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Abstract: Computerized animations, simulations and games are useful tools for supporting acquisition of mental models. 

Various personal characteristics, such as prior knowledge and spatial abilities, can influence, in various ways, effectivity of 

learning from these materials. In comparative studies with between-subject design that investigate learning effects of these 

materials, it is important to control for these variables because they should be taken as covariates in case the two (or more) 

research groups are not sampled equally (which happens even in the case of random assignment of participants to the 

research groups). In addition, it would be useful to have interventions that measure these variables with as few items as 

possible; to avoid unbearably long questionnaires. In this initial exploratory study we investigate if mathematical self-

efficacy, measured by a single question, and self-assessed ability of acquiring mental models (SAAMM), also measured by a 

single question, predicts learning outcomes; as concerns mental models acquisition. Re-analyzing data from our four recent 

studies on one of the well-known principles of multimedia learning, personalization principle (N = 75, 85, 76, 41; college 

students with diverse background), we show that mathematical self-efficacy and SAAMM are moderately correlated (r = .32 

- .40) and indeed related to learning outcomes, measured by transfer tests (r = .22 - .57 and .28 - .48, respectively). However, 

the reasons behind these relationships seem to be complex and diverse, and at least partly dependent on treatments’ 

characteristics. For a complex simulation using graphs and resembling an educational computer game, this relationship can 

be, to a large extent, explained by mutual relationships between graphing skills, frequency of game-playing, mathematical 

self-efficacy, SAAMM, and learning outcomes. For a short animation on an electrophysical topic, it can be explained by 

mutual links between prior electrophysical knowledge, mathematical self-efficacy, SAAMM, and learning outcomes. Only for 

a short animation on a math/physics-unrelated topic, we could not explain the relationship between mathematical self-

efficacy, SAAMM, and learning outcomes by a third variable (however, the graphing test was not administered in this case). 

In general, this study indicates that our two questions for assessing mathematical self-efficacy and SAAMM are promising 

instruments for measuring variables that should be controlled for in studies on learning effects of computerized materials 

with between-subject design, but more research is needed to pin down details. 
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1. Introduction  

Advantages of well-developed computerized animations and simulations for supporting construction of new 

mental models are well known (e.g., Mayer, 2009; Papert, 1980; Wouters et al., 2013). The process of learning 

complex knowledge representations (rather than facts or skills) can be conceptualized within the Cognitive 

Theory of Multimedia Learning (Mayer, 2009): construction of new knowledge happens through processing of 

incoming information, its organizing into meaningful temporal representations in working memory and 

integration of these representations with prior knowledge structures in long-term memory. This process is 

influenced in various ways by learners’ characteristics, such as spatial abilities (Höffler, 2010) or prior knowledge 

(Mayer, 2009).  

 

Both mathematical abilities and their self-assessments predict performance in certain complex skill acquisition 

tasks (e.g., Ackerman et al., 1995; see also Hacket & Betz, 1989), but studies demonstrating analogical results 

concerning mental models acquisition are unknown to us. Yet one can speculate that persons who readily 

manipulate abstract mathematical objects in their working memory can be better at manipulating any (non-

verbal) mental object in their working memory, which is, according to the Cognitive Theory of Multimedia 

Learning,  a learning advantage. Mathematical self-efficacy (MATHSE) can thus be one of determinants of mental 

models acquisition. Besides theoretical implications, if we measure MATHSE with a single question and find a 

MATHSE—learning outcomes relationship, we would have in hands a simple instrument for predicting test 

scores. This would bring researchers a substantial aid in comparative studies with between-subject design that 

investigate learning effects of computerized materials supporting construction of mental models, because the 

outcomes of this question for individual participants can assist in assigning the participants to study groups (one 

should either equalize groups on the MATHSE variable or take MATHSE as a covariate in the analysis). 
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Likewise, we can ask participants on their self-assessed ability of acquiring mental models (SAAMM) prior to the 

intervention. Having a single SAAMM question would have similar advantages to a single MATHSE question; 

provided the SAAMM question predicts learning outcomes, as concerns mental models acquisition.  

 

The goal of this paper is to re-analyze data from our four studies (researching personalization principle (Mayer, 

2009) in new contexts) from the perspective of the math self-efficacy—mental models learning link and the 

SAAMM—mental models learning link. We devised one SAAMM question and one MATHSE question (see Table 

1), administered it (with other questions) prior to each intervention and correlated it with test scores (obtained 

after the intervention) and with several other variables.  

 

In the next section, we briefly introduce the personalization principle we originally studied (in order to describe 

the context). Afterwards, we describe the interventions we used and details of our four studies. Finally, we 

present the results of the current analysis and its implications. 

Table 1: Math self-efficacy and Self-assessed ability of acquiring mental models questions. 

MATHSE and SAAMM questions 

Question Text Scale 

Math self-efficacy 

(MATHSE) 

“Check one of the following to indicate your knowledge of 

mathematics...” 

1 – very small; 

6 – very large; 

Likert scale 

Self-assessed ability of 

acquiring mental models 

(SAAMM) 

“Imagine you will be examined on the history of shipping traffic 

in the 19th century. A week before the exam, the examiner 

proposes you that you can learn just one of the following two 

things: a) the names of British steamboats from the second half 

of the 19th century, including their displacement and their 

propeller type, or b) how these steamboats’ propellers work. 

There are over sixty of steamboats and five functionally-distinct 

types of propellers. What would you prefer to learn?” 

1 – definitely (a); 

7 – definitely (b); 

Likert scale 

2. Personalization principle 

Personalization principle is one of the well-known principles of multimedia learning (Mayer, 2009). These 

principles can be taken as guidelines for designers developing multimedia learning materials. Multimedia 

learning materials are defined, in this context, as computerized or non-computerized materials that combine 

texts and pictures; including books, animations, simulations and games for learning (cf. Clark & Mayer, 2011). 

 

Personalization principle states that learners will learn better when textual instructions are in a conversational 

style compared to instructions given in a formal/neutral style. There are more possible explanations for this 

principle, including the increase of the learners’ interest and the presence of social cues in the personalized 

instructions. A recent meta-analysis (Ginns, Martin, & Marsh, 2013) reported that the effect of personalization 

is robust and statistically reliable (Cohen’s d = 0.54; as concerns deep understanding); however, certain 

boundary conditions remain to be investigated. These include personalization in languages other than English 

or longer treatments (longer than 35 min – such as complex simulations or games). 

 

The original purpose of our research project was to investigate the personalization principle in the Czech 

language. To this end, we run four studies with college audience comparing learning effectiveness of 

computerized learning materials with personalized vs. non-personalized instructions (i.e., the between-subject 

design). At the same time, we investigated various supplementary research questions, one of them being if self-

assessed ability of acquiring mental models and math self-efficacy predict test scores. The motivation behind 

this question is stated in Sec. 1. We could address this particular question easily because our participants’ pools 

included students with high as well as low mathematical knowledge.  

 

As already said, the purpose of this particular paper is to re-analyse data from our four experiments on 

personalization principle from the perspective of the hypothetical link between MATHSE/SAAMM and learning 

outcomes. In general, we found only small differences between our personalized and non-personalized 

conditions. Therefore, for present purposes, data from the two conditions were collapsed for each experiment.   
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3. Method  

3.1 Participants  

Participants were Czech college students (Mean age = 22.72; SD = 3.53) with intentionally diverse backgrounds 

(primarily computer science, psychology, and arts) and predominantly low prior knowledge of the topic of the 

respective intervention. They participated for course credit in one of four studies on personalization principle (N 

= 75, 85, 76, 41; for Experiment 1 – 4, respectively). 

3.2 Interventions  

Each participant interacted with one of the following computerized material: in Experiment 1 and 2, it was a 2-

3 hours long computer simulation resembling a serious game on the topic of beer brewing; in Experiment 3, it 

was a few minutes long animation explaining the process of lightning formation; in Experiment 4, it was a 

comparable animation on functioning of biological wastewater treatment plant. In each experiment, each 

participant received either personalized or non-personalized version of the intervention.  

3.2.1 Beer brewing simulation 

The intervention for Experiments 1 and 2 was a 2-3 hours long computer simulation, in which the learner’s goal 

was to acquire a mental model of the beer brewing process, as described in detail in (Brom et al., 2014). The 

simulation is for a single user, it is interactive and, as concerns its complexity, resembles a computer game with 

schematic graphic (Figure 1). The graphical user interface consists of the several elements, including: textual 

instructions, an animation panel showing the content of the fermentation vessel, a supplementary explanation 

panel relaying the meaning of graphical elements, panels with graphs and histograms showing the amount of 

ingredients in the product, an adjustable thermometer, and buttons for controlling the processes. The 

simulation also provides feedback via an “assessment” button. The non-personalized instructions have, in total, 

6,750 words; the personalized version is slightly longer (the differences between the personalized and non-

personalized instructions are unimportant for present purposes; they are detailed in Brom et al., 2014). 

 

Figure 1: Screenshot of the beer brewing simulation used in Experiment 1 and 2. The main elements of the 

graphical interface are described. The instructions are in Czech. Note that the “ingredients panel” is 

composed of two graphs and two histograms). Also note that the interface is in colour in the 

application 

The whole simulation has four parts. These parts include a) a tutorial, b) a segment that demonstrates in a linear 

fashion how to brew beer from beginning to end, when every step is done correctly, c) a segment that 

demonstrates the consequences of making errors of not following the standard procedure and d) a segment in 

which the learner has to brew his/her several beers of a specific type in the virtual brewery. The phenomenon 

being modelled – the process of beer brewing – is motivating enough for participants to stay with the simulation 

over the whole period (Brom et al., 2014).  

 

The simulation, including textual instructions, was developed by the research team solely for research purposes. 
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3.2.2 Lightning formation animation 

The intervention for Experiment 3 was a black-and-white, few minutes long animation explain the process of 

lightning formation. The experiment was a (so far unpublished) replication of the original experiment on 

personalization principle by Moreno & Mayer (2000; Exp. 1, 2) in Czech context. Therefore, the animation is as 

accurate replica of the original animation as possible1 and the instructions are translated from the original 

animation.  

 

The animation features 16 screens and each screen displays instructions at the bottom of the screen (Figure 2). 

The non-personalized instructions have, in total, 260 words; the personalized version is slightly longer. The user 

can only proceed forward – by clicking the “next” button (otherwise, the animation is non-interactive).  

 

Figure 2: Screenshot of the lightning formation animation used in Experiment 3 (instructions in Czech). The 

“next” button is in the bottom right corner 

 

Figure 3: Screenshot of the biological wastewater treatment plant animation used in Experiment 4 (instructions 

in Czech). The “next” button is in the bottom right corner 

3.2.3 Biological wastewater treatment plant animation 

In Experiment 4, we attempted to replicate Experiment 3 with a different, yet highly comparable, animation. For 

this purpose, we created a black-and-white animation on functioning of biological wastewater treatment plant. 

This animation is, again, a few minutes long. It features 19 screens, each with instructions at the bottom of the 

screen (Figure 3). The non-personalized instructions have, in total, 300 words; the personalized version is slightly 

longer. The user can, again, interact with the animation only by clicking the “next” button.  

 

                                                                 
1 Discussed with the author of the original experiment (email from R. Mayer, 15th March, 2013). 
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3.3 Procedure and pen-and-paper materials 

For each of the four experiments, the following applied. Prior to intervention, participants were administered 

self-assessment pre-tests with about seven questions of the following type: “Please, indicate your knowledge of 

X on the scale 1 – very small; 6 – very large.” (see Brom et al., 2014 for the beer brewing pre-test; the pre-test 

for the lightning formation animation was from electro-physics, and it was from wastewater treatment and 

organic chemistry for the biological wastewater treatment animation – the latter two pre-tests were modelled 

according to Moreno & Mayer, 2000). The participants also received (among others) the following key questions: 

on math self-efficacy and self-assessed ability of acquiring mental models (denoted as MATHSE and SAAMM 

variables; see Table 1 for exact wording), and on computer game-playing frequency (denoted as Games variable; 

Scale 1 (less than 1 h a week) – 4 (more than 10 h a week)).  

 

Afterwards, the participants interfaced with the intervention; and they proceeded at their own pace. 

Immediately after the intervention, the participants received knowledge post-tests. Every participant received 

(among others) a transfer test with four to seven (depending on the intervention) open-ended questions 

(Transfer variable). Transfer tests are particularly well suited for investigation of understanding of a 

process/model and they are gold standard in the field of multimedia learning (Mayer, 2009) (see Brom et al., 

2014, for details concerning the beer brewing test, and Moreno & Mayer, 2000, for the details concerning the 

lightning formation test; the structure of the wastewater treatment plant test mirrored the lightning formation 

test). The tests were graded based on pre-prepared list of idea units; each idea unit was rewarded 1 point and 

partially correct idea units .25 or .5 points (exact wording was not required). The learners could obtain up to 32 

(Exp. 1, 2), 20 (Exp. 3) or 25 (Exp. 4) points.  

 

In the case of the beer brewing simulation (Exp. 1, 2), participants also returned to the laboratory one month 

later to complete the second round of knowledge tests, including the transfer test (see Brom et al., 2014 for 

details). Therefore, in the present analysis, transfer tests scores, for Experiments 1 and 2, are taken as the 

average of the scores from the immediate and delayed transfer tests. In the delayed testing session, participants 

also received a graphing test (Graphing variable; Scale 0 (nothing) – 9 (maximum)) and, in Experiment 2, also a 

brief test of 2D spatial visualization skills (Spatial variable; Scale 0 (nothing) – 7 (maximum)). The graphing test 

is a shortened version of the test of McKenzie & Padilla (1986) and the spatial visualization skills is a shortened 

version of the test of Slezakova & Molnar (2011). 

3.4 Data analysis 

Since the data from the two conditions were collapsed for present purposes, we did not use condition as an 

independent variable. We thus used the following linear regression model for explaining the transfer test scores:  

 

Yi (transfer) = 0 + 1 Pretesti + 2 MATHSEi + 3 SAAMMi + 4 Gamesi  + 5 Graphingi + 6 Spatiali  + i, 

 

where Pretesti, MATHSEi, SAAMMi, Gamesi, Graphingi, and Spatiali  are variables for i-th student, Yi (transfer) is 

transfer test score for i-th student, and i ~ N (0, 2) denotes the random error of i-th student. 

 

Correlations were expressed using Pearson’s r, and effect sizes were classified according to Cohen (1988) as 

small (~ .1), medium (~ .3), and high (~ .5). In one case, we also used the two-sample t-test and explained the 

differences using Cohen’s d. The effect sizes were classified as small (~ .2), medium (~ .5) and large (~ .8).  

4. Results 

Table 2 shows the raw data for all experiments and Tables 3 – 6 correlations for individual experiments. As 

concerns validation of the MATHSE and SAAMM questions, we see (Table 2) that there are large differences 

between computer science (mathematics/physics) students and other students. For MATHSE, Cohen’s d ranged 

between 1.72 – 2.57 (all differences were significant with p < .001); for SAAMM, Cohen’s d ranged between 0.55 

– 1.24 (all differences were significant with p < .05). Correlations between these two variables were .32 - .40, 

i.e., in small to medium range, suggesting the existence of a common denominator. 
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Table 2: Raw data for individual questions (split by participants’ background: “CS” stands for background in 

Computer Science and/or Mathematics and/or and Physics; “Oth” stands for “Others”, including 

psychology, new media studies and art). Means and SDs are given. The variables (Pretest, MATHSE, 

SAAMM, Games, Graphing, and Spatial) are described in Section 3.3 

Raw data from Exp. 1 - 4 

 

Pretesta MATHSEb SAAMMc Gamesd Graphinge Spatialf 

CS Oth CS Oth CS Oth CS Oth CS Oth CS Oth 

Exp. 1 
5.18 

(2.75) 

5.42 

(3.40) 

5.28 

(0.53) 

2.89 

(1.11) 

6.50 

(0.78) 

5.64 

(1.90) 

2.00 

(0.91) 

1.47 

(0.69) 

7.23 

(2.13) 

6.60 

(2.13) N.A. N.A. 

Exp. 2 
4.53 

(3.20) 

5.36 

(3.17) 

5.31 

(0.57) 

3.59 

(1.26) 

6.38 

(1.18) 

5.28 

(1.89) 

2.08 

(1.11) 

1.37 

(0.53) 

6.31 

(2.03) 

5.22 

(2.13) 

5.08 

(1.46) 

4.53 

(1.93) 

Exp. 3 
8.78 

(4.60) 

3.83 

(2.98) 

5.06 

(0.80) 

2.90 

(1.15) 

6.17 

(1.38) 

4.55 

(2.25) 

1.67 

(0.97) 

1.34 

(0.76) N.A. N.A. N.A. N.A. 

Exp. 4 
4.67 

(2.69) 

2.54 

(2.12) 

5.31 

(0.63) 

3.21 

(1.07) 

6.77 

(0.44) 

4.54 

(2.15) 

2.15 

(0.90) 

1.11 

(0.31) N.A. N.A. N.A. N.A. 

Notes:  

N.A. means that this inventory was not administered in this particular experiment.  
aScale: 0 (minimum) to 32 (Exp. 1, 2) (maximum) or 20 (Exp. 3) or 25 (Exp. 4).  
bScale: 1 (very small) to 6 (very large). 
cScale: 1 (definitely the names and propeller types) to 7 (definitely propellers’ functioning). 
dScale: 1 (less than 1 h a week) to 4 (more than 10 h a week). 
eScale: 0 (nothing) to 9 (maximum). 
fScale: 0 (nothing) to 7 (maximum). 

Table 3: Correlation matrix for Experiment 1. Numbers in parentheses denote the number of participants 

entering the respective correlation. “N.A.” means that at least one of the respective tests was not 

administered. (†p < .10  *p < .05  **p < .01  ***p < .001) 

Correlation matrix for Experiment 1 

 Transfer Pretest MATHSE SAAMM Games Graphing 

Transfer -      

Pretest .02 (69)      

MATHSE .37**(69) -.02 (73)     

SAAMM .28*(70) -.14 (74) .32**(74)    

Games .39***(70) .10 (74) .26*(74) .28*(75)   

Graphing .50***(70) .01 (69) .26*(69) .24*(70) .20† (70)  

Spatial N.A. N.A. N.A. N.A. N.A. N.A. 

Table 4: Correlation matrix for Experiment 2. Numbers in parentheses denote the number of participants 

entering the respective correlation. “N.A.” means that at least one of the respective tests was not 

administered. (†p < .10  *p < .05  **p < .01  ***p < .001) 

Correlation matrix for Experiment 2 

 Transfer Pretest MATHSE SAAMM Games Graphing 

Transfer -      

Pretest .24*(84)      

MATHSE .30**(84) -.13 (85)     

SAAMM .40***(84) -.03 (85) .40***(85)    

Games .41***(84) .00 (85) .24*(85) .24*(85)   

Graphing .43***(84) .16 (84) .36***(84) .29**(84) .26*(84)  

Spatial .19† (83) -.03 (83) .16 (83) .19† (83) .14 (83) .22*(83) 
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Table 5: Correlation matrix for Experiment 3. Numbers in parentheses denote the number of participants 

entering the respective correlation. “N.A.” means that at least one of the respective tests was not 

administered. (†p < .10  *p < .05  **p < .01  ***p < .001) 

Correlation matrix for Experiment 3 

 Transfer Pretest MATHSE SAAMM Games Graphing 

Transfer -      

Pretest .38***(76)      

MATHSE .22† (76) .60***(76)     

SAAMM .24*(76) .42***(76) .38***(76)    

Games .01 (76) .22† (76) .09 (76) .15 (76)   

Graphing N.A. N.A. N.A. N.A. N.A.  

Spatial N.A. N.A. N.A. N.A. N.A. N.A. 

Table 6: Correlation matrix for Experiment 4. Numbers in parentheses denote the number of participants 

entering the respective correlation. “N.A.” means that at least one of the respective tests was not 

administered. (†p < .10  *p < .05  **p < .01  ***p < .001) 

Correlation matrix for Experiment 4 

 Transfer Pretest MATHSE SAAMM Games Graphing 

Transfer -     
 

Pretest .39*(37)      

MATHSE .57***(41) .43**(37)    
 

SAAMM .48**(41) .34*(37) .40**(41)    

Games .48**(41) .16 (37) .47**(41) .37*(41)   

Graphing N.A. N.A. N.A. N.A. N.A. 
 

Spatial N.A. N.A. N.A. N.A. N.A. N.A. 

Table 7 shows the main results. As concerns Experiment 1 and 2 (the complex beer brewing simulation), we see 

that both MATHSE and SAAMM variables are indeed correlated to test scores with small to medium effect size 

(Tables 3, 4); however, these correlations can be largely explained by game playing frequency and graphing skills 

for Experiment 1 and 2, and also by pre-test score in Experiment 2 (Table 7). The only significant 

MATHSE/SAAMM regression coefficient is for the SAAMM question for Experiment 2 (Table 7). Because the 

simulation resembles a computer game and uses graphs, this outcome is in fact not surprising. Could we find a 

clearer effect of math self-efficacy and self-assessed ability of acquiring mental models on learning outcomes 

using non-game-like computerized materials with no graphs? 

 

In Experiment 3 (the lightning formation animation), we found a small to medium effect size relationship 

between test performance and MATHSE/SAAMM variables (Table 5), but these two variables are also highly 

correlated to the pre-test score, which turned out to be the only significant predictor of the test performance 

(Table 7). This finding is also not that surprising because the animation’s content was related to electro-physics 

and the link between the math self-efficacy and prior electro-physical knowledge (and achievement) is 

understandable. Could we find a clear effect of math self-efficacy and self-assessed ability of acquiring mental 

models on test performance with an animation unrelated to mathematics?    

 

We used such animation in Experiment 4 (the biological wastewater treatment plant animation). Now, the test 

performance is highly correlated to the MATHSE variable (Table 6) and this variable is the only significant 

predictor of the test performance (Table 7). The SAAMM—test performance correlation is also high range (Table 

6) and the SAAMM standardized regression coefficient is notable (0.26; Table 7) yet non-significant. This could 

be due to small power of the statistical test (N = 41 for Experiment 4). 
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Table 7: Standardized regression coefficients for each experiment. Coefficient of determination for each model 

is shown in the first column. The other columns show standardized regression coefficients ( ) for each 

variable with 95% confidence intervals (CI). “N.A.” means that the variable was not used in the model. 

(†p < .10  *p < .05  **p < .01  ***p < .001) 

Main results – regression coefficients 

 Intercept Pretest MATHSE SAAMM Games Graphing Spatial 

Exp

. R2  

CI 

95%  

CI 

95%  

CI 

95%  

CI 

95%  

CI 

95%  

CI 

95%  

CI 

95% 

1 

0.3

8 

-

0.04 

[-0.25, 

0.16] 0.05 

[-0.17, 

0.27] 0.2† 

[-0.02, 

0.41] 0.08 

[-0.17, 

0.34] 0.25* 

[0.03

, 

0.46] 

0.38**

* 

[0.17

, 

0.59] N.A. N.A. 

2 

0.3

9 0.00 

[-0.18, 

0.18] 

0.22

* 

[0.03, 

0.41] 0.09 

[-0.12, 

0.30] 

0.23

* 

[0.03, 

0.44] 

0.27*

* 

[0.08

, 

0.46] 0.22* 

[0.01

, 

0.43] 

0.0

5 

[-

0.14, 

0.24

] 

3 

0.1

6 0.00 

[-0.22, 

0.22] 

0.37

* 

[0.08, 

0.65] 

-

0.04 

[-0.31, 

0.24] 0.11 

[-0.13, 

0.36] -0.08 

[-

0.30, 

0.15] N.A. N.A. N.A. N.A. 

4 

0.4

5 0.02 

[-0.25, 

0.30] 0.13 

[-0.19, 

0.44] 0.4* 

[0.03, 

0.77] 0.26 

[-0.05, 

0.56] 0.14 

[-

0.21, 

0.50] N.A. N.A. N.A. N.A. 

5. Discussion and conclusion 

In all four studies, we found a relationship (i.e., a correlation) between math self-efficacy, assessed by our single 

question, and test performance, and also between self-assessed ability of acquiring mental models, assessed by 

a single question, and test performance (Tables 3 – 6). This relationship tended to be in medium to high ranges. 

Despite this relationship was masked and/or mediated by other variables in all treatments, except for the non-

game-like animation whose content was unrelated to mathematics/physics (Table 7), its existence is a useful 

practical finding. The point is that in studies with between-subject design (using interventions supposed to teach 

mental models acquisition, such as simulations and games), the groups should be equalized with respect to these 

two variables. Otherwise, one group can outperform the other not due to the intervention’s features but 

because participants from one group were predisposed to acquire the mental model easily. The equalization of 

groups can be done easily because researchers can administer these two questions in pre-tests and the outcome 

can immediately assist them in assigning participants to groups. Alternatively, the researchers can use these two 

variables as covariates. (Of course, it should be also tested if these variables indeed correlate to test scores in 

the experiment in question.) 

 

Our finding could have also theoretical implications, if thoroughly replicated. This implication would be that 

people experienced in manipulating mathematical objects in working memory may be in advantage as concerns 

general mental models acquisition. This ability would probably be related to increased spatial abilities of these 

learners (cf. Ackerman et al., 1995; Höffler, 2010). 

 

As concerns limitations of the present study, validating the MATHSE/SAAMM questions against real 

mathematical tests’ outcomes would be vital. Note also that in Experiment 4, we did not administer graphing 

test, which is a drawback from the perspective of the present study (this test was not originally planned for 

Experiment 4). As for the test of spatial abilities: even though we have not found the link between spatial abilities 

and mathematical self-efficacy (Table 4), larger tests of spatial abilities can indicate differently (cf. Ackerman et 

al., 1995).  

 

There are also open issues. First, it is unknown when the influence of frequent gaming on transfer test scores is 

mediated by mathematical skills (due to math skills—frequent gaming relationship) and when it is causal (due 

to materials’ game-like appearance). Second, boundary conditions of this effect must be investigated: for 

instance, our different study indicated that our math self-efficacy question is unrelated to test performance for 

high school audience. We believe that the reason is that college students (who knew that diverse students 

participated in the experiment) related this question to general population whereas high-school students to 

their class (i.e., school grade), brining substantial noise due to inter-class differences. 
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Considering all points together, our tentative suggestion is that researchers investigating acquisition of mental 

models by computerized materials (using between-subject design with quantitative measures) should consider 

equalizing groups with respect to participants’ mathematical ability. The level of this ability can be probably 

indicated indirectly by our two questions on mathematical self-efficacy and self-assessed ability of acquiring 

mental models. In future, rigorous validation of these questions and investigation of boundary conditions would 

be useful.    
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