

Inspect, Edit and Debug PDDL Documents:

Simply and Efficiently with PDDL Studio
Tomas Plch1, Miroslav Chomut2, Cyril Brom3, Roman Barták4

Faculty of Mathematics and Physics, Charles University in Prague
1tomas.plch@gmail.com 2chmirko@gmail. com 3brom@ksvi.mff.cuni.cz 4bartak@ktiml.mff.cuni.cz

Abstract

The Planning Domain Definition Language (PDDL)
represents a standard for definitions of planning domains
and problems. Researchers and designers often make
semantic and syntax errors due to the language’s
complexity. At the same time, it is hard to read and work
with larger documents in PDDL. We have developed a tool
called PDDL Studio, which is aimed at aiding in creation
and inspection of PDDL documents. The editor’s main
features are: 1) PDDL parser capable of localizing syntax
and semantic errors, 2) PDDL syntax highlighting, 3)
context sensitive code completion and hints - similar to
Microsoft’s IntelliSense for declarative languages, 4) code
collapsing, 5) PDDL document management, and 6) planner
integration. Our PDDL Editor also features a PDDL Parser
tool, which can be used as a standalone parser for other
projects.

Introduction

The Planning Domain Definition Language (PDDL)

(McDermott et al. 1998) represents a standard for creating

definitions of planning domains and problems and is

utilized as input for various planners e.g. JSHOP, JSHOP2

(Nau et al. 1999), BlackBox (Kautz and Selman 1998),

Metric-FF (Hoffman 2003).

 The current practice is to create PDDL documents either

by hand via simple editing tools e.g. Notepad++, or via

tools and languages for domain knowledge and

characteristics specification (i.e. knowledge engineering).

To name a few of such tools: itSimple (Vaquero et al.

2009) utilizes the combination of graphical UML

specification and XML, GIPO IV (Simpson 2007) uses

custom diagram notation, and ViTAPlan (Vrakas and

Vlahavas 2003) for domain and problem visualization. An

extensive study of the various tools and approaches can be

found in (Vaquero et al. 2011). It is noteworthy that there

is a multitude of tools aimed at verification of PDDL like

the VAL tool (Howey et al. 2004) or PDver (Raimondi et

al. 2009).

 At some point during the process of knowledge

engineering for planning and scheduling, the need for

directly inspecting and editing of PDDL documents often

occurs. Regardless of whether these documents are created

automatically or manually, they often are large and

complex, thus being hard to inspect.

 The imperative programming language community (i.e.

utilizing languages like C++ and Java) has a wide range of

Integrated Development Environments (IDEs) e.g. Visual

Studio 2010 (VS10), NetBeans, and Eclipse. Various

functionalities (e.g. syntax highlighting, on the fly syntax

checking, code completion and contextual hints), help

programmers to develop in a faster and more convenient

manner. The planning community lacks such an integrated

tool (i.e. editor) for PDDL. With this motivation in mind,

we created our PDDL Studio application, which is aimed at

bringing the imperative programming culture of editing

source code to the planning community. In this paper we

overview main features of PDDL Studio.

PDDL Studio

Our project, PDDL Studio (Figure 1), is focused on

providing a simple editing IDE. The application itself is

written in C++ and is designed with portability in mind,

utilizing portable technologies like the Flex Lexical Parser

(Paxson 2008), Bison parser generator (GNU 2011) and

the Qt framework (Qt Project 1992) for visual

representation.

 We identified a broad range of necessary capabilities,

which are present in most of applications like VS10,

NetBeans, Eclipse and can be applied to the PDDL

language:

• Project management – creation and management of
documents

• Syntax error detection – interactive localization and
identification of PDDL syntax errors

• Syntax highlighting – coloration of language elements

• Semantic error detection – detection of simple semantic
errors

• Context sensitive code completion – providing hints to
the user what to write based on the current context in the
document’s input

• Code collapsing – portions of the code can be collapsed
to provide better readability

• XML import/export – creating an XML variant of the
PDDL document

• Planner integration – the ability to execute a planner
with the PDDL documents as input

• Common Editor Features – line numbering and bracket
matching

Figure 1: PDDL Editor window with Editing Window (A)

having highlighted syntax, Interactive Error Report (C) and

Project Manager (B) with additional information about file

status (number of errors, save status etc.)

The remainder of this section is focused on describing

the realization of the outlined capabilities in PDDL Studio.

The main aim of the realization is to provide intuitive and

easy to use features that would facilitate the task of

creating PDDL encodings.

Project management

Presently, the Project Management in PDDL Studio is

rather simplistic, providing only the capability to create

projects, add and remove files from the project. The

Project Manager also provides additional information on

project files (e.g. present error counts, change status etc.).

Syntax error detection

Syntax error detection is one of the most important features

of the PDDL Studio. We created our own dedicated PDDL

parser build upon Flex and Bison (presently supporting

PDDL 1.7), making the project more portable. The parser

is designed to be used independently from the PDDL

Studio’s code as a library or C++ code. The parsing

process creates a tree-like representation of the PDDL

document’s elements. Our testing domains of 1000 lines

can be parsed below 100 ms on a standard Dual Core

notebook processor at 1.8GHz utilizing one core.

 The error detection mechanism is executed on the fly

during editing of the PDDL document. If the user only

views the file, the detection mechanism is suspended. If the

user inserts or removes text, the detection mechanism is

prepared for execution after a predefined period of

inactivity – i.e. the user stopped typing. The parsing

mechanism can be further suspended if the user resumes

typing. This allows providing smoother error detection,

avoid over-consuming resources, and avoid bothering the

user with false positives on syntax errors.

 The error detection module provides a list of errors

presented as an interactive error table and underlines the

found errors in the document. It can be seen in Figure 1

(C). When accessed (e.g. double click on an error’s row),

the editor points directly to the detected error. In respect to

the PDDL specification, we can localize misspelled or

missing keywords. When a mandatory keyword is missing,

we also identify which keyword is missing, thus providing

a hint to the user.

Syntax Highlighting

Based on our experience with various programming IDEs,

we perceive the syntax highlighting as one of the most

important aids when inspecting any code. It is a key feature

included in every usable IDE tool since colored fonts were

available. It vastly improves the ability for the developer to

read code and distinguish language elements – i.e.

variables, types, functions, predicates.

 We use the tree-like structure provided by our parser to

identify language elements and assign colors to the

resulting editable text. The result can be seen in

Figure 1 (A). The user can set his preferred colors for the

edited text and the following language constructs:

• problem and domain names

• variable names

• detected errors – these are underlined for better display
and this color overrides the color of any other element

• PDDL keywords – e.g. requirements, predicates etc.

• predicate names

• type names

• highlighted brackets – pairs of brackets are highlighted
when the user points the editing cursor at one of them

Semantic error detection

The PDDL Studio is also capable of detecting semantic

errors in respect to the language specification and the

provided requirements (e.g. Disjunctive-Preconditions).

The parsed tree-like structure is used to determine where

these errors are located in the PDDL documents and what

their nature is. This information is provided within the

error table (Figure 1(C)). We can detect the following

semantic errors:

• Use of non-existent types – when the user misspells a
type which is not present in the type declaration. This is
checked based on the typed requirement.

• Use of non-existent predicates – when a predicate is
misspelled or not defined correctly.

• Inconsistent use of predicates parameters – when a
predicate is used with wrong parameter types.

• Inconsistent use in respect to domain requirements.

Context sensitive code completion

Code completion is an important feature currently included

in every major IDE. The basic idea is to provide the user

with hints based on the current scope (e.g. available

functions, keywords etc.) while editing the document. This

feature takes the burden of the user to avoid errors i.e.

typing errors and syntactic and semantic errors. It also

provides a speed-up for development.

 Our code completion is context sensitive – based on the

current edited portion of the PDDL document as can be

seen in Figure 2.

Figure 2: Context sensitive auto completion – a hint is

given for a subsection of the Action element

 We can provide completion hints in the following areas:

• language keywords – basic PDDL language elements

• domain specification for problems on known domains in
the project

• predicates for problem initialization on known
predicates in the project

• content for the requirements specification

• defined variables and parameters

• defined predicates

Code collapsing

The code collapsing feature is important for better code

readability. Parts of the code – code blocks – can be

hidden, because the reader does not need to read them at

the moment.

 Our project provides possibility to collapse

automatically detected portions of code (e.g. actions,

predicates etc.). The PDDL language is based on Lisp

notation, therefore is full of code blocks. We presently

support only high level code collapsing (Figure 3) – i.e. at

the level of whole actions, predicates etc. We are working

on a method to specify how deep the code collapsing

should be allowed to maintain readability and limit the

amount of collapse points. This context sensitive code

collapsing feature is currently under development.

Figure 3: Code collapsing of an action pick-up block. The

‘-’ sign is used to indicate collapse points, the ‘+’ sign is

used to indicate expansion points.

XML export and import

On one hand the PDDL language is hard to read and on the

other hand it is hard to parse. We created our XML

equivalent of the PDDL Language notation. The

PDDL Studio can export and import this format for use by

other applications or for better readability by other

developers.

Planner integration

PDDL Studio provides the capability to integrate any

planner which can be executed from a system command

line – i.e. console prompt. We provide the user with our

execution console which allows for project specific simple

scripts (Figure 4).

 These scripts are parsed and the result is executed via

the system console. Various parameters can be used, e.g.

current project directory, file names of PDDL files etc.

Figure 4: Planner integration using simple scripts executed

in trough the system command line

Common Editor Features

The PDDL Editor also incorporates common editor

features like line numbering and bracket matching. Line

numbering is represented in the left portion of the screen.

Bracket matching is used to identify bracket pairs by

coloring them. It allows the user to detect missing brackets.

Conclusion and Future work

The PDDL Studio is a simple but powerful tool for

creation and management of PDDL projects. We created it

to mimic the behavior of the commonly and widely utilized

IDEs like Visual Studio 2010 or Eclipse (in respect to code

editing). The main features of this tool are the capability to

locate and identify syntax and semantic errors in the PDDL

document and provide semantic hints on code completion.

The tool also provides features like syntax highlighting and

code collapsing, which allow the user to read and inspect

the code easily.

 In the next version, we intend to integrate a more

complex and capable project management system similar

to the one present in VS10. We intend to extend our PDDL

parser to be used with the newest version of PDDL. We

also work on extending our semantic error detection and

work on integrating our tool with a plan visualization and

inspection tool and our own planner.

 We also intend to provide the user with the capability to

create custom templates for various purposes – e.g. action

skeletons filled based on given or guessed parameters. We

also want to provide automated on the fly indentation of

documents. The user might request a view-only custom

indentation of the displayed documents to suit his

reading/writing style. We also want to incorporate a simple

mechanism to invoke various actions (e.g. commenting of

selected text portions, inserting custom text templates etc.)

via user defined key combinations (e.g. Ctrl + Shift + F1).

Acknowledgement: This work was partially supported by

a student grant GA UK No. 0449/2010/A-INF/MFF, by

project P103/10/1287 (GA ČR) and GA UK No.

655012/2012/A-INF/MFF.

The application can be downloaded at:

http://amis.mff.cuni.cz/PDDLStudio.

References

GNU Project. 2001. GNU Bison.
http://www.gnu.org/software/bison (ver. 2.5 2011).

Hoffmann, J. 2003. The Metric-FF Planning System: Translating
''Ignoring Delete Lists'' to Numeric State Variables. Journal of
Artificial Intelligence Research, Volume 20, pages 291 - 341.

Howey, R., Long, D., Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning
using PDDL. Tools with Artificial Intelligence, ICTAI 2004

Kautz, H., Selman, B. 1998. BLACKBOX: A New Approach to
the Application of Theorem Proving to Problem Solving.
Working notes of the Workshop on Planning as Combinatorial
Search, held in conjunction with AIPS-98, Pittsburgh, PA.

McDermott D., Ghallab M., Howe A., Knoblock C., Ram A.,
Veloso M.; Weld D., Wilkins D. 1998. PDDL – The Planning
Domain Definition Language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control, New Haven, CT.

Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H. 1999. SHOP:
Simple Hierarchical Ordered Planner. In IJCAI-99, pp. 968-973.

Paxson, V. 1987. Flex Lexical Analyzer.
http://flex.sourceforge.net (ver. 2.5.35 2008).

Qt Project. 1992. Qt. http://www.qt-project.org (ver. 4.8.0 2011).

Raimondi, F., Pecheur, C., Brat , G. 2009. PDVer, a tool to verify
PDDL planning domains. In Proceedings of ICAPS’09
Verification and Validation of Planning and Scheduling Systems.

Simpson, R. M. 2007. Structural Domain Definition using GIPO
IV. In Proceedings of the Second International Competition on
Knowledge Engineering for Planning and Scheduling

Vaquero, T., S., Silva, J., R., Beck, J., C. 2011. A Brief Review of
Tools and Methods for Knowledge Engineering for Planning &
Scheduling. In: Proceedings of the Knowledge Engineering for
Planning and Scheduling (KEPS) workshop. The 21th
International Conference on Automated Planning & Scheduling
(ICAPS 2011). Freiburg. Germany.

Vaquero, T. S., Silva, J. R., Ferreira, M., Tonidandel, F., Beck, J.
C. 2009. From Requirements and Analysis to PDDL in
itSIMPLE3.0. In Proceedings of the Third International
Competition on Knowledge Engineering for Planning and
Scheduling, ICAPS 2009, 54–61.

Vrakas, D. and Vlahavas, I. 2003. ViTAPlan: A Visual Tool for
Adaptive Planning, In Proceedings of the 9th Panhellenic
Conference on Informatics, Thessaloniki, Greece, pp. 167-177.

