

Utilizing HLA for Connecting Virtual Worlds to Pogamut

Tomáš Plch (tomas.plch@gmail.com), Tomáš Jedlička (jedlickat@gmail.com), Cyril Brom (brom@ksvi.mff.cuni.cz)

 Department of Software and Computer Science Education

 Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, Prague, 11800 Prague, Czech republic

Abstract. The research in the field of human-like agents, is
limited by the lack of accessible, large, dynamic, and real-time
3D worlds. The fast AI prototyping tool Pogamut makes some
of these environments, like the Unreal Tournament 2004
computer game, accessible. However, multitude of these
computer game worlds is limited or not suitable for large
scale simulations. We aspire to implement an architecture able
to connect different 3D worlds via the High Level Architecture
(HLA) to Pogamut, creating a sophisticated platform, called
HLA Proxy, for making large scale simulations accessible.
The HLA represents a standard for interconnecting different
simulation environments. Here, we present our effort to
connect the Virtual Battle Space 2 military training platform
to the Pogamut fast prototyping tool via HLA. HLA Proxy is
currently in development, but the first working prototype is
scheduled to be done in September 2010.

1 Introduction

The field of human-like agent research currently lacks a

large scale easily accessible simulation environment. In

most cases, researchers either create their own simulation

environment or try to utilize (“hack into”) an existing

engine – in most cases these are computer game engines

like Unreal Engine [1], Source Engine [2] etc.

There is also need for a developing and testing ground

for developers creating agents for computer simulations

(e.g. for military personnel training [3]). Developers and

designers need a place which they can exploit by creating

prototypes and experimenting with ideas.

This gap was recently (about 2-3 years ago) filled with

the fast prototyping tool called Pogamut [4], which is being

continuously developed at our laboratory. Pogamut, being a

plugin for the NetBeans IDE, provides easy access into the

Unreal Tournament 2004 (UT2004) [5] video game

environment. Unfortunately UT2004 is not suitable for

larger simulations incorporating higher number (10+) of

agents. This is largely due to architectural limitations of

UT2004.

We identified the Virtual Battle Space 2 (VBS2) [6]

military simulation platform as a suitable candidate host

engine for large scale simulations. VBS2 provides a large

scale virtual environment able to handle large numbers of

individual agents (>100). We also want to introduce the

High Level Architecture (HLA), being the industry

standard [7], [9] for interconnecting simulation

environments, into Pogamut, making the platform more

versatile and capable.

The idea of HLA is based on two principles – the Run

Time Interface (RTI) and the Federation Object Model. The

RTI provides the communication means for simulation

participants (called federates) and the FOM provides data

structure description and interaction (e.g. grenade

explosion) description for the actual interaction of

federates.

The HLA can be viewed as a distributed database, where

federates can subscribe to receive attribute updates, acquire

ownership of objects and fire interactions described in the

FOM.

2 HLA Proxy Architecture

Our basic idea is to create a middleware capable of

translating Pogamut’s requests on data, as well as action

execution into the HLA environment (Figure 1).

Figure 1: HLA Proxy per Pogamut instance

Secondly, we intend to create a more complex

mechanism, providing a data engine (within the HLA

Proxy), where inferences on data, as well as creating higher

data abstractions, can be performed and presented. Thirdly,

we intended to extend the capability of the Pogamut

platform by providing a communication node for multiple

instances of Pogamut.

We are developing our own Artificial Agents FOM (AA

FOM) related to human-like agents. The AA FOM differs

from the currently employed military or commonly

available FOMs. Our main goal for the first version of AA

FOM is to develop a minimalistic universal description of

the world and to implement a management of object classes

for remote control of the engine’s basic support systems,

like map loading, simulation termination, utility and

monitoring functions etc.

Our architecture’s design aims at the intended evolution

of our FOM, to make it usable in future versions of HLA

Proxy with minimal source code changes or limitations to

the FOM design.

Currently, we finalize development of HLA Proxy’s core

for plugin management and implement the capability to

reflect custom FOMs utilizing C++ templates.

2.1 Modular architecture

The HLA Proxy project is designed as a modular

architecture. This modularity is needed to support various

network topologies and usage scenarios. Multiple engines

do not share the same approach for adding new features.

Therefore our architecture must be flexible, to be easily

deployed under various conditions.

HLA Proxy architecture consists of three elements – the

Plugin Manager, plugins, and components.

2.1.1 Plugin Manager

The Plugin Manager provides necessary methods for

loading plugins and obtaining components stored inside

plugins. It also supports resolving dependencies amongst

plugins at load time. Developers using the HLA Proxy

middleware must instantiate the Plugin Manager before

using anything from HLA Proxy’s plugins.

2.1.2 Plugins

Plugins are standard shared libraries (e.g. a "dll" file in

the Windows operating system), which are loaded by a

Plugin Manager instance. The main purpose of a plugin is

to provide a container for various components.

2.1.3 Components

Components in the HLA Proxy architecture implement

the HLA Proxy component interface and perform

computational work. They may have minimalistic form as a

simple class in the C++ programming language. On the

other hand components may be composed of multiple

classes. In this case, there has to be one class acting as the

component interface implementation.

2.2 Shadow copy

One of the project’s goals is to support multiple threads

accessing data components (representing AA FOM’s

objects) and attributes within. The HLA Proxy itself is

designed as a threaded application.

It is not possible to implement classic simple

synchronization using standard synchronization primitives

and not lose performance. We also wanted to avoid

transactions to keep the use of our middleware simple.

We distinguish two cases of modifying component’s

attributes (referred as object in the rest of this section).

2.2.1 Reading

When a developer tries to read attribute values, we are

forced to lock the object to provide data integrity and

consistency during the operation or calculation performed

on based on the data. There is no limit on how long such

lock can be in place and can result in blocking other

federates.

To solve this situation, we freeze the object until all

callbacks finish and the locks are released. When the

developer tries to lock the object, he obtains a real lock on

a standard synchronization primitive, but only for a short

time period. After locking, the object creates a copy of all

registered attributes and unlocks the standard

synchronization lock. After this, the developer works with

copy of data, which does not change in time, until he

unlocks the object.

2.2.2 Writing

Updating attributes with new values takes only short

amounts of time and thanks to the HLA standard, no

writing collisions can arise, due to attribute ownership.

3 Future work

We intend to finish our prototype implementation of the

HLA Proxy and connect it to VBS2. We also intend to

integrate the prototype into Pogamut. Our second goal is to

create the AA FOM based on our experience with artificial

agents intended for the use in military simulations and

computer games.

Later on, we intend, based on the collected data from the

connected VBS2 simulation, to create a TCP/IP protocol

between the HLA Proxy standalone gateway and Pogamut.

Finally, we want to integrate the data inference

capability and data processing features into the HLA Proxy

to provide Pogamut with higher data abstractions the

Intelligent Virtual Agents can work with.

4 Conclusion

We presented our architecture designed for connecting

our AI prototyping tool Pogamut, to the VBS2 or any other

HLA capable environment. We presented our versatile

architecture, where plugins and components can be used to

represent the HLA world simply but effectively as well as

provide additional services. The architecture is aimed at

performance, modularity, and adaptability.

We believe the architecture can extend Pogamut (and

other tools) to utilize the HLA and provide a wider range of

virtual environment available for AI research and AI

related development.

Acknowledgement

Writing of this paper was partially supported by the

project CZ.2.17/3.1.00/31162 that is financed by the

European Social Fund and the Budget of the Municipality

of Prague. The research related to HLAProxy was also

supported by a student grant GA UK No. 0449/2010 /A-

INF/MFF, and by project P103/10/1287 (GA ČR).

References

[1] Unreal Technology: Unreal Engine [online]. [visited
2010-05-31]. URL: www.unrealtechnoogy.com.

[2] Valve Software: Source Engine [online]. [visited 2010-
05-31]. URL: http://source.valvesoftware.com/

[3] M., O., Riedl, A., Stern: Believable Agents and
Intelligent Scenario Direction for Social and Cultural
Leadership Training. Proceedings of the 15th
Conference on Behavior Representation in Modeling
and Simulation, Baltimore. Maryland. 2006.

[4] J. Gemrot, C. Brom, R. Kadlec, M. Bida, O. Burkert,
M. Zemcak, R. Pibil. Pogamut 3: Virtual Characters
Made Simple. In J. Gray, and S. Nefti-Meziani,
editors, Advances in Cognitive Systems. 2009

[5] Unreal Technology: Unreal Tournament 3 [online].
[visited 2010-05-31]. URL:
http://www.unrealtournament3.com.

[6] Virtual Battlespace 2 [online]. [visited 2010-05-31].
Bohemia Interactive. URL:
http://virtualbattlespace.vbs2.com/

[7] IEEE Computer Society: 1516.4-2007 IEEE
Recommended Practice for Verification, Validation,
and Accreditation of a Federation - An Overlay to the
High Level Architecture Federation Development and
Execution Process. 2007.

[8] F. Kuhl, R. Weatherly, J. Dahmann: Creating
Computer Simulation Systems: An Introduction to the
High Level Architecture. Prentice Hall. 1999.

