Model architecture

Our proposed A1 model is divided into five layers: L1,

L2/3, L4, L5 and L6. The thicknesses of the layers (69,

235, 208, 248 and 451 µm) are set according to experimen-

tal observations from mouse somatosensory cortex (DeFe-

lipe et al., 2002). The area of the modelled network, 2000

× 3000 µm, is taken as a maximal estimation of the real A1

together with the ultrafield, a neighbouring auditory corti-

cal area of the A1 often considered a continual extension of

the A1 (Stiebler et al., 1997). The model contains several
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Table 1 An overview of published models of the AC. Number of neurons refers to the number of neurons in the AC part of the model (some

models contained other parts as well). HH-type is a model based on Hodgkin and Huxley (1952) model of neuron.

Model
Number of

neurons

Neuronal

types

Model of

neuron

Synaptic

plasticity

Experiment

duration
Biological motivation

(de Pinho and Roque-da Silva,

1999; de Pinho et al., 2006)
4512 2 HH-type - ≤ 10 s Tonotopic organisation

(Larson et al., 2009, 2010) 20 1 LIF STDP ≤ 10 s Songbird recognition

(Chrostowski et al., 2011) 268 2 LIF Homeostatic ≤ 30 s
Travelling waves and their

relation to hearing loss

(Zhou et al., 2012) 2400 3 LIF - ≤ 10 s Spike latency tuning

This article up to 100 000 17 Izhikevich STDP up to 12 h
Tonotopic organisation

disrupted by noise

types of neurons, including excitatory pyramidal (p) regu-

lar spiking (RS) neurons, excitatory spiny stellate (ss) RS

neurons, inhibitory basket (b) interneurons with fast spik-

ing (FS) firing patterns and inhibitory non-basket (nb) in-

terneurons, which morphologically include double-bouquet

cells, neurogliaform cells, and Martinotti cells (Binzegger

et al., 2004). The nb interneurons can exhibit low threshold

spiking (LTS) firing pattern (Beierlein et al., 2003), latent

spiking (LS) and other firing patterns (Kawaguchi, 1995;

Kawaguchi and Kubota, 1997; Markram et al., 2004). The

architecture and the connectome are based on the cortical

part of the large-scale model of mammalian thalamocortical

systems by Izhikevich and Edelman (2008). We distinguish

17 types of neurons: p2/3, ss4(L4), ss4(L2/3), p4, p5(L2/3),

p5(L5/6), p6(L4), p6(L5/6), nb1, nb2/3, b2/3, nb4, b4, nb5,

b5, nb6, b6, where the name is based on the morphology,

the layer of the soma and the layer of the main target in

parentheses. Since the detailed connectome of A1 is still un-

known, we use data published by Binzegger et al. (2004)

from area 17 of the visual cortex in cats, as used in (Izhike-

vich and Edelman, 2008). The connectome is generated ac-

cording to a three-dimensional table that sets the numbers of

synapses from different presynaptic neuronal types that each

neuron should receive within a certain layer (Izhikevich and

Edelman, 2008). Nearer neurons have a higher probability

of connection than distant ones (Izhikevich and Edelman,

2008; Levy and Reyes, 2012). A synapse can be created only

between such neurons where the soma of a postsynaptic neu-

ron is reached by the axonal area of a presynaptic neuron.

These axonal areas are specified for each neuronal type as

the axonal radii for each layer of the network, as shown in

Fig. 1. The axonal areas represent the area reached by the

axon and its terminals. We use the same values as Izhike-

vich and Edelman (2008). The details of the connectome (as

well as possible boundary effects) are described in the Sup-

plementary materials (Section 1.3).

The same model has been explored with different num-

bers of neurons: 50 000 and 100 000 (with 10 053 066 and

20 815 126 synapses, respectively). We note that no scal-

ing of synapses was necessary, since the planned number

of synapses per postsynaptic neuron is constant in the algo-

Fig. 1 An example of axonal areas. In each layer, the axonal area is

specified by its radius R.

rithm of generating synapses, i.e., each neuron of a given

type receives on average an equal number of synapses, in-

dependently of the network size. However, if the network is

too sparse, a synapse can fail to be created (because no suit-

able presynaptic neuron of a given type exists within an al-

lowed distance). For this reason, we found networks smaller

than 50 000 neurons ill-suited for our purposes. In a network

with 1 000 neurons, only 43.8% of planned synapses would

be created, or 75.2% in the case of a network with 10 000

neurons. The omission of so many synapses can severely af-

fect the balance of the planned connectome, which would

go against our aim of building a model using established ex-

perimental data whenever possible. In networks with 50 000

and 100 000 neurons, 95.1% and 98.5% of planned synapses

were created, which we deemed sufficient.

The approximate number of neurons in the real A1 is es-

timated to be ≈ 300 000–500 000 (Ouda et al., 2011) with

the upper limit of 500 000–1 000 000 based on densities in

the mouse cerebral cortex (even though not only AC) (De-

Felipe et al., 2002). Compared to these numbers, our largest

neural network is only three to ten times smaller than in real

mice.
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2.2 Model architecture

Izhikevich’s neuron model (Izhikevich, 2007) is used in the

following form:

C
dv

dt
= k(v− vr)(v− vt)−u+ Isyn(t)

du

dt
= a(b(v− vr)−u)

(1)

with the auxiliary after-spike resetting:

if (v≥ vp) then v← c, u← u+d, (2)

where v is the membrane potential, u represents a membrane

recovery current, C is the membrane capacitance, Isyn(t) is
the input current, vr is the resting membrane potential, vt

is the instantaneous threshold potential, vp is a spike cut-

off value (the peak) and a, b, c and d are parameters of the

model, specified for each neuronal type. Depending on the

parameter values, the neuron model reproduces the dynam-

ics of all neuronal types used in our network. Parameter val-

ues as listed in Table 2 are taken from (Izhikevich and Edel-

man, 2008).

The input current Isyn(t) of a given neuron Npost in time

step t is computed as:

Isyn(t) = Iext(t)+ ∑
i=1,...,k

wsi
, (3)

where Iext(t) represents external stimulation (only rele-

vant in input layer neurons, when stimulation is present),

s1, . . . ,sk are synapses via which an action potential arrived

at time step t to the neuron Npost , and wsi
is the weight of

synapse si.

Table 2 The used values of the parameters of the neuron model based

on the type of the neuron: RS pyramidal and spiny-stellate neurons,

FS basket interneurons, LS non-basket interneurons in L1, and LTS

non-basket interneurons in the other layers.

Label C k vr vt vp a b c d

LS (nb1) 20 0.3 -66 -40 30 0.17 5 -45 100

RS (p) 100 3 -60 -50 50 0.01 5 -60 400

FS (b) 20 1 -55 -40 25 0.15 8 -55 200

LTS (nb) 100 1 -56 -42 40 0.03 8 -50 20

Each synapse has a given conduction delay that repre-

sents the time required for signal transmission along the

axon. The delays are set and fixed when the network is

first initialised. The values are proportional to the dis-

tances of the somata of presynaptic and postsynaptic neu-

rons and are perturbed by a random number of millisec-

onds (ms) from a uniform distribution ranging from 0 to

5 (further written as Uniform(0, 5)). The resulting delays

are truncated to the range 1–20ms. The synaptic weights

(efficacies) of neurons are initiated randomly; for exci-

tatory neurons from Uniform(0, 100) and inhibitory neu-

rons from Uniform(-50, 0) with units of picoamperes (pA).

The inhibitory synaptic weights are constant. The excita-

tory synaptic weights develop according to constant Spike-

Timing-Dependent-Plasticity (STDP).

The weight of a synapse between presynaptic and post-

synaptic neurons is increased by the value of G(∆ t):

G(∆ t) =

{

A+ · e
∆ t/τ+ if ∆ t < 0 { LTP part }

−A− · e
−∆ t/τ− if ∆ t > 0 { LTD part },

(4)

where ∆ t is an interval between presynaptic spike arrival

and postsynaptic spike, τ+ and τ− are 20 ms, A+ is 1 and

A− is 1.2, as it is in (Izhikevich, 2006). See Supplementary

materials (Section 1.3) for a detailed description of the ini-

tialisation of delays and weights.

Real brain neocortical networks produce activity even

in the absence of any sensory stimuli (Arieli et al., 1995).

One of the mechanisms underlying this spontaneous activity

is the phenomenon of miniature postsynaptic currents (mP-

SCs) called “minis” (Timofeev et al., 2000), which corre-

spond to the spontaneous release of neurotransmitters inde-

pendent of presynaptic spikes. Modelling minis is a classical

approach to introduce spontaneous activity and reach home-

ostasis (Izhikevich and Edelman, 2008; Phoka et al., 2012;

Muresan and Savin, 2007; Timofeev et al., 2000). In our

model, minis are simulated to occur on each synapse with

frequency F (Hz) and amplitude A (pA). Values used were

F = scalingFactor· 3Hz, A = 13 pA1 corresponding to

measured physiological values in the AC: F = 3.3 ± 0.2Hz

and A = 12.7 ± 1.4 pA (Kotak et al., 2005).

The time step of the simulation is set to 1ms. To ensure

numerical stability, each neuron is simulated with a time step

of 0.5ms using the first-order Euler method of integration

(as in, e.g., Izhikevich, 2003, 2004, 2006).

2.3 Sensory stimulation

The main input sources from the lower stages of the auditory

pathway to the real A1 are inputs from the auditory thala-

mus (ventral and dorsal medial geniculate bodies) and their

major recipient is the layer L4 (Watson, 2012; Wu et al.,

2011; Cruikshank et al., 2002; Kimura et al., 2003; Roman-

ski and LeDoux, 1993; Winer and Lee, 2007; Barbour and

Callaway, 2008). These inputs are topographically organ-

ised to form a gradient of frequency representation, reflect-

ing the tonotopic organisation within the auditory thalamus

1 The scalingFactor is equal to 20 and corresponds to scaled den-

sity of synapses in comparison to the real cortex and is adopted from

(Izhikevich and Edelman, 2008).
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(Watson, 2012; Schreiner et al., 2000; Winer, 2006). Our

model incorporates these facts. Each neuron in the L4 layer

can get, in each time step, an external input Iext(t), see eq. 3.

This represents stimulation from neurons in the thalamus. In

the following text, this stimulation is referred to as external

stimulation.

Since we did not model the thalamus and any lower stage

of the auditory pathways explicitly, a simplified approxima-

tion of how the original sound stimulus is processed in these

stages was used. We only focus on two main characteristics

of the sound: amplitude and frequency. We are truly aware

of how important and extensive the subcortical processing in

the auditory system is (Šuta et al., 2013, 2007; Syka et al.,

2005; Šuta et al., 2003), however, we decided to use this

level of simplification in order to have an easy-to-analyse

model with clear interpretation of its input. However, the ar-

chitecture of the model is modular and lower stages of the

auditory pathways can be added later.

The modelled layer L4 is divided into 50 bands. Each

band corresponds to a specific frequency of the sound stim-

ulus. Since the exact values of these frequencies are not im-

portant, only their order, we will refer to them in this article

by the indices of the bands (1–50).

The input of a given frequency is modelled as a set of

independent and identically distributed (i.i.d.) constant-rate

Poisson processes (one for each neuron in the respective fre-

quency band) with its rate parameter reflecting the amplitude

of the stimulation. Again, the exact values of the amplitude

are not important and the strength of external input can be

expressed as a probability that each input neuron in a band

representing the used frequency will be stimulated in a given

time step. When stimulation occurs to an input neuron, the

strength of stimulation has been chosen as 1 500 pA, repre-

senting an input from several thalamic neurons.

In the presented experiments, three types of inputs were

used: spontaneous activity, pure tones and noise.

During spontaneous activity, neurons receive no input

from the thalamus and minis are the sole source of activity.

During pure tones, neurons in selected bands in L4

are stimulated with a certain probability representing the

strength of stimulation. In our experiments, we tested devel-

opment of the network with 5 (pureTones5) and 25 (pure-

Tones25) pure tones, each lasting 500ms.

During noise, each neuron in L4 is stimulated with a

given probability (i.e., modelled as a set of i.i.d. constant-

rate Poisson processes). In our experiments, a range of prob-

ability parameters of the noise input (ranging from 0.01 to

0.5) was tested.

2.4 Computer implementation

For all experiments, our network simulator SUSNOIMAC

was used (Popelová, 2013). The simulator is freely avail-

able2 along with the model and parameters used in the ex-

periments presented in this publication. The whole software

package consists of two parts: the simulator itself (written

in Java, using parallelisation) and a Matlab toolbox for anal-

ysis of the simulator’s outputs. As a pseudorandom num-

ber generator, the Mersenne Twister method (Matsumoto

and Nishimura, 1998) was used, as one of the best PRNGs

in terms of its combination of high degree of randomness

and efficiency. The implementation of this method was pro-

vided by the Colt Parallel Java library (Wendykier and Nagy,

2010; Wendykier, 2013).

An important feature of SUSNOIMAC is the possibility

to suspend a simulation and compute an experiment on the

current state of the network in an “alternative reality” and

then continue with the original experiment. This is particu-

larly useful for “measuring experiments” that measure the

network states several times during development. In these

experiments, it is often necessary to present given stimuli

to the network and measure the corresponding reaction. The

alternative reality solution ensures that the simulation is not

affected by any measuring experiment.

A simulation of one second of the model with 100 000

neurons (and≈ 21 million of synapses) requires≈ 33.73 s of

computational time on a single-processor PC3. In total, we

have computed ca. 180 experiments of more than 300 h of

simulated time, taking more than 300 days of computational

time.

3 Results

First, we performed validation of the model and analysis of

its basic properties: development of the network under spon-

taneous activity (3.1), analysis of network oscillations and

reactions of the network to perturbations (3.2) and how net-

work reactions spread across layers in response to external

stimulation (Supplementary materials, Section 2.1.1). Then

we performed experiments studying tonotopic organisation

after development under different acoustic stimuli (3.3).

3.1 Evaluation of spontaneous activity

First, we analysed network behaviour under spontaneous ac-

tivity only. In these experiments, STDP was activated dur-

ing the entire development and the sole source of activity

was spontaneous activity with no external stimuli. We com-

pared two different network sizes: 50 000 and 100 000 neu-

2 Licenced under Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International Public Licence. The code is at https:

//sites.google.com/site/susnoimac, last accessed: September 7,

2015.
3 Processor: Intel(R) Core(TM) i7 930 @ 2.80 GHz, RAM: 16 GB,

OS: Windows 7.
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rons, which we are referring to as 50k and 100k later in the

text.

3.1.1 The network activity

The network activity of the first 30min of development un-

der spontaneous activity of a 50k network is shown in Fig.

2. As we can see in Fig. 2A, after an initial period of stabil-

isation (ca. 8min), the network reaches a “stereotypical dy-

namic state”, in which the mean activity of individual neu-

ronal types regularly rises and falls. This stereotypical activ-

ity is sometimes (e.g., after ca. 7 and 25min in the 50k net-

work (2A)) interrupted with a distinct “bump” of increased

activity of nb cells, but then the original activity is reestab-

lished. In other words, we did not see any persistent devia-

tion from the “stereotyped dynamical state” in all our exper-

iments with a complete unperturbed network.

An example of two types of firing rate activity is shown

in Fig. 2B. In the first type (referred to as state H), the activ-

ity of b2/3 and b5 cells decreases, whereas the activity of the

other cells increases. These intervals last approximately 10–

20 s. The other type of activity (state L) lasts approximately

twice as long as H.

Fig. 2C shows a comparison of the average firing rate of

individual neuronal types. The values were similar in both

tested networks (see Supplementary materials, Section 2.1).

The most active neuronal type was b2/3 with a mean firing

rate of between 30 and 40Hz (spikes/second) and the sec-

ond most active neuronal type was b5 with a mean firing rate

of between 10 and 15Hz. The other neuronal types showed

mean firing rates of between 1 and 5Hz. The higher spon-

taneous firing rate of the basket cells is in agreement with

observations from the real AC (Sakata and Harris, 2012);

however, the absolute spontaneous firing rate of basket cells

in our model nearly twice outnumbers the values from the

real AC. This may be for several reasons, see Discussion

(Section 4) for more details.

A comparison of the development of absolute values of

mean firing rates of individual neuronal types during the first

15min of development are shown in Fig. 2D. We can see

that after the initial ca. 8min, the network stabilises in the

alternating H and L states and that this alternating activity is

present in nearly all the neuronal types.

In order to get better insight into the course of the H and

L states and a potential role of individual neuronal types in

it, we computed and visualised derivatives of firing rates of

individual neuronal types as follows: first, we found centres

of the H states in the given period (ca. 10–25min); then we

overlaid the centres, computed the derivatives of the firing

rates, and averaged them over all the H states (21 in this

period). As we can see in the results (2E), the H state is ini-

tiated by increasing activity of nb cells and decreasing ac-

tivity of b2/3 cells. Further investigation of the phenomenon

of alternating states is given in Section 3.2 and Discussion

(Section 4).

3.1.2 Reaching stereotypical dynamical state

In an intrinsically rhythmically behaving system, such as our

model, the behaviour of the network does not stabilise abso-

lutely, e.g., having constant firing rates and synaptic weights

of cells. Instead, we use the expression “stereotypical dy-

namical state” to describe the phase of network development

where a limited number of types of state occurs and there is

no global trend in development of firing rates.

In both network sizes, the network reached a stereo-

typical dynamical state at most after eight minutes. The

method used for this was to record a 30 minutes long simu-

lation of networks, when no external input was applied. This

recording was binned into minute-long segments and within

each segment the mean firing rate of all the neurons was

computed, along with the standard deviation of firing rates

within the minute4.

To test if there was not a trend in firing rates, suggesting

a lack of stabilisation, a line was fitted through the 23 points

of the mean firing rate, from the 8th to 30th minute, and the

significance of its slope was tested using a regression slope

test. In the networks sized 50 000 and 100 000, the mean fir-

ing rate was 4.22 Hz and 4.24 Hz respectively; the maximum

standard deviation was 0.33 Hz, 0.32 Hz respectively, sug-

gesting a rather small spread of firing rates. The regression

slope test returned p value > 0.05 in both networks (i.e.,

no significant difference was found between the slope of the

fitted lines and zero-slope line). Even though this does not

show that the slope is significantly similar to zero, it never-

theless suggests that there is no global shift in firing rates.

The results are visualised in the Supplementary materials in

Section 2.1.

3.2 Network oscillations

For measurement of oscillations present in the network we

again used a 50k network which had been evolved for

12 hours with spontaneous activity and then simulated this

network for 8min of spontaneous activity. Network oscilla-

tions were mostly measured from simulated probes. For i-th

probe at time t, we define the recorded signal pi(t) at loca-
tion l as:

pi(t) =
∑∀n∈Npi

u(n) 1
dist(n,l)

∑∀n∈Npi

1
dist(n,l)

(5)

4 The minute-long window contains sixty values of firing rate, one

for each second in the window. The mean and standard deviation are

computed from these sixty values.
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where Npi
is the set of neurons within 75 µm of the

probe, u(n) is the potential of the neuron and dist is 3D

Euclidean distance. Therefore, the recorded signal is essen-

tially a weighted average of potentials of neurons near the

probe with the weights being inversely proportional to the

Euclidean distance of the cell to the probe. The signals from

probes were further analysed using the Fourier transform of

sliding time windows (each window of length 1 s; window

shift 100ms).

Various rhythms arose in the network: predominantly a

theta-like oscillation (4–6Hz), an alpha-like oscillation (8–

12Hz) and a spectrum of gamma oscillations (40–60Hz).

To reveal how these oscillations change during simulation,

power spectra of the signal on the probes were analysed

throughout time. In Fig. 3A, we show a spectrogram of a sig-

nal from one of the probes (each column represents a power

spectrum for one time window, where the power is coded by

colour). In Fig. 3B, summed power spectra in bands 3–7, 8–

12, and 40–60Hz are plotted (for each time step). In Fig. 3C,

evolution of the mean of the excitatory weights over time is

shown. Evolution of the (log) firing rates is shown in Fig.

3D. Finally, four examples of spike times, raster plots and

power spectra from four different time windows are shown

in 3E, F.

Three different states were present in the recorded data:

desynchronised, and two types of synchronised: theta-like

and alpha-like. Interestingly, theta-like states corresponded

to the earlier mentioned H states and desynchronised states

corresponded to the L states. Finally, alpha-like oscillations

were measured in the “bumps” of increased activity of nb

cells.

In a desynchronised state, any discernible network oscil-

lations were suppressed (see, e.g., 300–301 s in Fig. 3E, F).

During a theta-like state, strong theta-frequency oscillations

were present (see, e.g., 30–31 s in Fig. 3E, F). The third,

and least common state, alpha-like state is characterised by

a strong alpha frequency component and generally happens

in place of the more common theta-like state and not only

as higher harmonic mode of the theta-like oscillation (see,

e.g., 360–361 s in Fig. 3E, F). Similar alternations of syn-

chronised and desynchronised states were observed in vivo

in the AC in both anaesthetised (Sakata and Harris, 2012;

Clement et al., 2008; Sakata and Harris, 2009) and unanaes-

thetised (Sakata and Harris, 2012) animals.

The low activity frequencies (theta and alpha) arose both

as local (measuring using the probes as described earlier)

and global oscillations (summing up the potentials of all

cells in the network for each time step, not weighting them

by distance). However, high activity frequencies (gamma)

were present mostly as local oscillations. This is consistent

with experimental observations that report gamma rhythms

being weaker in global EEG recordings than in local record-

ings, such as LFPs and intracranial EEGs (Nunez and Srini-

vasan, 2006). These observations are also consistent with a

large-scale model of the mammalian cortex by Izhikevich

and Edelman (2008).

The plots in Fig. 3C, D suggest that changes in fir-

ing rates of certain neuronal types and synaptic weights

are aligned with the synchronised/desynchronised states. We

noticed in the Fig. 2E that the derivatives of firing rates seem

to return to their original values, i.e., the theta-like state

seems like it could restart immediately after it ends, while it

is obviously not the case in our data when a desynchronised

state occurs. We believe that this phenomenon is linked to

the development of synaptic weights and non-linearity of

the entire system, as shown in Fig. 3C, D, where synaptic

weights slowly grow in desynchronised states, and then drop

during a theta-like state.

3.2.1 Network perturbations

An advantage of studying network dynamics in a model as

opposed to reality, is the option to easily adjust the model

and observe the consequential changes in the network dy-

namics with the aim of deciphering the underlying mech-

anisms. As a proof-of-concept and an example of such an

approach, we performed several simple perturbations and

used them to observe changes in network dynamics. First,

we focused on oscillations of the potential in the gamma

band. The largest contribution to the global gamma oscilla-

tion power5 is comprised of basket cells oscillations (Sup-

plementary materials, Section 2.1.2). Out of the basket cells

in our model, the strongest gamma pacemakers are the b2/3

cells (Fig. 4A). Other basket cells (b4, b5 and b6 cells) con-

tribute much less. The gamma power is centred around ca.

50 Hz frequency. Relative contributions to basket oscilla-

tions in the gamma band (40–60Hz) are depicted in Fig. 4A

(89.9 %, 4.7 %, 5.2 % and 0.2 % for b2/3, b4, b5 and b6

cells, respectively).

Several theories concerning the source of gamma os-

cillations in cerebral circuits exist and often differ sub-

stantially, e.g., intrinsic basket cell oscillation (I) models,

inhibitory-inhibitory (I-I) models or inhibitory-excitatory (I-

E) models (Buzsáki and Wang, 2012).

In order to contribute to this discussion, we focused

on the I-I model and performed some perturbations of the

synaptic conduction delays between b2/3 cells (Fig. 4B). We

started three experiments from a completely identical time

point of a 50k network, which had been already evolved

for 12 h under spontaneous activity evolution. Besides the

new control run (blue line, delays 5.1 ± 1.6ms; mean ±

standard deviation) we let the network run with two differ-

ent perturbations of the delays on connections between b2/3

5 We focused only on desynchronised states and nearly desynchro-

nised states in this analysis in order to have the largest oscillations in

the gamma band.
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Fig. 4 Characterisation of normal and perturbed evolution of a matured 50k network. (A): Normalised potential power spectra of basket cells

from different cortical layers; the potentials were averaged over all b cells in particular layer and the spectra were normalised in such a way that

they were divided by the maximal value in the power spectrum of b2/3. Inset: Summed power of the spectra in the gamma range (40–60Hz).

(B): Power spectra of the averaged potential of b2/3 cells with original and perturbed mutual conduction delays. The original delays 5.1 ± 1.6ms

(mean ± standard deviation), blue line, were in one case changed to double values 10.2 ± 3.2ms, magenta line, and in the second case all the

delays were set to 15ms, orange line. (C): Firing activity of different cell types on a large time scale (firing averaged over each second; neuronal

types colour-coded: see legend in between (E) and (F)) and a spectrogram of the firing rate containing the three principal oscillatory states. (D):

The same plot and spectrogram as in (C), but the p6(L4) cells were turned off at the beginning (time = 0). Note the interrupted y-axis in the upper

parts of the two latest figures. (E): Firing activity of different cell types during with 1ms resolution (a grey area in the inset). Inset: Zoomed grey

area from (C), where the activity is averaged over each second. (F): Firing activity of different cell types with 1ms resolution from a simulation

with turned off p6(L4) cells (a grey area in the inset). Inset: Zoomed grey area from (D), where the activity is averaged over each second.



Formation and disruption of tonotopy in a large-scale model of the auditory cortex 11

cells: First, all the original delays were doubled (magenta

line, delays 10.2 ± 3.2ms). Second, all the delays were set

to 15ms (orange line). Doubling the delays led to a ca. 5Hz

decrease of the centre frequency of the gamma peak (Gaus-

sian fit of the gamma peak: for original delays, blue line,

centre = 51Hz, sigma = 8.3 Hz; for doubled delays, red line,

centre = 46Hz, sigma = 5.6Hz). Setting all the delays to

15ms led to a disintegration of the gamma peak and three

separated local maxima appeared instead. These data sug-

gest that coupling between b2/3 cells plays an important

role in the process of generating gamma oscillations and the

mechanism is somewhat resistant to a moderate perturbation

of the connection delays (see Discussion, i.e., Section 4). To

exemplify the potential to investigate the impact of silencing

a certain cell type, we turned off a specific cell type, p6(L4).

As a control, an evolved 50k network was allowed to run

unperturbed. In Fig. 4C a regularly oscillating stereotypical

dynamic state of the network can be seen. In the case of

turning the p6(L4) cells off in the beginning of the run (Fig.

4D), the system evolved normally only at the beginning and

then collapsed into the alpha-like state, suggesting the im-

portance of p6(L4) neurons for normal function. Differences

in firing activity between the two experiments (control and

p6(L4) turned off) can also be studied on a finer time scale

(see Fig. 4E and 4F).

The important principle of our simulator is that it en-

ables the investigation of contribution made by individual

cell types to the networks behaviour, e.g., cortical oscilla-

tions. The use of the alternative reality enables such experi-

ments to be performed in a casual manner.

3.3 Tonotopy-related experiments

The tonotopy-related experiments researched network de-

velopment under different external sound stimuli. First, we

designed and ran 20 experiments: all combinations of five

types of input, two sizes of network and two randomisa-

tion seeds. In the following text these experiments are re-

ferred to as main tonotopy-related experiments. Based on

the results, we designed and ran seven additional tonotopy-

related experiments that explored seven additional intensi-

ties of the noise input. Below, we describe the methodology

common to all experiments and the results from both groups

of tonotopy-related experiments.

3.3.1 Methodology of analysis of results

Each experiment and analysis of its results have the same

structure as depicted in Fig. 5.

First, the development of the network is simulated. In

given times during development, the degree of tonotopy is

measured in an alternative reality. In this measurement, a

battery of 250 pure tones (all 50 bands, each with five in-

tensities: 0.2, 0.35, 0.5, 0.65 and 0.8) is presented to the

network ten times. Each pure tone lasts 100ms and is fol-

lowed by 400ms of silence (only spontaneous activity is

present). The pure tones in the battery are ordered randomly,

but the same permutation is used for each of the ten repeti-

tions. Each tonotopy measurement lasts 10 · 250 · 500ms =

1 250 000ms of the simulated time. During the measurement

the synaptic weights are fixed. The spike trains from all neu-

rons are recorded during the entire measurement.

Subsequently the receptive field (RF) and the summed

receptive field (summedRF) are computed for each neu-

ron from the recorded spike trains. The RF is a matrix of

50 bands × 5 intensities, containing spike counts for the

given inputs. The summedRF refers to the RF summed over

all intensities. According to the summedRF, it is determined

which neurons will be called tuned and what will be their

best frequency (BF). To be labelled as tuned, a neuron had to

fulfil two conditions. First, it had to fire at least once during

the measurement. Second, it had to prefer only one band or

an interval of neighbouring bands. To determine this, rela-

tiveThreshold was defined as percentage · maxVal, where

percentage is a parameter and maxVal is the highest num-

ber in summedRF. In our analysis, percentage = 90% was

used. Then, the indices of bands with a summedRF value

greater than the relativeThreshold formed an interval (in

other words, a contiguous set of indices).

If a neuron was tuned, its BF was taken as a mean value

of bands above relativeThreshold. For examples of tuned

and untuned neurons, see Fig. 6.

To visualise the BFs of the tuned neurons in the entire

network, a spatial visualisation was used. The tuned neurons

were plotted as a 2D projection of the modelled cortex with

colours corresponding to their BFs (blue being band 1 and

red band 50). In a totally tonotopic network, we would see

a clear colour gradient from blue on the left to red on the

right.

In order to compare the state of tonotopy in the network,

we designed and used an average distance metric (ADM)

defined as:

ADM(network) =

∑
n∈T

|Bn−BFn|

|T |
(6)

where T is the set of tuned noninput6 neurons, Bn is the

band where the n-th neuron from T is placed and BFn is the

best frequency of the n-th neuron. In a totally tonotopic net-

work, ADM would be zero. In contrast a completely chaotic

network (where the BF of neurons is selected randomly)

6 Input neurons (i.e., neurons from layer L4) are not accounted be-

cause they are trivially tonotopic and would skew the results by en-

forcing that every network has a large quantity of perfectly tonotopic

neurons.
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Fig. 5 A diagram of steps done in the analysis of results. Each experiment consists of development and measurement of tonotopy in several time

slices during development. From each measurement, the spike trains were recorded and used to compute receptive fields of all neurons. Then, the

tuned neurons were selected and their characteristic frequencies determined. Finally, the state of tonotopy was measured using average distance

metric (ADM).

Fig. 6 Examples of RFs (top in each quadrant) and summedRF (bottom in each quadrant) in four different neurons. The two top neurons are

tuned. The top left neuron has only one band above the relativeThreshold (red horizontal line in summedRF). The top right neuron has two but

neighbouring bands above the relativeThreshold. The two bottom neurons are untuned because the bottom left one is not active enough and the

bottom right one has several not connected bands above relativeThreshold.
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with 50 bands would have an ADM of 16.67, the mean dif-

ference of two independent variables from Uniform(1, 50).

These numbers were used as the baseline for measuring the

degree of tonotopy of networks after rearing under various

stimuli.

There is one potential theoretical case in which the val-

ues of ADM could give misleading information about tono-

topy, when one network, has low number of tuned neurons

(but well tuned neurons) and another network has high num-

ber of tuned neurons (but on average less well tuned neu-

rons). In this case the first network would have much lower

ADM, even though it is not clear, whether we should call

this network tonotopic (especially when the number of tuned

neurons is extremely low). Therefore, apart from measuring

ADM, we also measured the percentage of tuned neurons in

the network and verified that the networks with low ADM

have also relatively high percentage of tuned neurons and

vice versa.

3.3.2 Effects of different types of stimuli on the development

of tonotopy (main tonotopy-related experiments)

We explored 12 h simulated time of development of the net-

work under 5 different external stimuli: spontaneous, pure-

Tones5, pureTones25, noise0.5 and noise0.01. All the ex-

periments contained the same amount of minis, but differed

in their external stimulation. In the spontaneous input con-

dition, neurons did not receive any external input. In the

pureTones5 condition, the network was stimulated by pure

tones presented to the input layer (L4). Each pure tone lasted

500ms and had an intensity of 0.57. The index of the next

stimulated band was always randomly selected from the set

of bands 2, 14, 26, 38 and 50. In the pureTones25 input

condition, the set of stimulated bands contained all the odd

bands (25 bands in total). In the noise0.5 condition, the ex-

ternal stimulation consisted of noise with an intensity of 0.5

(i.e., each neuron in the input layer was in each time step

stimulated with probability 0.5) and in the noise0.01 condi-

tion, the noise had an intensity of 0.01.

Each of these 5 input conditions was run on two network

sizes of 50 000 and 100 000 neurons, with two different ran-

dom seeds, 20 main experiments in total8. For each of these

20 experiments, the state of tonotopy was measured at 5 dif-

ferent times during the development: after 10 s of stabilisa-

tion, after 3 h, 6 h, 9 h and 12 h. All the values of ADM in

this section are written in the form of (mean value ± stan-

dard deviation for the smaller network; mean value ± stan-

7 This means intensity corresponding to the probability 0.5, i.e.,

each neuron in the input layer has, in each time step, a probability 0.5

to be externally stimulated, as defined in Section 2.2.
8 Note that computation of a single 12 h development of a 50k net-

work, along with the measurement of tonotopy, takes circa 10 days; we

therefore could not compute more repetitions with different seeds.

dard deviation for the larger network), computed from both

seeds and all the time slices except the initial one.

Comparison of effects of different inputs. The results of

the main tonotopy-related experiments are shown in Fig. 7

and 8. In all the experiments, the input layer L4 was com-

pletely tonotopic (in Fig. 7, the neurons of L4 form a clear

colour gradient). This is not surprising, because this layer di-

rectly receives tonotopically ordered external input causing

the neurons to fire primarily when their band is stimulated.

Therefore, a comparison of tonotopy between networks was

performed using only non-input neurons.

Already the initial network was tonotopic to a certain

extent (ADM 11–12). From the second measurement (3 h)

on, there was a marked difference between the experiments

(see Figure 8A for development of ADM over time and 8C

for summarising visualisation of these values). The noise0.5

input condition led to the lowest tonotopy (ADM 17.2 ±

0.3; 18.4 ± 0.2), whilst the network stimulated under the

noise0.01 condition became the most tonotopic one (ADM

4.3 ± 0.4; 5.6 ± 0.7). The other inputs led to intermediate

values of tonotopy (ADM 8.4 ± 1.2; 8.7 ± 0.7 for the pure-

Tones5 condition, 7.0 ± 0.6; 8.0 ± 0.3 for the pureTones25

condition and 8.3 ± 0.2; 8.3 ± 0.5 for the spontaneous con-

dition).

Percentages of tuned neurons were in agreement with

the results based on ADM (see Supplementary materials,

Section 2.2). The noise0.5 condition led to a network with

the lowest percentage of tuned neurons (13.2 ± 0.5%; 14.5

± 0.3%) and the noise0.01 condition led to a network with

the highest percentage of tuned neurons (28.5 ± 0.5%; 27.8

± 2.8%), confirming that the network reared with noise0.5

had much lower tonotopy than the network reared with

noise0.01.

The measurements of tonotopy (both ADM and percent-

age of tuned neurons) were relatively stable over time from

3 h on (with standard deviation ≤ 1.2 in all the cases) keep-

ing the following order: noise0.01 being the most tonotopic

one, noise0.5 being the least tonotopic one, and the other

three conditions being in between these two.

In order to compare the significance of the difference in

tonotopic organisation within each network, we performed a

Kruskal-Wallis ANOVA9 on the networks after 12 h of sim-

ulation. The test was performed on values of |Bn−BFn| for
each tuned non-input neuron in each input condition, where

the notation is the same as in equation 6, using Matlab func-

tions kruskalwallis and multcompare (with the default

parameters, i.e., Tukey-Kramer multiple comparison test).

The results are given in Fig. 8B, showing that in all the

four networks, noise0.5 led to significantly disrupted tono-

9 The reason for using Kruskal-Wallis ANOVA (instead of standard

ANOVA) is the fact that it does not require normally distributed data.
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Fig. 7 Spatial visualisation of 50k networks after 12 h of experiments. Only the tuned neurons are plotted, with the colour representing their BF.

The main difference is in layer L6, where the noise0.5 condition led to a much less tonotopic state than the other input conditions. The other seed

and network size can be found in the Supplementary materials in Section 2.2.

topic organisation, whereas noise0.01 led to significantly in-

creased tonotopy.

Comparison of layers. Apart from L4, the most tonotopic

layer was L6. The other layers were rather heterogeneous,

with an exception of L2/3 and L5 in the noise0.01 condition,

which were mildly tonotopic (ADM 12.3 ± 0.9; 11.6 ± 0.7

for L2/3 and 9.9 ± 0.6; 10.9 ± 0.7 for L5). A table with

ADM computed separately for each layer can be found in

the Supplementary materials (Section 2.2).

Comparison of excitatory and inhibitory neurons. When the

tonotopy results were grouped according to neuronal type,

inhibitory basket (b) neurons in all layers were observed

to exhibit a greater tonotopic tendency than the other neu-

ronal types (Fig. 8D). With the exception of the noise0.5

condition, where the tonotopy was disrupted in general, the

mean ADM was 0.9–1.9 for basket neurons, whereas it was

3.3–8.9 for non-basket and 2.6–6.4 for pyramidal neurons.

Nevertheless, even in the case of the noise0.5 condition, the

inhibitory basket neurons were nearly two times more tono-

topic than the other types. A table with ADM computed sep-

arately for each neuron type can be found in the Supplemen-

tary materials (Section 2.2).

3.3.3 Relationship between tonotopy and intensity of noise

rearing (additional tonotopy-related experiments)

In the main tonotopy-related experiments, it emerged that

strong noise disrupted tonotopy, weak noise led to clear

tonotopy and spontaneous activity (which is the same as

noise with intensity 0) resulted in values in between the

two noise experiments. Similarly, observations from in vivo

experiments show that both overstimulation (Zhang et al.,

2002; Chang and Merzenich, 2003; Insanally et al., 2010)

and acoustic deprivation during development (Stanton and

Harrison , 2000) lead to altered tonotopic organisation and

that an intermediate amount of afferent stimulation is nec-

essary for correct maturation of the sensory system (Reale

et al., 1987; Nahmani and Turrigiano, 2014). Therefore we

hypothesised that an intermediate level of input stimula-

tion could lead to higher tonotopy than both the absence of

stimulation (only spontaneous activity) and stimulation with

strong noise.

We were interested in what would happen for noises with

intensities between 0.01 and 0.5. We hypothesised that the

tonotopy for this range of intensities could have a shape sim-

ilar to that depicted in the Fig. 8E. We were also interested

in where the peak could be found, namely what intensity of
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Fig. 8 Development of ADM of tuned non-input neurons. Note that the lower ADM, the higher tonotopy. (A): Development of ADM over

time, separately for each network size (50k, 100k) and random seed. Except at the beginning, noise0.5 condition has clearly the highest ADM

(therefore the lowest tonotopy), whereas noise0.01 condition has the lowest ADM (therefore the highest tonotopy). (B): Visualisation of Kruskal-

Wallis test and following Tukey-Kramer multiple comparison test performed on neuron-wise ADM from the last time slice (i.e., after 12 h of

development) separately for each input condition. The y-axis contains the five input conditions (their order does not matter). The x-axis corresponds

to normalised mean rank (i.e., instead of numeric values, only ranking of neurons in all the networks by their distance from their best frequency

is used; then this ranking is converted to 0–1 scale). For each input condition, the estimated mean rank is plotted with a circle and the estimated

95% confidence interval is plotted as a vertical band. Those pairs of input conditions that have non-overlapping bands are significantly different

(with p-value < 0.01). (C): Boxplot visualisation of the distribution of ADM computed from both random seeds and all the time slices except the

initial one. On each box, the central dot line is the median and the edges of the box are the 25th and 75th percentiles. The black crosses represent

outliers and whiskers extend to the most extreme data points, which were not considered outliers. (D): Same as in (C), but the neurons are grouped

by their type: non-basket (nb), basket (b), and pyramidal (p). (E): Dependence of ADM on the intensity of noise, according to our hypothesis. The

zero intensity of noise corresponds to the spontaneous input condition. The question mark represents potential intensity of noise, which leads to

the lowest ADM (i.e., the highest tonotopy).
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noise would lead to the highest tonotopy. In addition, would

the peak change during the network’s evolution?

To answer these questions, seven additional experiments

were performed on the 50k network with the first seed. The

simulations were run for 2 h of simulated time. All the net-

works were externally stimulated by a noise input with var-

ied noise intensity: 0.0075, 0.02, 0.03, 0.1, 0.2, 0.3 and 0.4

(from previous experiments, we already had results for noise

with intensity 0, 0.01 and 0.5).

The state of tonotopy was measured after 1 s, after 15 s,

30min, 1 h and at the end of the simulation. The results are

shown in Fig. 9. In Fig. 9A, we can see a standard visual-

isation of ADM over time for the three original intensities

(0, 0.01 and 0.5) for 12 h and for selected new intensities

(namely 0.02 and 0.03) for 2 h. In Fig. 9B, ADM is plot-

ted against intensity of the noise, separately for each time

slice. At the beginning (after 1 s), there is no clear trend. Al-

ready after 15 s, low intensities led to a visible increase in

tonotopy. During the following 30min, very low intensities
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is consistent with the colour-coding in (B) and (C). (B): ADM vs. intensity of noise in five time slices (after 1 s, 15 s 30min, 1 h, and 2 h of

development). (C): Zoom of (B) in each time slice. Note that the smaller the value of ADM, the higher the tonotopy. According to the tested

intensities, the intensity leading to the lowest ADM (i.e., the highest tonotopy) is between values 0.01 and 0.02.
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(0.075–0.03) led to even increased tonotopy, whereas high

intensities led to visibly decreased tonotopy. Moreover, the

curve is relatively smooth, very much resembling the shape

of the curve given by our hypothesis in Fig. 8E. In the next

two time slices (1 h and 2 h), the shape remained similar as

in the 30min time slice.

In each of the time slices from 15 s on, there was a clear

global optimum (see Fig. 9C for an inset with low intensi-

ties). The intensity of the global optimum differed between

the time slices (started as 0.1 in the 15 s time slice and moved

to 0.01–0.02 in the following time slices).

In summary, the additional tonotopy-related experiments

supported the idea that noise with low intensity can increase

the degree of tonotopy, whilst noise with high intensity dis-

rupts the tonotopy and the higher the intensity, the lower the

tonotopy. The intensity of noise that caused the strongest

tonotopy seemed to stabilise between 0.01 and 0.02. Even

though we cannot measure the exact value of the global op-

timum (since we have only several discrete measurements)

and we cannot prove that it will not move during time, we

can conclude that at least during the first 12 h of simulation,

intensity 0.01 was more tonotopic than intensity 0 (9A) and

therefore the optimumwould probably not move to 0. There-

fore, these results support the hypothesised shape in 8E.

4 Discussion

We constructed a large-scale model of the A1, evaluated its

main characteristics and performed several tonotopy-related

experiments to simulate and research the development of a

tonotopic arrangement of the model. Each neuron was sim-

ulated according to the Izhikevich’s spiking neuron model

(Izhikevich, 2003, 2007).

The architecture of our model is based on the available

data from the cat primary visual cortex (Binzegger et al.,

2004). Although there can be some differences in cortical

architecture between visual and auditory cortices (Barbour

and Callaway, 2008; Smith and Populin, 2001), detailed

data for the AC are not yet available. There is evidence

that the differences are not fundamental (Harris and Shep-

herd, 2015). In our model, the excitatory synaptic weights

developed according to STDP (Markram et al., 1997; Yuste

and Denk, 1995; Song et al., 2000). The inhibitory weights

were kept constant as experimental evidence suggests that in

the AC the inhibitory tuning profile is formed to a large ex-

tent prior to the onset of hearing experience and is not sub-

stantially modified during further development (Sun et al.,

2010). In actual real organisms, the inhibitory and excita-

tory weights can also be modified during active condition-

ing paradigms. Such learning is mediated by nucleus basalis

and interneurons in the first layer of the AC (Froemke et

al, 2007; Letzkus et al., 2011). The simulator is prepared

to be connected with a module, to mimic the inputs from

the nucleus basalis, which should enable us to perform sim-

ulations with conditioning paradigms. For computational

reasons we did not model some more detailed aspects of

the cortex, namely short-term synaptic plasticity (Zucker,

1989; Buonomano and Maass, 2009), dendritic spikes (Gas-

parini et al., 2004), all long-distance cortico-cortical connec-

tions coming from the other parts of the neocortex (Iurilli

et al., 2012; Zingg et al., 2014), cortico-thalamic and non-

specific thalamo-cortical connections (Wu et al., 2011), and

gap junctions among the same neuronal type and within the

same cortical layer (Galarreta and Hestrin, 1999).

To evaluate the basic plausibility of our model, the spon-

taneous activity of the network was analysed. We measured

the mean spontaneous firing rate of each type of modelled

neuron in our model. In accordance with in vivo data (Sakata

and Harris, 2009, 2012; Moore and Wehr, 2013), we ob-

served higher firing rates in basket cells compared to pyra-

midal cells. However, the absolute spontaneous firing rates

of superficial basket cells in our model was higher than in

the experimental data; ≈ 5 Hz for p2/3 and 30–40Hz for

b2/3 in our model vs. 2.2 ± 0.5Hz for superficial pyramidal

cells and 7.5 ± 4.4 for superficial fast-spiking cells (Sakata

and Harris, 2012). This discrepancy could be attributed to

many reasons, such as the fact that we used only two differ-

ent ranges for the evolution of synaptic weight (for excita-

tory and inhibitory synapses). In a real neocortical network,

some synapses are stronger or weaker based on the posi-

tion and cell type of the presynaptic or postsynaptic neu-

ron (Richardson et al., 2009; Barbour et al., 2007; Holm-

gren et al., 2003; Feldmeyer et al., 1999; Song et al., 2005).

However, the most straightforward explanation comes from

neglecting the long-distance connections coming from out-

side the modelled area, especially the connections ending

on the L1 interneurons that in turn inhibit the b2/3 interneu-

rons. As the connections to L1 interneurons are largely ex-

citatory (Christophe et al., 2002) and more than 90% of L1

interneurons are inhibitory (Hestrin and Armstrong, 1996),

there could be a consequent lack of inhibition in the supra-

granular layers of our model resulting in higher spontaneous

firing rates in the p2/3 and b2/3.

When evaluating the development of the model, we also

assessed local and global oscillations within the network and

the spontaneous firing rate of each neuronal type. Low fre-

quency activity (theta and alpha) arose globally, however,

high frequency activity (gamma) was present mostly locally.

This is consistent with the experimental observation that

gamma rhythms are weaker in global EEG recordings than

in local recordings (Nunez and Srinivasan, 2006).

Interestingly, we observed two main alternating states of

the network during the network development: theta-like syn-

chronised and desynchronised states. Similar alternations of

synchronised and desynchronised states were observed in

the sensory cortices; the visual cortex of awake rats (Xu
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et al., 2012) and the AC in vivo in both anaesthetised (Sakata

and Harris, 2012; Clement et al., 2008; Sakata and Harris,

2009) and awake (Sakata and Harris, 2012) animals. In the

synchronised state in the model, the frequency of the oscil-

lation was either around 5Hz corresponding to theta waves,

or around 10Hz corresponding to alpha waves. In the theta-

like state, there were always higher harmonic frequencies

in the corresponding spectrograms raising the question as

to whether or not the alpha band is just a higher harmonic

mode. However, in parts of the spontaneous evolution of the

network the alpha-like band was present alone as the fun-

damental frequency of the network global oscillation. Al-

though the EEG theta oscillations are often mentioned in

the context of hippocampal theta cells (O’Keefe and Recce,

1993; Huxter et al., 2003) and alpha oscillations are sup-

posed to be generated by thalamo-cortical interactions (Bol-

limunta et al., 2011), they emerged solely from the cortex in

our model. This implies that there could also be a cortical

origin of these oscillations as indicated by some experimen-

tal evidences (Raghavachari et al., 2006; Liebe et al., 2012;

Bollimunta et al., 2011). In general, our results show that

our network is capable of producing such oscillatory modes.

As a proof of concept that our model enables the inves-

tigation of inner mechanisms of the network, we focused

on gamma oscillations and the behaviour of the system on

cell-type resolution. The gamma oscillations were clearly

observable from the virtual potential probe within the net-

work. In our model we showed that the strongest pacemaker

of gamma oscillations are the b2/3 cells (Fig. 4A and Sup-

plementary materials, Section 2.1.2). Indeed, basket cells

are supposed to be crucial for gamma oscillations (Buzsáki

and Wang, 2012; Cardin et al., 2009). We further investi-

gated the mechanism of the gamma oscillation. Prolonging

the synaptic conduction delays between b2/3 cells resulted

in substantial changes in the b2/3-cell spectra. Doubling the

delays led only to a ca. 5Hz decrease (ca. 50Hz> ca. 45Hz)

of the centre frequency of the gamma peak, but the spectrum

remained relatively similar. However, further prolonging the

delays led to disintegration of the gamma-centred part of the

spectrum. Our results suggest that connections between b2/3

cells play a role in the process of firing synchronisation, as

suggested in (Bartos et al., 2002), and that the generation of

the gamma oscillation is rather an intrinsic property of bas-

ket cells (doubling the delays did not lead to halving the os-

cillatory frequency), in agreement with (Traub et al., 1998).

Even very sophisticated physiological mechanisms can

be studied using rather simple, but well-designed models

(Wagatsuma et al., 2011). However, the correspondence of

these results with the real neuronal networks needs careful

extrapolation and the individual building blocks cannot be

straightforwardly compared to their real counterparts. We

developed a pseudo-realistic model which could produce ex-

perimental predictions on a single-neuronal-type basis that

could be straightforwardly tested in vivo. The model enables

the study of its inner structure and motifs (Haeusler et al.,

2009). The spike trains of individual cell types can be read-

ily exported from our model and the causal link between

the activities of individual cell types can be discussed. In-

spired by (Wagatsuma et al., 2011; Haeusler et al., 2009) we

focused on several mechanisms governing the behaviour of

the network. The plots in Fig. 3C, D suggest that changes in

firing rates of certain neuronal types (and synaptic weights)

are aligned with the synchronised/desynchronised states. In-

terestingly, at the beginning of the transition into the oscilla-

tory theta-like state in Fig. 2E, the first cells to increase their

activity are all active types of non-basket (nb) cells; nb2/3,

nb4 and nb5. The activity of the b2/3 cells decreases at the

same time. After that, the activity of the remaining cells in-

creases with an approximately two-second delay. Concern-

ing the sequence of the activation of nb2/3 and b2/3 cells,

one may speculate about a causal relation of the sequence,

such as the rise of nb cells causing the decrease of b2/3 ac-

tivity, allowing the remaining cells to become more active.

Indeed, according to (Cottam et al., 2013; Xu et al., 2013),

interactions between nb (somatostatin+) and b cells (parval-

bumin+) were recently observed experimentally.

We also evaluated evoked activity in the network. Tonal

stimulation of L4 was propagated to L23 and to subgran-

ular layers. This is in correspondence with experimental

data, except the delayed activation of L6 (Sakata and Harris,

2012). This discrepancy is probably caused by the omission

of thalamo-cortical projections to L5/6 in our model.

Finally, we used the model to research cortical plastic-

ity and changes in tonotopic organisation after the presen-

tation of different types of stimuli to the system during de-

velopment. In order to compare the degree of tonotopy of

the network (all layers except L4), we measured the aver-

age distance metric (ADM). This ADM was calculated both

from excitatory and inhibitory neurons as both of them can

be tuned to a certain frequency (Moore and Wehr, 2013; Li

et al., 2014a,b). The ADM metric gives 0 for a completely

tonotopic network and 16.67 for a network with random best

frequencies; the higher the ADM, the lower the tonotopy.

Immediately after the initiation of the network, some de-

gree of tonotopy (11–12) was found, solely due to the lo-

cal interconnections with layer L4. After development under

spontaneous (no input from the thalamus) or pure tone con-

ditions, the tonotopy remained similar (ADM 8.4± 1.2 (for

50k network); 8.7 ± 0.7 (for 100k network) for the pure-

Tones5 condition, 7.0 ± 0.6; 8.0 ± 0.3 for the pureTones25

condition and 8.3 ± 0.2; 8.3 ± 0.5 for the spontaneous con-

dition).

However, noise rearing changed the degree of tonotopy

considerably. High-intensity noise completely disrupted the

tonotopy giving an ADM of 17.2 ± 0.3; 18.4 ± 0.2. Such

disruption of tonotopy by noise is consistent with experi-
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mental observations (Chang and Merzenich, 2003; Froemke

and Jones, 2011; Zhang et al., 2002; Insanally et al., 2010).

A possible underlying mechanism could be that strong noise

stimulation weakens synapses between the input layer and

other layers of the network due to STDP and the fact that

LTD is higher than LTP (1.2 vs 1.0). Thus during the mea-

surement of tonotopy, fewer neurons respond to the fre-

quency corresponding to the band they are in.

Interestingly, low-intensity noise rearing led to an in-

crease in tonotopy (ADM 4.3 ± 0.4; 5.6 ± 0.7), compared

to both initial state and spontaneous activity. Such values

of ADM represent clear but not perfectly smooth tonotopy.

This corresponds to observations from real AC, especially

in smaller mammals, where tonotopy was observed, but also

was not perfectly smooth (Rothschild et al., 2010; Bandy-

opadhyay et al., 2010; Issa et al., 2014).

The fact that spontaneous activity (i.e., no external stim-

ulation) led to lower tonotopy than weak white noise could

correspond to the observation that acoustic deprivation in

real animals seems to alter tonotopy. It was observed that

all sensory modalities need a certain amount of stimula-

tion during development; otherwise they develop improp-

erly (Reale et al., 1987; Nahmani and Turrigiano, 2014). A

total acoustic deprivation in congenitally deaf cats leads to

disrupted synaptic activity and functional deficits in the AC

(Kral et al., 2006). It can be expected that altered synaptic

activity will lead to abnormal receptive field formation and

thus to deteriorated tonotopy. Moreover, restricted neonatal

cochlear lesions result in altered tonotopy in the AC (Stan-

ton and Harrison , 2000).

Based on these observations we hypothesised that there

could be a continuous relationship between intensity of

noise stimulation and resulting tonotopy and that an inter-

mediate level of input stimulation could lead to higher tono-

topy than both absence of stimulation (only spontaneous ac-

tivity) and stimulation with strong noise. Therefore, we mea-

sured tonotopy after development under 10 different inten-

sities of noise between 0 (spontaneous activity only) and 0.5

(strong noise). The resulting ADM plotted against the level

of noise (Fig. 9) had a surprisingly smooth “U” shape. From

30min of simulation on, this shape remained relatively sta-

ble, with an optimum between intensities 0.01 and 0.02.

Another interesting prediction made by our model is the

difference between tonotopy of the different neuronal types.

According to our results, inhibitory basket neurons were

clearly more tonotopically ordered than excitatory pyrami-

dal and inhibitory non-basket neurons. This is an example

of a prediction that can be verified experimentally.

It is important to point out that based on our results

STDP seems to be a sufficient mechanism to explain the

above described phenomena observed in vivo. At the same

time, we are aware of some limitations of our model. Firstly,

the omission of the thalamus can influence network dynam-

ics and oscillations; especially in subgranular layers (Steri-

ade et al., 1993; Lee and Winer, 2008). The modular struc-

ture of our model allows us to add the thalamus in future

work. Secondly, we stimulated only layer L4 although tha-

lamocortical projections in real AC terminate both in supra-

and to a lesser extent even subgranular layers (Huang and

Winer, 2000). This could affect the tonotopy and response

latency of these layers.

The model differed from real observations in tonotopy of

layers L2/3 and L5. The corresponding ADM values were

quite high in the model. This may be due to several rea-

sons. The most straightforward reason is the omission of

the inputs from the thalamus to other layers aside from L4

(Binzegger et al., 2004; Izhikevich and Edelman, 2008).

These inputs especially innervate L3 relatively densely, and

to a lesser extent also L5 in the AC (Smith et al., 2012;

Huang and Winer, 2000). However, the reason may also be

the inputs presented to the network. We hypothesise that to

develop tonotopy in these layers, a correct “natural” environ-

ment is necessary (such as more tones together, with various

intensities, durations, frequencies etc).

This reasoning presents suggestions for future work. In

terms of making the model more complex and precise, more

details could be incorporated into it (however, the simpler

and more concise the model, the easier and clearer the anal-

ysis of its results). On the other hand, there are many in-

teresting questions to ask about the network mechanisms;

for example the relationship between excitation and inhi-

bition in sharpening a neuronal receptive field (Wu et al.,

2008; de la Rocha et al., 2008), the role of input timings on

a neuron when sharpening its receptive field (Oswald et al.,

2006; Happel et al., 2010), or the role of different types of

interneurons in sharpening a neuronal receptive field (Wil-

son et al., 2012). Some questions will require an extension

of the model and more sophisticated analysis. Our model is

designed in such a way that additional modules running on

the same simulation core (e.g., thalamus, inferior colliculi)

can be readily connected. We are convinced that this type

of model could answer at least some of these kinds of ques-

tions.

In order to facilitate implementation of further modifi-

cations of the model and other neuronal modelling in gen-

eral, the presented model and software have been made

publicly available at https://sites.google.com/site/

susnoimac/.
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Šuta D, Popelář J, Burianová J, Syka J (2013) Cortical repre-

sentation of species-specific vocalizations in Guinea pig.

PloS one 8(6):e65432

Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade

M (2000) Origin of slow cortical oscillations in deaffer-

ented cortical slabs. Cerebral Cortex 10(12):1185–1199

Traub RD, Spruston N, Soltesz I, Konnerth A, Whittington

MA, Jefferys GR (1998) Gamma-frequency oscillations:

a neuronal population phenomenon, regulated by synap-

tic and intrinsic cellular processes, and inducing synaptic

plasticity. Progress in Neurobiology 55(6):563–575

de Villers-Sidani E, Chang EF, Bao S, Merzenich MM

(2007) Critical period window for spectral tuning defined

in the primary auditory cortex (A1) in the rat. The Journal

of Neuroscience 27(1):180–189

Wagatsuma N, Potjans TC, Diesmann M, Fukai T (2011)

Layer-Dependent Attentional Processing by Top-down

Signals in a Visual Cortical Microcircuit Model. Frontiers

in Computational Neuroscience 5(31):1–15

Watson C (2012) The mouse nervous system. Academic

Press

Wendykier P (2013) Parallel Colt. URL https:

//sites.google.com/site/piotrwendykier/

software/parallelcolt

Wendykier P, Nagy JG (2010) Parallel colt: a high-

performance Java library for scientific computing and im-

age processing. ACM Transactions on Mathematical Soft-

ware (TOMS) 37(3):31

Wilson NR, Runyan CA, Wang FL, Sur M (2012) Division

and subtraction by distinct cortical inhibitory networks in

vivo. Nature 488(7411):343–348

Winer JA (2006) Decoding the auditory corticofugal sys-

tems. Hearing Research 212(1):1–8

Winer JA, Lee CC (2007) The distributed auditory cortex.

Hearing Research 229(1-2):3

Wu GK, Arbuckle R, Liu Bh, Tao HW, Zhang LI (2008) Lat-

eral sharpening of cortical frequency tuning by approxi-

mately balanced inhibition. Neuron 58(1):132–143

Wu GK, Tao HW, Zhang LI (2011) From elementary synap-

tic circuits to information processing in primary au-

ditory cortex. Neuroscience & Biobehavioral Reviews

35(10):2094–2104

Xu S, Jiang W, Poo M, Dan Y (2012) Activity recall in a vi-

sual cortical ensemble. Nature Neuroscience 15(3):449–

455

Xu H, Jeong HY, Tremblay R, Rudy B (2013) Neocortical

somatostatin-expressing GABAergic interneurons disin-

hibit the thalamorecipient layer 4. Neuron 77(1):155–167

Yuste R, DenkW (1995) Dendritic spines as basic functional

units of neuronal integration. Nature 375(6533):682–684

Zhang LI, Bao S, Merzenich MM (2001) Persistent and spe-

cific influences of early acoustic environments on primary

auditory cortex. Nature Neuroscience 4(11):1123–1130

Zhang LI, Bao S, Merzenich MM (2002) Disruption of

primary auditory cortex by synchronous auditory inputs

during a critical period. Proceedings of the National

Academy of Sciences 99(4):2309–2314

Zhou X, Nagarajan N, Mossop BJ, Merzenich MM (2008)

Influences of un-modulated acoustic inputs on functional

maturation and critical-period plasticity of the primary

auditory cortex. Neuroscience 154(1):390–396

Zhou Y, Mesik L, Sun YJ, Liang F, Xiao Z, Tao HW, Zhang

LI (2012) Generation of spike latency tuning by thalamo-

cortical circuits in auditory cortex. The Journal of Neuro-

science 32(29):9969–9980

Zingg B, Hintiryan H, Gou L, Song MY, Bay M, Bi-

enkowski MS, Foster NN, Yamashita S, Bowman I, Toga

AW (2014) Neural networks of the mouse neocortex. Cell

156(5):1096–1111
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Chapter 1

Methods: Model of the Auditory

Cortex

This section contains selected details of the presented model. The text is based on (Popelova, 2013).
It follows the guidelines suggested by Nordlie et al. (2009), which, as we hope, will help to make the
description comprehensible and reproducible. All the model parameters are written in the following
font.

1.1 Model composition

The model consists of the layers L1, L2/3, L4, L5, and L6. The layer L4 is an input layer. The neurons are
distinguished according to populations called neuronal types. All neurons of the same neuronal type
lie in the same layer of the cortex and have the same parameters of the neuron model – the generalised
form of the Izhikevich neuron model (Izhikevich, 2007; Izhikevich and Edelman, 2008). The number of
neurons of each type is specified by the percentage with the name cells, i.e. the resulting number of
neurons of this type is cells*N NEURONS / 100, where N NEURONS is the total number of neurons in the
network and is a general parameter of the model.
Each neuronal type has a specified area reached by its axon (and its terminals). This area is specified

as an axonal radius (in µm) for each layer of the network (see Figure 1.1). We will refer to these values as
table X0, where X0[T][L] gives the value of axonal radius of neuronal type T in layer L. These values are
used during the generation of synaptic connections: a synapse can be created only between such neurons
where the soma of a postsynaptic neuron is reached by an axonal area of the presynaptic neuron. This
is a simplification based on (Izhikevich and Edelman, 2008).

Figure 1.1: An example of axonal areas. In each layer, the axonal area is specified by its radius R.

The parameters of the 17 neuronal types used are listed in Section 1.8. The parameter type (additional
information) is used to distinguish between 4 cell types:

1. pyramidal neurons (p): these exhibit regular spiking (RS), or sometimes chattering (CH), or in-
trinsically bursting (IB) firing patterns (Connors and Gutnick, 1990; Contreras, 2004)

2. spiny stellate neurons (ss): these exhibit RS firing patterns (Contreras, 2004)
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3. basket interneurons (b): these exhibit fast spiking (FS) firing patterns (Connors and Gutnick, 1990;
Contreras, 2004)

4. non-basket interneurons (nb), which morphologically include double-bouquet cells, neurogliaform
cells, and Martinotti cells (Binzegger et al., 2004) and can exhibit low threshold spiking (LTS)
firing pattern (Beierlein et al., 2003), latent spiking (LS) and other firing patterns (Kawaguchi,
1995; Kawaguchi and Kubota, 1997; Markram et al., 2004)

The names of neuronal types are based on nomenclature as in (Izhikevich and Edelman, 2008; Beierlein
et al., 2003), where the first part is the cell type (b, nb, p, ss), the second part is the layer and the optional
third part in brackets is the layer, to which the neuron projects (only in ss and p neurons); for example
p5(L2/3) means pyramidal neurons in L5 that project (mainly) to L2/3.
The algorithm for initialising neurons, their locations and other parameters is described in the Pseudo-

code 1.1. The locations are generated randomly in the relevant layer, but in such a way that neurons do
not overlap. Here, the general parameter RADIUS is used (all neuron use the same value). By neuron’s
location we mean the location of the neuron’s soma. Other parameters are used according to the neuronal
type.

1. i=0;

2. For each neuronal type T:

(a) N T ← T.cells * N NEURONS / 100;

(b) For j from 0 to N T:

i. Create a neuron with the following parameters:

A. number i

B. random location in the layer T.layer, which does not overlap with

any soma of a previous neuron

C. T.excitatory

D. T.layer

E. membrane potential T.vr and membrane recovery 0

F. parameters T.Cap, T.cr, T.vt, T.vp, T.a, T.b, T.c and T.b

ii. If (T.layer is input layer) then

A. add the created neuron to a band neuron.location.y / BAND WIDTH

iii. i++;

Pseudocode 1.1: The algorithm of the generation of neurons in the model.

1.2 Coordinate systems and topology

All neurons are given numbers from interval 〈0, N NEURONS), each neuron having a unique number.
We use the anatomical coordinates according to the coordinate systems listed in (Nordlie et al., 2009),
because population (neuronal type) determines the layer within the AC and each neuron has a location
that refers to a position in the AC.



1.3 Connectivity

The connectivity mechanism is based on the mechanism described in (Izhikevich and Edelman, 2008).
However, their publication does not explain the connectivity in sufficient enough detail for reimplement-
ation (this opinion has been voiced also by Nordlie et al. (2009)). Therefore we proposed additional
mechanisms and algorithms to make a clearly defined connectivity.

1.3.1 Connectivity data

The connectivity mechanism uses two tables. The first table (table X1) defines, for each neuronal type
T, the recommended number of synapses which lead to each neuron of this type. We will call this number
X1[T].
The second table (table X2) has three dimensions: postsynaptic neuronal type T post, presynaptic

neuronal type T pre, and layer L of the synapse location. The value X2[T post][T pre][L] means that
each neuron of type T post should receive X2[T post][T pre][L] % of its synapses from neurons of type
T pre in layer L. The range of the values in this table is 〈0, 100〉. The resulting number of synapses from
T pre neurons to a neuron of T post type in layer L is:

X1[T post] * X2[T post][T pre][L] / 100

1.3.2 Selecting presynaptic candidates

Selecting presynaptic candidates – description

In the algorithm that generates connectivity, it was necessary to solve the following situation. The tables
X1 and X2 determine the number of synapses to neuron N post (of type T post) from neurons of type
T pre in the layer L. Let S be this number. Only near enough neurons may be chosen as presynaptic –
for simplicity only those, radius of which in layer L reaches the soma of the neuron N post. The nearer
neurons should have a higher probability of connection than the distant ones (Izhikevich and Edelman,
2008; Levy and Reyes, 2012). For simplicity, we can consider that this probability decays linearly from
the centre of the circle defined by the axonal radius to a zero value at the edge (as it is used in (Izhikevich
and Edelman, 2008)). Distance d can be considered only two dimensional (in our coordinate system
named as x and y) – not in the dimension of height (which goes through all layers). This is reasonable
due to the fact that if an axon goes through a layer (its radius being nonzero in the layer), then the
distance from the axis of the axon should be considered. As a metric, the Euclidean distance can be
used. For simplicity of the model, axons are assumed to grow directly vertical. The situation is depicted
in Figure 1.2, the relevant distance has the label d.

Figure 1.2: A schema of possible connections. The neuron N1 is a presynaptic neuron and N2a and
N2b are postsynaptic neurons. (N2b is a pyramidal neuron.) Distances d1 and d2 will be used during
initialisation of the conductance delays. Distance d is used in computation of probability of the connection.

This means that we have a set of candidates (K), from which a connection may lead to a neuron N post
and each candidate N pre has a probability of forming a synapse to N post depending on their distance
d. We denote this probability by N pre.P. Subsequently, we want to choose S candidates (presynaptic
neurons) from the set K and create a synaptic connection from these chosen candidates to neuron N pre.



Selecting presynaptic candidates – solution

Hence, the situation is simplified to an abstract mathematical problem defining how to select S elements
from set of |K| candidates, where each has a given probability of selection. One typical computer-science
solution for this problem is the Roulette Wheel Selection (used in Genetic Algorithms (see, e.g., Goldberg,
1989)). We create a roulette with |K| pockets, where pocket N pre has a size N pre.P. Subsequently, we
throw a ball in the roulette and spin the wheel and the element (neuron) associated with the winning
pocket is selected. The wheel is spun S times. Therefore we say that we throw (in sum) S balls in the
roulette, which determines S winning candidates. The Roulette Wheel Selection is depicted in Figure
1.3.
It is obvious that larger pockets have larger probability to be selected. It is good to consider that we

do not mind selecting one candidate more times (this means that more balls fell to the same pocket). In
such a case, more synapses between one pair of neurons are created (we call it a multi-connection), which
corresponds to real observations (see the Section 1.3.6). Besides, the algorithm could be easily adjusted
to avoid multi-connections (e.g., when a pocket is selected, we remove the pocket from the roulette).

Figure 1.3: A schema of the Roulette Wheel Selection of presynaptic neurons. Part A of the figure: The
view from above the network. N2 is a postsynaptic neuron (in the center) and N1a, N1b, N1c, N1d form
a set K of possible presynaptic neurons. The probabilities of these connections are respectively: N1a:
0.1, N1b: 0.7, N1c: 0.2, N1d: 0.0 (the axonal area of N1d does not reach N2). Part B of the figure: a
schema of the relevant roulette wheel with pockets corresponding to the presynaptic neurons (and sizes
of the pockets corresponding to the probabilities of the connections from these neurons to N2). Part C
of the figure: the resulting roulette represented as an array.

This algorithm can be easily and effectively implemented. The sizes of pockets are stored in an
array (see part C of the Figure 1.3). Then a throw of a ball into the roulette means generating one
(pseudo)random number from uniform distribution within an interval 〈0, SUM), where SUM means the
sum of all pocket sizes. Subsequently, the relevant pocket (which corresponds to the generated number)
is looked up and represents the index number of the first selected candidate. This procedure is repeated
S times.



1.3.3 Setting synaptic conductance delays

The synaptic conductance delay should be dependent on the length of the connection and speed of
transmission. For simplicity, we will consider the same transmission speed for all connections (even
though the real speed depends on many factors, such as myelination, type of connection, distinction
between transmission speed on axon and dendrite, etc.). The length of the connection consists of two
parts: the vertical part along axon (called d1) and horizontal part to the axon bouton (d2); see Figure
1.2.

Let N pre be the presynaptic neuron, N post be the postsynaptic neuron and L be the layer, where
the synapse lies. Distance d1 can be defined as the Manhattan distance (also called taxicab distance, city
block distance, or rectilinear distance) between location of N pre and location L, which is defined as an
axis of the axon of N pre in the middle of layer L. Distance d2 can be defined as the Manhattan distance
between L and location of N post.

Besides this deterministic component of the delay, we decided to add a stochastic component in the
form of small (pseudo)random perturbation generated from the uniform distribution within an interval 〈0,
DELAY PERTURBATION), where DELAY PERTURBATION is a general parameter of the model. The resulting
value of delay is bounded from above by the value MAX DELAY, which is also a general parameter of the
model.

1.3.4 Setting synaptic weights

Excitatory synapses (the synapses from excitatory neurons) have non-negative weights and inhibitory
synapses (the synapses from inhibitory neurons) have non-positive weights. Although in some models,
the weight values are dependent on connection length (e.g., Bart et al., 2005), according to results
obtained from recordings of the mouse primary auditory cortex (Levy and Reyes, 2012), the synaptic
weight does not seem to be correlated with distance between somata. We therefore do not account for
this factor in the initial values of synaptic weight. The resulting initial weight values were chosen as
(pseudo)randomly generated from uniform distribution within an interval 〈0, PARAM W EXC) for excitatory
synapses and (-PARAM W INH, 0〉 for inhibitory synapses, where PARAM W EXC and PARAM W INH are general
parameters of the model.

1.3.5 Connectivity algorithm

The resulting algorithm of generating synaptic connections is described in the Pseudocode 1.2. It is based
on the mechanisms explained in the previous subsections. The algorithm contains just the main ideas.
In terms of efficiency, it is worth skipping passages where one of the following values is zero:

• AXONAL RADIUS (the axonal area of presynaptic neuron does not reach the layer L)

• S, i.e. number of balls (no such connection should be created)

• size of the set of candidates (any presynaptic neuron does not fulfil the condition of the connection)

It is important to realise that the set of candidates can be small or even empty. If the set is empty,
it means that no presynaptic neuron of the right type reaches the postsynaptic neuron. Then no such
connections will be created. This may be considered a reasonable result. However, if the set is non-empty
but small (e.g., smaller than S, the number of balls thrown into the roulette), it may lead to enforced
“mega-multi-connections”, such as 100 connections between one pair of neurons. The resulting network
may behave in a very inappropriate way, such as groups of neurons firing every time step for a long period
of time (this is based on our observations). For the question of multi-connections, see Section 1.3.6.
Therefore we proposed a mechanism, which prevents the creation of mega-multi-connections, but does

not avoid all multi-connections. This mechanism simply limits the number of balls S in a single roulette
pocket to maximal value of |K|, the number of candidates (nonzero pockets in the roulette). Therefore,
there is always a possibility of no multi-connections, but in practise a certain number of multi-connections
are created.

1.3.6 Possible pitfalls and other features

Self-connections: “If the same neuron can be selected as pre- and post-synaptic neuron, is

this connection allowed?”

The proposed model does not allow connection from one neuron to the same neuron. This restriction was
decided upon in order to prevent negative and inappropriate effects on dynamics of the whole network.



1. For each postsynaptic neuronal type T post, layer L, and presynaptic neuronal

type T pre:

(a) S ← X1[T post] * X2[T post][T pre][L] / 100

(b) AXONAL RADIUS ← X0[T pre][L]

(c) For each neuron N post of type T post:

i. Create a roulette of possible presynaptic candidates: each

presynaptic neuron N pre of type T pre (other than N post) will have

a pocket of size max(0, AXONAL RADIUS -d), where d is an Euclidean

distance from N pre to N post in x and y coordinates

ii. SUBPROGRAM(roulette, N post)

Pseudocode 1.2: The algorithm of generating the connectome. The Roulette Wheel Selection is used to
select the presynaptic neurons, which will be connected with N post. Probability of these connections is
based on the distance d (see Figure 1.2. When a roulette is created, the presynaptic neurons are selected
via a process described in the SUBPROGRAM: 1.3.

SUBPROGRAM(roulette, N post):

1. S times:

(a) Throw a ball into roulette and call N pre the winning pocket.

(b) delay ← max( MAX DELAY, 1+round(d1+d2/VELOCITY) +

rand(DELAY PERTURBATION) ), where:

i. d1 ← distance between N pre.location.z and z L, which is z coordinates

of the centre of the layer L

ii. d2 ← Manhattan distance between locations (N pre.location.x,

N pre.location.y, z L) and N post

(c) If (N pre is excitatory)

i. weight ← PARAM W EXC*randomDouble {from 〈0,1)}

(d) Else

i. weight ← PARAM W INH*randomDouble {from 〈0,1)}

(e) Create a synapse from N pre to N post with parameters delay, weight and

zero weightDerivate.

Pseudocode 1.3: The algorithm of selecting S presynaptic neurons (which will be connected with N post),
using a roulette created in the Pseudocode 1.2. When a presynaptic neuron is selected, the synaptic delay
and weight are initialised. The distances d1 and d2 are depicted in Figure 1.2.



Recurrence, which is an important feature in both real and artificial neural networks, is present in the
form of cycles longer than one edge, i.e. loops (using the terminology from theory of graphs, see (Matousek
and Nesetril, 1998)).

Multi-connections: “If a pair of pre- and post-synaptic neurons can be chosen more than

once, is this connection allowed?”

The proposed model allows such multi-connections between one pair of neurons, but prevents occurrence
of “mega-multi-connections” (i.e. high number of connections between one pair of neurons).

Boundary effects: “How are boundary effects in topological connections handled?”

The proposed model does not treat the connections on borders differently than neurons in the centre
of the network. The only difference is that neurons on borders might receive more multi-connections,
because the set of presynaptic neurons is smaller. The resulting state is similar as if the weights would
be adjusted (as it is used, e.g., in (Chrostowski et al., 2011)). The most common alternative prevention
of the boundary effects is mapping of the network on a ring (Vida et al., 2006),(Tsodyks and Sejnowski,
1995), torus (Percha et al., 2005),(Mehring et al., 2003), or sphere (Izhikevich, 2004). However, in such
a solution, neurons from one border of the network would be connected to neurons from the opposite
border of the network, e.g., neurons from band 1 with neurons from band 50. This could have a significant
negative influence on the resulting tonotopy. Therefore, we rejected this alternative as unsuitable for the
case of the AC.

1.4 Neurons and synapses

All neurons are single-compartmental and are modelled by the generalised form of the Izhikevich neuron
model (Izhikevich, 2007), described in the main text. The parameters of the equations are determined
by the neuronal type (see the Section 1.1 for definition of the used neuronal types and the Section 1.8
for the used parameters). The synaptic conduction delays are static (they do not change over time).
The synaptic weights evolve according to the STDP, described in the main text. All implementation
details can be found in the (Popelova, 2013, Chapter 3). All neurons are single-compartmental and they
are modelled by the generalised form of the Izhikevich neuron model (Izhikevich, 2007), described in the
main text. The parameters of the equations are determined by the neuronal type (see the Section 1.1
for definition of the used neuronal types and the Section 1.8 for the used parameters). The synaptic
conduction delays are static (they do not change over time). The synaptic weights evolve according to
the STDP, described in the main text. All implementation details can be found in the (Popelova, 2013,
Chapter 3).

1.5 Model input and output

The model has two kinds of inputs: first, the external inputs from the thalamus, and second, the internal
inputs in the form of miniature postsynaptic currents (mPSCs). The latter are not exactly inputs, but an
internal mechanism leading to spontaneous activity. The main feature measured as output of the model
are spike of all the neurons and their times. These spike trains are plotted as spike-time raster plots and
used for computation of average firing activity, local and global oscillations and receptive fields of the
neurons and subsequent analysis of the network tontopy. Synaptic weights are a side feature measured
as an output.

1.6 Model validation

Model validation can have several meanings. First (as it is meant in Nordlie et al., 2009), it can mean to
provide information and partial results that will allow others to test and validate re-implementations of
the model. The used models of neurons and synapses are well known and their behaviour can be found,
e.g., in (Izhikevich, 2003, 2006).

Second, it can mean a comparison of the model and the reality in basic features. According to this
meaning, we designed and ran a set of validation experiments, described in the main text.



1.7 Model implementation

We used the SUSNOIMAC simulator tool for the simulation and additional Matlab scripts for the results’
analyses. All implementation details can be found in the (Popelova, 2013, Chapter 3).

1.8 Model parameters

In this section we list all used parameters, their description and values used. The parameters of the model
are divided into five groups: the general model parameters, neuronal types, layers, and connectivity. In
addition to this, each experiment has its own setting for input parameters and simulation parameters.

1.8.1 General model parameters

The general model parameters are listed in the Table 1.1.

Name Unit Description Used val-
ues

WIDTH µm Width of the network. 2000
LENGTH µm Length of the network. 3000
N NEURONS - Total number of neurons in the network. 50 000,

100 000
RADIUS µm Radius of a typical neuron (used to prevent

overlapping).
10

VELOCITY µm/ms Speed of signal transmission along synaptic
connection.

100

N BANDS - Number of input bands in the input layers. 50
MAX DELAY ms Maximal synaptic conductance delay. 20
MAX WEIGHT - Maximal weight of excitatory synapses. 100
DELAY PERTURBATION ms Each initial synaptic delay is perturbed

by a random number from interval 〈0,
DELAY PERTURBATION).

5

PARAM W EXC - Initial weight of an excitatory synapse is a ran-
dom number from interval 〈0,PARAM W EXC).

100

PARAM W INH - Initial weight of an inhibitory synapse is a ran-
dom number from interval (PARAM W INH,0〉.

-50

Table 1.1: The general parameters of the model.

1.8.2 Layer parameters

The used layers and their parameters are listed in the Table 1.2.

Layer Thickness (µm) Is input layer

L1 69 No
L2/3 235 No
L4 208 Yes
L5 248 No
L6 451 No

Table 1.2: Parameters of the layers of the model.



1.8.3 Neuronal types parameters

The used neuronal types and their parameters are listed in the Table 1.3.

Label T L Cells C k vr vt vp a b c d exc.

nb1 nb L1 1.512 20 0.3 -66 -40 30 0.17 5 -45 100 false

p2/3 p L2/3 26.21 100 3 -60 -50 50 0.01 5 -60 400 true

b2/3 b L2/3 3.125 20 1 -55 -40 25 0.15 8 -55 200 false

nb2/3 nb L2/3 4.234 100 1 -56 -42 40 0.03 8 -50 20 false

ss4(L4) ss L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

ss4(L2/3) ss L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

p4 p L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

b4 b L4 5.444 20 1 -55 -40 25 0.15 8 -55 200 false

nb4 nb L4 1.512 100 1 -56 -42 40 0.03 8 -50 20 false

p5(L2/3) p L5 4.839 100 3 -60 -50 50 0.01 5 -60 400 true

p5(L5/6) p L5 1.31 100 3 -60 -50 50 0.01 5 -60 400 true

b5 b L5 0.605 20 1 -55 -40 25 0.15 8 -55 200 false

nb5 nb L5 0.806 100 1 -56 -42 40 0.03 8 -50 20 false

p6(L4) p L6 13.71 100 3 -60 -50 50 0.01 5 -60 400 true

p6(L5/6) p L6 4.839 100 3 -60 -50 50 0.01 5 -60 400 true

b6 b L6 2.016 20 1 -55 -40 25 0.15 8 -55 200 false

nb6 nb L6 2.016 100 1 -56 -42 40 0.03 8 -50 20 false

Table 1.3: Parameters of the neuronal types of the model. The units are: Cells (%), vr, vt, vp (mV).
Column exc. means whether the neuronal type is excitatory.

The used axonal radii of neuronal types in all layers (table called X0 in the previous text) are listed
in Table 1.4.

Label L1 L2/3 L4 L5 L6

nb1 200 200 200 200 200

p2/3 550 1120 150 1000 150

b2/3 0 150 150 150 0

nb2/3 200 200 200 200 200

ss4(L4) 0 300 1120 400 150

ss4(L2/3) 150 400 500 150 150

p4 150 1120 150 550 150

b4 0 0 500 0 0

nb4 200 200 200 200 200

p5(L2/3) 150 400 300 500 250

p5(L5/6) 0 0 150 500 1000

b5 0 0 0 500 0

nb5 200 200 200 200 200

p6(L4) 0 0 150 500 1000

p6(L5/6) 0 150 1000 150 150

b6 0 0 0 0 500

nb6 200 200 200 200 200

Table 1.4: Parameters of the model related to the axonal areas (axonal radii in layers, in µm).

1.8.4 Connectivity parameters

The used parameters related to connectivity are listed in Figure 1.4 (in the previous text this table was
called X1 (the column Syn) and X2 (the rest of the table)).



Figure 1.4: Parameters of the model related to the connectome. The column Syn defines a number of
synapses from presynaptic neuron (rows, column Label)) to postsynaptic neuron (columns), which occur
in a given layer (column Layer).



1.8.5 Input parameters

The parameters related to input of our modelled networks are listed in the Figure 1.5.

Name Unit Description Used val-
ues

INPUT TYPE - Type of input ( 0 ∼ nothing, 1 ∼ minis, 2 ∼ noise,
3 ∼ few pure tones, 4 ∼ more pure tones,
5 ∼ more normal sounds, 6 ∼ tonotopy experi-
ment)

1, 2, 3, 4,
6

INPUT VALUE pA Value of the input current. 1500
INPUT DURATION ms Duration of one input. 500
BANDS - List of used bands separated by semicolons. different

values
INTENSITIES - List of used intensities expressed as probabilities

in the range 〈0, 1〉 separated by semicolons.
different
values

Table 1.5: Input parameters.

1.9 Tabular description

Finally, an overall summarised description, as it is recommended in guidelines by Nordlie et al. (2009),
is listed in the Table 1.6.

Model Summary

Populations Seventeen: nb1, p2/3, b2/3, nb2/3, ss4(L4), ss4(L2/3), p4, b4, nb4,
p5(L2/3), p5(L5/6), b5, nb5, p6(L4), p6(L5/6), b6, nb6

Topology 3D coordinates within a network
Connectivity Generated according to probabilities of connections between all pairs

of neuronal types
Neuron model Generalised Izhikevich neuron model (Izhikevich, 2007)
Channels models -
Synapse model Fixed synaptic conduction delays and changeable synaptic weights
Plasticity STDP
Input Tonotopic inputs from thalamus
Measurements Spike trains (and from them spike-time raster plot and global and

local waves); development of: mean activity (within a network and
individual neuronal types), weights and their distribution, tonotopic
features (receptive fields, best frequencies and measure of tonotopy)

Table 1.6: A summarised tabular description of the presented model.



Chapter 2

Results

2.1 Validation Experiments

This section contains additional figures depicting results from the validation experiments: development
of the excitatory weights in Fig. 2.1, development of the firing rate in Fig. 2.2 and 2.3. The remainder
of this section is focused on brief evaluation of evoked activity and testing of inhibitory-excitatory (I-E)
models as a possible source of gamma oscillations.
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Figure 2.1: A comparison of the development of the mean excitatory weights between the network
sizes: 50 000 (green) and 100 000 (yellow). As we can see, the weights in both networks reach a stable
stereotypical dynamic state. The fact that the larger network has slightly higher average values than
the smaller network could be explained by the sparseness of the smaller network, because in the sparse
network, there is a higher probability that a synapse will die out (when a postsynaptic neuron does not
receive sufficient input).
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Figure 2.2: The mean firing rate activity of individual neuronal types in single runs of networks with
50 000 neurons (top) and 100 000 neurons (bottom).
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Figure 2.3: Boxplot of mean firing rate activity of individual neuronal types in networks with 10 000
neurons (first row), 50 000 neurons (second row) and 100 000 neurons (third row).
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Figure 2.4: Evaluation of stability of the network activity simulated under spontaneous activity. The
30min of simulation were binned into minute-long segments and the mean standard deviation of the
network activity in these segments is plotted. After initial stabilisation (8min), both networks reached
a stereotypical dynamic state (non-significant slope and non-increasing standard deviation). To test if
there was not a trend in firing rates, suggesting lack of stabilisation, a line was fitted through the 23
points of mean firing rate from 8th to 30th minute and the significance of its slope has been tested using
a regression slope test. The resulting p-values and maximal standard deviations in this period are given
on the right side of the graphs.



2.1.1 Evaluation of evoked activity

We also evaluated network behaviour under evoked activity using a network with 50 000 neurons which
had been evolved for 12 hours with spontaneous activity (to get rid of as much randomness due to
network initialisation as possible). This network was then stimulated with different intensities of noise
(along with the inner spontaneous activity). We compared two intensities (0.1 and 0.5) and two durations
of stimulation (20ms and 500ms). Each stimulation was followed by 1 s of silence and was repeated ten
times. The spontaneous activity (i.e., minis) was present during the entire simulation and weights were
fixed.

The propagation of the signal through the network in the z-axis is visualised in Fig. 2.5 and 2.6. The
activity is gradually spread from input L4. Note the response adaptation in L4.

When comparing the four experimental conditions, both durations of the stimulus led to a similar
reaction, especially in the first ca. 50ms after the start of stimulation. After this time, the reactions in
L2/3 and L5 differed (in the 500ms stimulation, they were weaker, but longer and more gradual). The
weaker stimulation led to weaker and less distinct reactions, especially in L6, but the general shape of
the signal propagation was similar to the stronger stimulation propagation.
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Figure 2.5: Evaluation of evoked activity (measured on 50 k network after 12 h of spontaneous activity)
for stimulation with noise0.5. All of the values were averaged over ten stimulations. Spike probability as a
function of depth and time. Each layer has its own colour-scale (but was common for both experiments).
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Figure 2.6: Evaluation of evoked activity (measured on 50 k network after 12 h of spontaneous activity)
for stimulation with noise0.1. All of the values were averaged over ten stimulations. Spike probability as a
function of depth and time. Each layer has its own colour-scale (but was common for both experiments).



2.1.2 I-E model of gamma oscillations

Neuronal type Contribution at gamma band (40–60Hz) (%)

1 nb1 0.5
2 p2/3 3.16
3 b2/3 76.29
4 nb2/3 1.12
5 ss4(L4) 1.34
6 ss4(L2/3) 1
7 p4 1.13
8 b4 4
9 nb4 0.49
10 p5(L2/3) 1.98
11 p5(L5/6) 2.2
12 b5 4.41
13 nb5 0.9
14 p6(L4) 1.05
15 p6(L5/6) 0.17
16 b6 0.21
17 nb6 0.03

Table 2.1: Relative contribution of the populations of specific cell types to the potential oscillation at the
gamma band.



2.2 Tonotopy-related experiments

This section contains additional figures depicting results from the tonotopy-related experiments: In Fig.
2.7, examples of receptive fields are shown. Figures 2.8, 2.9, 2.10 and 2.11 show spatial visualization over
time, given different types of stimulation. It can be observed that the state of tonotopy is consistent
over different seeds and network sizes, with the exception of the unstable state right after initialization
of the network. Graphs in Fig. 2.12, 2.13, 2.14, 2.15 give the development of tonotopy over time for
two different seeds and two different network sizes. In all four cases, it holds that noise0.01 causes the
highest tonotopy, noise0.5 causes the lowest tonotopy and other types of stimulation lie between. The
numerical results of tonotopy are given in Tab. 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7.

Figure 2.7: Examples of tuned neurons present in the networks, measured after 12 h of development: “I”
shape (first column) and “V” shape (second column); excitatory neurons (first two rows) and inhibitory
neurons (third row).



Figure 2.8: A network with 50 000 neurons, the first seed (333): a comparison of spatial visualisation of
the network stimulated with five different input conditions (rows) in six time slices (columns). Only the
tuned neurons are plotted, with the colour representing their best frequency.

Figure 2.9: A network with 50 000 neurons, the second seed (444): a comparison of spatial visualisation
of the network stimulated with five different input conditions (rows) in six time slices (columns). Only
the tuned neurons are plotted, with the colour representing their best frequency.



Figure 2.10: A network with 100 000 neurons, the first seed (333): a comparison of spatial visualisation
of the network stimulated with five different input conditions (rows) in six time slices (columns). Only
the tuned neurons are plotted, with the colour representing their best frequency.

Figure 2.11: A network with 100 000 neurons, the second seed (444): a comparison of spatial visualisation
of the network stimulated with five different input conditions (rows) in six time slices (columns). Only
the tuned neurons are plotted, with the colour representing their best frequency.
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Figure 2.12: Development of tonotopy of non-input neurons over time in different input conditions for a
network with 50 000 neurons and the first seed (333). Note that the lower ADM, the higher tonotopy.



0 3 6 9 12
0

2

4

6

8

10

12

14

16

18

20

time (h)

A
D

M
 (

#
 b

a
n

d
s

)

Average distance over time

fewTones

moreTones

noise0.5

noise0.01

spontaneous

Main tonotopy−related experiments: 50 000 neurons, seed 2
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Figure 2.13: Development of tonotopy of non-input neurons over time in different input conditions for a
network with 50 000 neurons and the second seed (444). Note that the lower ADM, the higher tonotopy.
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Figure 2.14: Development of tonotopy of non-input neurons over time in different input conditions for a
network with 100 000 neurons and the first seed (333). Note that the lower ADM, the higher tonotopy.
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Figure 2.15: Development of tonotopy of non-input neurons over time in different input conditions for a
network with 100 000 neurons and the second seed (444). Note that the lower ADM, the higher tonotopy.



ADM PTN

condition mean std median mean std median

1 fewTones 8.43 1.22 8.19 22.12 3.86 22.56
2 moreTones 6.98 0.64 7.09 23.06 2.06 23.79
3 noise0.5 17.18 0.30 17.22 13.21 0.55 13.04
4 noise0.01 4.28 0.41 4.06 28.54 0.52 28.52
5 spontaneous 8.31 0.19 8.23 23.98 2.76 24.78

Table 2.2: Numerical results from 50k network computed from both seeds and all time slices except the
initial one. ADM = average distance metric, PTN = percentage of tuned neurons (from all layers except
L4).

ADM PTN

condition mean std median mean std median

1 fewTones 8.71 0.74 8.85 23.65 2.60 24.14
2 moreTones 8.04 0.27 7.97 21.95 2.75 21.23
3 noise0.5 18.37 0.20 18.36 14.45 0.30 14.45
4 noise0.01 5.59 0.68 5.60 27.80 2.80 27.01
5 spontaneous 8.31 0.51 8.16 23.29 3.59 22.95

Table 2.3: Numerical results from 100k network computed from both seeds and all time slices except
the initial one. ADM = average distance metric, PTN = percentage of tuned neurons (from all layers
except L4).



spontaneous condition

ADM PTN

type mean std median mean std median

1 nb 8.44 2.42 9.30 7.62 3.54 9.09
2 b 1.54 0.39 1.51 29.03 2.72 30.22
3 p 5.97 0.35 5.94 34.82 3.08 36.03

noise0.5 condition

ADM PTN

type mean std median mean std median

1 nb 18.47 1.32 18.19 4.23 1.59 3.83
2 b 10.96 0.32 10.88 19.12 1.76 18.84
3 p 17.31 0.37 17.34 20.38 0.53 20.16

noise0.01 condition

ADM PTN

type mean std median mean std median

1 nb 3.32 2.95 2.38 10.08 3.51 9.97
2 b 0.89 0.26 0.79 37.22 6.84 40.05
3 p 2.59 0.40 2.58 43.14 2.79 44.00

pureTones5 condition

ADM PTN

type mean std median mean std median

1 nb 8.93 3.22 9.40 8.58 6.07 8.91
2 b 1.90 1.09 1.41 30.51 2.38 30.48
3 p 6.42 1.35 6.27 32.05 5.41 32.43

pureTones25 condition

ADM PTN

type mean std median mean std median

1 nb 4.94 1.88 4.11 4.04 3.04 3.78
2 b 1.19 0.15 1.17 30.53 2.58 30.86
3 p 4.92 0.69 4.86 34.62 2.43 35.41

Table 2.4: Numerical results from 50k network, grouped by morphological neuron types (nb = inhibitory
non-basket neurons, b = inhibitory basket neurons, p = excitatory pyramidal neurons); computed from
both seeds and all time slices except the initial one. ADM = average distance metric, PTN = percentage
of tuned neurons.



spontaneous condition

ADM PTN

type mean std median mean std median

1 nb 6.78 3.00 6.77 5.06 3.00 3.56
2 b 1.03 0.27 0.89 31.37 6.65 33.83
3 p 5.99 0.90 6.44 33.46 4.76 32.71

noise0.5 condition

ADM PTN

type mean std median mean std median

1 nb 20.24 1.46 20.29 4.69 2.39 3.95
2 b 9.01 0.88 8.81 6.48 1.45 6.53
3 p 18.70 0.32 18.70 16.68 0.76 16.82

noise0.01 condition

ADM PTN

type mean std median mean std median

1 nb 4.17 0.95 4.27 13.47 3.42 15.06
2 b 0.98 0.29 0.91 28.88 5.22 28.34
3 p 3.62 0.65 3.69 40.97 3.94 39.61

pureTones5 condition

ADM PTN

type mean std median mean std median

1 nb 7.90 4.05 8.13 5.22 3.89 4.81
2 b 1.03 0.13 1.04 28.22 6.22 28.16
3 p 6.23 0.47 6.34 33.80 3.09 34.49

pureTones25 condition

ADM PTN

type mean std median mean std median

1 nb 3.71 3.54 2.40 3.85 3.62 2.53
2 b 0.89 0.09 0.90 33.63 4.25 35.33
3 p 6.12 0.46 6.25 31.96 3.62 30.63

Table 2.5: Numerical results from 100k network, grouped by morphological neuron types (nb = inhib-
itory non-basket neurons, b = inhibitory basket neurons, p = excitatory pyramidal neurons); computed
from both seeds and all time slices except the initial one. ADM = average distance metric, PTN =
percentage of tuned neurons.



spontaneous condition

ADM PTN

type mean std median mean std median

1 L1 15.78 0.04 15.78 0.15 0.28 0.00
2 L2/3 16.52 0.35 16.42 11.58 2.16 12.46
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 13.73 1.10 13.47 13.55 3.41 15.10
5 L6 4.70 0.33 4.65 46.48 3.75 47.60

noise0.5 condition

ADM PTN

type mean std median mean std median

1 L1 18.49 1.37 18.18 11.97 4.68 10.85
2 L2/3 15.42 0.51 15.41 6.86 0.43 6.99
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 14.52 0.45 14.50 7.31 0.43 7.34
5 L6 18.07 0.43 18.09 24.82 0.89 24.73

noise0.01 condition

ADM PTN

type mean std median mean std median

1 L1 8.74 9.54 8.74 2.46 6.91 0.00
2 L2/3 12.30 0.93 12.78 11.03 2.35 10.28
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 9.91 0.62 9.95 14.88 3.90 13.16
5 L6 1.73 0.37 1.67 58.13 4.09 59.03

pureTones5 condition

ADM PTN

type mean std median mean std median

1 L1 18.14 3.57 16.92 4.84 10.23 0.20
2 L2/3 15.97 1.32 15.68 10.24 2.79 10.78
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 14.94 2.61 14.54 11.86 4.11 11.76
5 L6 5.08 1.33 4.86 43.40 6.39 43.97

pureTones25 condition

ADM PTN

type mean std median mean std median

1 L1 15.33 0.00 15.33 0.05 0.14 0.00
2 L2/3 15.18 1.02 15.39 10.47 1.67 10.93
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 13.96 1.79 13.85 9.89 2.49 9.52
5 L6 3.74 0.52 3.72 47.16 2.68 47.66

Table 2.6: Numerical results from 50k network, grouped by layers, computed from both seeds and all
time slices except the initial one. ADM = average distance metric, PTN = percentage of tuned neurons.



spontaneous condition

ADM PTN

type mean std median mean std median

1 L1 25.00 14.85 25.00 0.03 0.06 0.00
2 L2/3 16.56 0.46 16.56 11.94 3.15 11.64
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 15.51 1.41 15.95 11.49 3.54 10.57
5 L6 4.45 0.67 4.78 45.12 4.56 44.83

noise0.5 condition

ADM PTN

type mean std median mean std median

1 L1 26.00 12.26 25.50 0.12 0.27 0.00
2 L2/3 17.68 0.18 17.70 13.10 1.06 13.42
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 17.13 0.44 17.17 13.97 2.29 13.44
5 L6 19.50 0.32 19.57 17.12 1.23 16.80

noise0.01 condition

ADM PTN

type mean std median mean std median

1 L1 15.89 0.00 15.89 0.16 0.44 0.00
2 L2/3 11.62 0.68 11.88 13.95 1.81 14.44
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 10.89 0.67 10.88 19.44 3.91 21.26
5 L6 2.46 0.61 2.63 52.32 5.09 49.99

pureTones5 condition

ADM PTN

type mean std median mean std median

1 L1 NaN NaN NaN 0.00 0.00 0.00
2 L2/3 16.53 0.62 16.59 12.49 2.56 13.14
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 15.17 0.79 15.26 12.60 3.90 12.28
5 L6 4.75 0.43 4.93 44.52 2.76 44.42

pureTones25 condition

ADM PTN

type mean std median mean std median

1 L1 27.83 21.33 30.00 0.04 0.06 0.00
2 L2/3 16.09 0.36 16.08 10.62 2.39 9.98
3 L4 0.00 0.00 0.00 100.00 0.00 100.00
4 L5 15.64 1.40 16.00 10.26 3.60 8.27
5 L6 4.51 0.33 4.59 43.81 3.35 43.10

Table 2.7: Numerical results from 100k network, grouped by layers, computed from both seeds and all
time slices except the initial one. ADM = average distance metric, PTN = percentage of tuned neurons.
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