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Abstract. Coupling virtual environments (e.g. game engines like Source Engine 
or Unreal Engine 3) with agent reasoning systems (ARS) is often used in the 
multi-agent systems (MAS) research field. However, externally connecting 
ARS or MAS to environments almost always requires individual approach for 
every coupling. Therefore, we recognize the need for a common method of 
access, without the need to implement a network stack, network protocol or 
data management. In this paper, we present our new project - HLA Proxy - 
utilizing the High Level Architecture (HLA) standard (IEEE 1516-2010) for 
interconnecting simulations and simulators. We created a C++ prototype 
middleware providing universal and transparent access to the HLA 
infrastructure for not HLA-capable applications (i.e. ARS, MAS, visualization 
tools etc.), thus allowing cross-platform, distributed connection to environments 
and between environments. Our work is aimed at being directly integrated into 
the environment (i.e. engine) and application via dynamic linkage. Here, we 
present our architecture and our proof-of-concept integration into CryENGINE 
3 (used for the Crysis game) and Source Engine (used for the HalfLife 2 game) 
running on Windows XP 32bit and Windows 7 64bit platforms. We also 
implemented a 64bit Linux console application utilizing HLA Proxy to connect 
to both engines capable to send console commands and receive environment 
updates. 

Keywords: HLA, High Level Architecture, middleware, Agent Reasoning 
System, Computer Games, Distributed simulation, Dynamic-Link Library 

1 Introduction 

The realism of virtual environments (e.g. computer games) increases with every 
iteration of their respective engines (e.g. Source engine [1], CryENGINE 3 [2], 
Unreal engine [3]). These worlds being extensively realistic are excellent candidates 
for conducting research and experiments in various fields of Artificial Intelligence 
(AI) [18], ranging from crowd simulations to single agent reasoning systems (ARS) 
and multi agent systems (MAS). However, it is fairly complicated to access these 
virtual worlds, possibly by simple, universal and versatile means. 
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The CIGA middleware [24] represents an attempt to conceptualize a general 
architecture needed for coupling computer games with ARS and MAS. CIGA 
presents a layered fairly complex architecture for accessing game engines, comprised 
of a physical, semantic and cognitive layer. It is build around the notion of ontology 
domain, which is used to unify the environment’s and the agent’s view of semantic 
representations. However, CIGA’s physical layer only encapsulates the problem of 
coupling to an environment. Our opinion is that CIGA creates conceptual and run-
time overhead over the coupling, which should be focused on universal data 
exchange. Actual data interpretation, abstraction and management should be located 
within the interconnected entities (i.e. MAS, ARS, game engines etc.).  

We distinguish the following methods for accessing virtual environment’s data 
(e.g. objects, events etc.) and functionality (e.g. actions of agents): 1) direct access 
and 2) via external interfaces. Direct access is facilitated via including compiled or 
scripted code into the engine’s runtime, either by dynamic linkage (e.g. Gary’s 
Mod [8]) or loading and executing scripts (e.g. utilizing LUA scripting language [5]). 
Access based on reverse engineering is rare (e.g. StarCraft Brood War API [7]). 

Access over an external interface is commonly realized via network sockets 
utilizing a text-based or binary protocol. External coupling to an engine requires a 
bidirectional (network) interface. Often, a custom interface is designed (i.e. network 
stack, network protocol, data update management, etc.) based on the respective 
environment’s architecture [4] (e.g. event/object based architectures, 
single/multithread internals etc.). Based on our experience with Source Engine, Cry 
Engine, Unreal Engine, and Defcon game [13], we consider this task a significant 
time-consuming effort. 

However, need to utilize a 3D virtual environment lead developers and researchers 
to create an external network interface for Unreal Engine. The resulting text-based 
GameBots [9] protocol is used to export data and events utilizing the UnrealScript 
scripting language. The protocol is utilized by many researchers due to the fact it 
provides an existing network interface for coupling to a capable virtual world. 

The Pogamut project [10] capitalizes and extends the idea of GameBots and 
incorporates the protocol via the GaviaLib library into a NetBeans based platform 
(Figure 1) for prototyping IVAs utilizing the Java programming language [11]. 
Presently, Pogamut is limited to few environments – a) Unreal Tournament 2004, b) 
Unreal Development Kit based projects – e.g. the Emohawk project [12], and c) 
Defcon game [13].  

 

 
Fig. 1. Pogamut project architecture – connecting a Pogamut Agent via GaviaLib and 
GameBots 2004 to the Unreal Tournament 2004 computer game. The agent is controlled by a 
decision making mechanism running in the Netbeans development environment and is written 
using the Java programming language 



Due to the fact, that coupling methods between applications, ARS, MAS and 
virtual environments are limited to used protocols (e.g. GameBots) and architectures 
(e.g. CIGA), we recognize the need for a more universal, platform independent (i.e. 
Linux/Windows 32/64bit), direct (i.e. without various layers like presented [24]), 
adaptable and fast solution, which can be easily integrated into most environments or 
projects with less work on the network and data management overhead currently 
involved. 

This paper presents our C++ based platform HLA Proxy for universal, direct, 
adaptable, cross-platform interconnecting of applications – e.g. simulations, decision 
making mechanisms, data collecting applications, ARS, MAS etc. HLA Proxy 
exploits the High Level Architecture (HLA) standard [6] for interconnecting 
simulations and simulators. Our middleware is aimed at providing the HLA capability 
to most applications build upon the object oriented programming paradigm, by 
integrating our middleware via dynamic or static linkage. The target application can 
utilize a subset of the HLA standard’s capabilities and can exchange data in an object 
or event driven way without the need to implement a network interface or a 
translation mechanism between the inner representation and a network protocol stack. 
Our architecture, in contrast with CIGA [24] is aimed at mitigating data between the 
virtual environment and the ARS or MAS via HLA. 

High Level Architecture has already been used for virtual agent’s research by 
(Lees et al.) [25]. HLA compliant agents created with the SIM_AGENT high level 
design toolkit [26] were introduced to a tile world scenario and compared with native 
SIM_AGENT’s agents and their performance was inspected. HLA compliant agents 
performed worse than native SIM_AGENTs in the presented scenario. However we 
think this is mostly due to the tendency of the scenario and the HLA agent’s design. 
The low performance of the agent’s is mostly due to the overuse of the HLA’s 
synchronization mechanisms. Also the integration with SIM_AGENT toolkit might 
represent a bottleneck responsible for the degraded HLA compliant agent’s 
performance. However, a degraded performance of HLA in respect to an optimized 
engine-ARS coupling is expected, because HLA and HLA Proxy are aimed at 
providing universal access to environments and simulations/simulators within large 
simulation aggregations which requires various non trivial time consuming 
mechanisms to be present (e.g. time management, data delivery systems etc.). 

Note that, the LVC Game proprietal solution by Calitrix [15] provides a similar 
solution as the HLA Proxy. It provides a network layer for various applications (e.g. 
Virtual Battle Space 2 (VBS2) [14]) implementing a subset of the DIS/HLA standard. 
However, LVC Game supports only a limited subset of the military RPR Federation 
Object Model 2.0 [17]. Therefore, it is not feasible for AI research, because the needs 
of decision making mechanisms for IVA’s are broader then the representation used. 

The paper is structured as follows – the following section is focused on presenting 
basic High Level Architecture concepts. Section 3 is aimed at presenting our 
middleware. Section 4 and 5 is focused on our proof-of-concept implementation and 
performance tests of HLA Proxy’s internal database. Section 6 concludes and presents 
future work. 



2 High Level Architecture 

The purpose of this section is to provide insight into basic High Level Architecture 
(HLA) concepts and ideas. The standard [6], [16], [21] itself was created for the 
purpose of interconnecting a multitude of various simulations and simulators in use 
by the United States Department of Defense [18] without expensive new development 
or redesign of current simulations and simulators (e.g. life-size tank simulator). HLA 
recognizes the term federation, which represents the aggregation of participants – 
federates (Figure. 2). A federate can be perceived as any application, simulation or 
any other entity, passively or actively participating in the federation. In our case, 
federates are either virtual environments or decision making mechanisms. 

A federation setup example could be as follows – a virtual fighter jet simulator 
(e.g. Lock On: Modern Air Combat [19]) being one federate having an AI controlled 
fighter jet in the simulation, a soldier simulator (e.g. Virtual Battle Space 2 [14]) 
being operated by a human and a human crew operated tank simulator being the third 
federate. All these participate and coexist in one simulation environment, where they 
have different internal data representations and implementations, and care about 
various degrees of data abstraction – e.g. the fighter jet simulator does not need to 
know how much health the soldier has, or how the physical model of the tank works. 
Furthermore, if a virtual soldier mounts a tank as a driver, the soldier simulator is 
responsible for the abstraction and virtual presentation of the real tank simulator. The 
data exchanges and communication between federates is done in the HLA 
environment, where the HLA’s mechanisms are responsible for correct exchange and 
delivery of data to all participants. 

 
Fig. 2. High Level Architecture – a passive federate (e.g. mission logger), an active federates 
(e.g. tank simulator and virtual entity managed by an AI)  

2.1 Data representation and exchange 

Interconnecting various federates requires the federation to share a common view of 
the simulated world, at least conceptually. HLA specifies this common view as the 
Federation Object Model (FOM) [16], which is similar to the domain ontology [24]. 
The FOM is a tree-like structure based on the object oriented representation of the 
world (Figure 3) and is represented by a XML document. Nodes within the structure 
are called Object Classes, where the descendant inherits the parent’s attributes. The 
concept allows for backward compatibility, where when adding a new federate with a 



more detailed notion of the world (i.e. more deep FOM structure) can work with older 
federates who recognize only a portion of the updated FOM. The HLA standard also 
allows for complex type creation by type aggregation. 

The proper exchange of data within a federation is facilitated via the Run-Time 
Interface (RTI). The RTI represents the actual implementation of the data exchange 
protocols. The data exchange between federates is based on ownership, update status 
and time management. The RTI also provides a multitude of services [21] – e.g. 
ownership acquisition, object discovery etc. 

The data exchanged can be of two major types a) Object Instances and 
b) Interactions. The Object Instances represent the object of a certain Object Class 
and their attributes within a simulation world (e.g. a virtual soldier) specified in the 
FOM. The attributes and Object Instances can be owned by a particular federate 
which is responsible for their update and other federates can subscribe to these 
updates. Parameterized Interactions can be seen as events that occur in the simulated 
world (e.g. a grenade explosion). The data exchange model is a publisher/subscriber 
model, where federates publish and subscribe to Object Instances and attributes. The 
data update model is a one writer, many readers model, where ownership is acquired 
or relinquished over RTI. 

 

 
Fig. 3. Federation Object Model representation of two ontological domains. Both domains 
represent an example of how entities like Players and Bots [4] can be represented. The domain 
on the right is an extension of the left domain, where the Player objects class is a parent of the 
Alien and Human object classes. 

2.2 Example 

To better illustrate HLA’s workings, we provide a simple example of a federation’s 
data flow where a computer game engine is coupled with an ARS. Let us assume a 
virtual world where secret agent bots live and are capable of shooting at each other. 
The virtual world is run by a computer game engine (e.g. Source Engine) and the 
ARS is a simple C++ application with simple reactive reasoning. The engine is a 
federate and every secret agent bot has one dedicated ARS federate. The FOM of this 



federation specifies only the Agent Object Class with a Health attribute and one 
Attack Interaction with two parameters – “who attacks who”. 

The instance of the Agent Object Class called Agent007 is owned by its creator, the 
Source Engine. The ARS being situated as different federate, can subscribe to some 
attributes of Agent007 – e.g. his health, position and enemy agents it can see. Let us 
assume that, Agent007 meets an enemy agent called Agent001 (also an Agent Object 
Class). 

The notion of meeting of two agents can either reasoned by the agents themselves, 
based on percepts from the environment (e.g. actual percepts in the agent’s field of 
view, or computations based on the knowledge of all agent’s positions). However, this 
inference can be done by another federate responsible for determining visibility 
between agents and propagated as an HLA Interaction to the federation. A similar 
HLA Interaction could also originate from the engine. All variants are equivalent, the 
difference is only where the information about visibility is processed. 

Let us assume that Agent007’s ARS reasons the need to shoot Agent001 and it 
triggers the Attack(Agent007, Agent001) HLA Interaction. The Interaction is 
delivered to the engine (if it has subscribed to receive it) over RTI. Agent007 shoots 
and may trigger or update various attributes within the engine (e.g. health count of 
Agent001, ammo count in Agent007’s pistol etc.). 

It is noteworthy that both Agent001’s and Agent007’s ARS can have various 
internal representation’s of the ontology domain, even various degrees of perception. 
Agent007 might not know about having a pistol, only knowing the interaction of 
Attack which is handled engine specific – by pistol, ( in a different game) by bow or 
not at all (i.e. Agent007 has no weapon or no ammo).  

3 HLA Proxy Middleware 

This section is focused on explaining the basic features of our HLA Proxy 
middleware, our design goals and decisions. The main idea behind our middleware is 
to provide any object-based application or engine with the capability to access the 
HLA and to allow data exchange without being limited to one protocol or 
architectural design. The HLA Proxy’s philosophy is to only load the library into the 
host’s run-time, couple the internal objects to objects represented in the FOM and 
perform write and read operations on those Object Instances. HLA Proxy should 
handle all the synchronizing of data between federates, to keep everybody up to date.  

3.1 Design 

The main design issues we addressed with our HLA Proxy were a) generality – 
virtual environment or application capable of dynamic/static linkage should be 
capable to use our middleware, b) adaptability – if the view of the world or 
requirements on functionality change, we have to be able to reflect it, c) transparency 
& simplicity - we cannot bother applications or engines with handling network traffic 



or data management, d) responsiveness – the middleware has to be fast to be able to 
cope with engines. 

Our approach is based on the notion of hiding the network management, object 
management, semantic transformations etc. from the user (Figure 4) thus achieving 
simplicity. We consider the best option to directly couple engine’s objects, semantic 
transformations, and inferences etc., to Object Classes and Interactions specified in 
the FOM. 

 
Fig. 4. Coupling of a Protoyping tool (e.g. Pogamut) to a Game Engine over the HLA Proxy 
middleware over the RTI using HLA. The Game Engine/Prototyping tool integrates the HLA 
Proxy middleware via dll linkage and accesses proxy classes generated based on the FOM by 
get/set methods. The updates are propagated over the RTI between the HLA Proxy nodes and 
deliver the information to either the Game Engine or Prototyping tool. 

The federation’s ontology (represented within the FOM specification) can be either 
taken from already existing FOMs (e.g. RPR FOM 2.0) or developed on a per-case 
basis as a common derivate of the ontology and abstractions of the participating 
federates. To our experience, the best practice is to take the existing exported object 
declarations (e.g. C++ headers of the engine’s SDK) and build the FOM based on 
them. This allows for fast and simple integration of the resulting HLA Proxy’s 
mechanisms into the present engine’s or application’s code (e.g. the Player object 
instance within the engine calls update functions on the FOM’s Player class that 
reflect the actual Player Object Instance in the federation and map to a HumanPlayer 
object in another federate that is coupled with the FOM’s Player Object Class). 

The HLA Proxy provides the means to mitigate the ontology over the HLA 
environment by invoking Interactions or updating and requesting the data on Object 
Instances from our middleware (Code 1). The update methods of HLA Proxy can be 
either called directly from an engine code segment (e.g. Player::setHealth() method), 
engine callbacks, engine update loop, or within a code segment present in an 
additional layer developed for the coupling. This allows for more complex, better 
tailored integration into an engine or application. Conceptually, this approach allows 
for a cleaner and less bounding integration in respect to the engine – i.e. the updates 
can be per objects, or at specific code locations etc (e.g. more important objects are 
updated every frame, less important objects are updated during update loops). 



class CPlayer{/* class declaration within CryENGINE 3 */ 
     /* usual members for engine purposes start here */ 
   unsigned int m_health; 
    ...  
     /* HLA Proxy code starts here */ 
     HLAProxy::Data::Player *pHLAPlayer;  
}; 
 
CPlayer::setHealth (unsigned int hp) { 
   /* engine specific code goes here */ 
  m_health = hp; 
 /* HLA specific code for propagating updates outwards */
 if (pHLAPlayer != NULL) { 
  pHLAPlayer->setHealth(m_health); 
  pHLA->updateInstance(pHLAPlayer); 
  } 
} 

Code 1. Example of a C++ code from the Cry ENGINE 3 SDK, where the CPlayer is an object 
within the Cry ENGINE 3 environment representing the player’s embodiment. When the 
engine updates the health of the player, the HLA Proxy middleware is called to propagate the 
update to other federates 

3.2 Internal Architecture 

To satisfy generality, we designed HLA Proxy as a dynamically linkable library 
(dll in Windows based systems, so in Linux based systems), which can be introduced 
into the environment’s or application’s runtime. 

 

Fig. 5. Barebone HLA Proxy two tier architecture – components are presented in boxes, lines 
represent communication interfaces between components. The Application box represents the 
run-time dynamically loading HLA Proxy. 

It can be seen in Figure 5, HLA Proxy’s architecture is a simple two tier 
architecture. Application or engine can access the HLA Proxy by two means – the 



Common Interface and the FOM Abstraction Module. Common Interface provides 
basic functionalities, like startup, shutdown, registering handlers for HLA 
Interactions. The other modules, like RTI Support Module and RTI Communication 
Module provide support for RTI related network transfer and can be specific or 
optimized per RTI to gain a performance boost. 

The FOM Abstraction Module represents the means for the application to access 
the federation’s ontology domain specified within the FOM XML document. To 
satisfy the goals transparency, simplicity and adaptability we needed to address the 
following issues: 1) extract the ontology domain from the FOM module (satisfies 
adaptability), 2) provide means for access to the data via simple means (satisfies 
simplicity), 3) mitigate data exchange from and to HLA in respect to correct data 
updates (satisfies transparency). 

First, we needed to extract the ontology domain specified in the FOM. Due to the 
fact that multitude FOMs exists for various uses (e.g. RPR FOM 2.0 for military 
simulations) and the FOM can change, update or be replaced, it is feasible to assume 
that hard-coding a FOM into HLA Proxy was not a suitable solution. We chose to 
provide our middleware with the capability to generate C++ code based on the FOM 
XML specification using our XSLT code developed for this purpose. Because the 
FOM’s structure is derived from the object oriented paradigm, the generated code can 
reflects the ontology by C++ classes in an inheritance schema equivalent to the 
FOM’s specification. 

Second, we needed to access the in the FOM specified Object Classes, their 
attributes as well as Interactions by simple means. Invocation of an Interaction can be 
done easily by calling the appropriate global function from the host (i.e. application, 
engine) run-time. The host run-time can register callbacks from HLA Proxy to be 
called when an Interaction occurs within the federation. Objects Instances as being a 
result of creating an Object Instance (stored in a in-memory database within HLA 
Proxy) and can be accessed via Handlers which are initialized from an internal hash 
table based on the unique Object Instance names.  

To access object attributes, we utilize the get and set approach, where every 
attribute has his own get/set functions generated (i.e. FOM attribute Foo has functions 
getFoo() and setFoo()). The get and set functions are generated based on the access 
specification of the attribute – i.e. publish-only attributes have only set functions, 
subscribe-only have only get functions and publish/subscribe have both.  An example 
of use can be seen in the code above (Code 1). It is noteworthy, that the attribute Foo 
might represent one attribute within one federate’s internal object and a combination 
of attributes in a different federate’s internal representation. Every federate is 
responsible for its own interpretation of the FOM. 

Third, we needed to provide means to synchronize the host run-time with the 
access to the distributed environment of HLA. On one side, operation requests are 
inserted by the host run-time, from the other side, updates are received via RTI. We 
designed our own in-memory internal database of Object Instance Attributes, mostly 
due to the fact, that available database solutions (i.e. databases like MySQL, 
PosgreSQL etc.) are either standalone or not suitable for our specific requirements. 
We need to keep transactions isolated, but cannot perform a rollback or transaction 



aborts, because virtual worlds tend not to be able to rollback. We also have to keep 
the data consistent and ordered by timestamps. We use a combination of locking, 
assigning unique timestamps to requests and multiversion approach [22]. The 
internals of our database design are beyond the scope of this paper. As for 
responsiveness, we designed the HLA Proxy’s database internals to be fully multi-
threaded. Internally we use one dispatching thread and an army of worker threads 
which execute the request on top of the database. 

The resulting FOM Abstraction Module encapsulates all the functionality for the 
host run-time to access FOM specified federation’s ontology domain over RTI in 
adaptive, simple and transparent way. Our in-memory database provides the host 
environment with accurate data in respect to the host’s run-time HLA time 
management specification (i.e. update orderings depend on this). The multi-thread 
design allows for parallel operations on attributes, thus providing more efficient use 
of today’s multicore hardware. 

4 Proof-of-concept implementation 

The aim of our proof-of-concept is see if our approach is feasible and working by 
exchange information (e.g. health status and command scripts) back and forth 
between federates (i.e. computer game and application). We also aim at integrating 
HLA Proxy into two major computer game engines with different internal 
architecture – Source Engine (Half Life 2 game) and Cry ENGINE 3 (Crysis game). 
The integration via dynamically loading our dll was performed without creating 
additional layers of architecture to the engine (i.e. network layer, abstraction 
transformation etc.). 

We created a federation between our console application and each of the game 
engines (separately) – i.e. the federation had only 2 federates (due to our license for 
the MÄK RTI [17]). Both engines were running on a Windows XP 32bit and 
Windows 7 64bit platform and our console application was developed for a Linux 
64bit platform (Figure 6). 

 
Fig. 6. HLA Proxy proof-of-concept setup where Source Engine/CryEngine 3 is talking over 
HLA Proxy with a client application over the MÄK RTI working over TCP/IP network 



We considered a simple scenario where our console application receives updates 
on health status of a Non Player Character (NPC) and sends script commands to the 
environment (which would appear in the respective engine’s console) via HLA Proxy. 
In our scenario, we forced the NPC via script command to throw a grenade and kill 
himself, thus receiving health updates before and after the explosion and receiving 
Interaction notification of the explosion. 

The integration into Source engine took us about 9 months of work, due to the fact 
that the integration was actual HLA Proxy’s design and development. We used the 
Source Engine as a design reference due to its complex internal mechanisms. Our 
additional findings in respect to integration issues (e.g. memory management issues in 
Half Life 2 etc.) can be found in [23]. The integration into CryENGINE 3 was rather 
quicker, due to our experience with Source Engine – it took about 3-4 days. 

5 Performance 

This section is focused on providing results of our performance benchmarking of the 
HLA Proxy middleware. We conducted a series of synthetic tests on our in-memory 
database to inspect the scaling properties of our scheduling algorithm and data storage 
mechanism. We decided to only benchmark the in-memory database for two reasons – 
1) we had no complex enough federation at disposal and 2) a federation wide testing 
would be about benchmarking the used RTI (i.e. it would depend on the federation 
properties and network topology). 

We base our hypothesis on the observation that frame-rates of game engines is 
presently around 50–60 frames per second at most. Our expectation would be the 
database’s capability to handle 100 operations (i.e. read/write operations) per frame to 
satisfy a reasonable assumption on how many objects interact or change during a 
single frame. It is noteworthy that our expectations are not based on actual 
measurements, because the amount of interacting objects can vary based on engine 
and in-game situation. 

5.1 Benchmarking method 

Our benchmarking is focused on the duration of read and write operations in a 
barebone setup of HLA Proxy to avoid resource consumption by other modules (e.g. 
logging etc.). The HLA Proxy was integrated into an application accessing Object 
Instances and their attributes. We accessed one instance of a HLA Object Instance, 
because internally we either use direct access over directly linked handlers, or a hash 
table. In most use cases, the handler would be linked once during in-engine object 
creation and then reused when accessed or updated. We also did not want to 
benchmark our hash table implementation, but our scheduling mechanism. It is 
noteworthy, that our database works with Object Instance Attributes, rather than 
whole Objects Instances, therefore needed only one instance of an Object Instance 
due to the fact that only concurrent access to Object Instance Attributes are of interest 
to us – they cause the actual slowdown when scheduling operations. Access to 



multiple different Object Instances is handled in parallel. It is noteworthy that the in-
memory database runs in parallel with the application’s code, where one dispatcher 
thread is responsible for 10 worker threads that perform the requested operations. 

We established four use cases for read/write operation ordering:  

• series of reads,  
• series of writes,  
• series of writes followed by a reads, 
• random ordering of reads and writes.  

For every use-case we perform a series of tests, where we access the attributes in 
every iteration in the following setups: 

1. single attribute from one single thread, 
2. multiple (4) attributes accessed from one single thread at once (all in one iteration), 
3. multiple (4) attributes access from 4 threads (one attribute per thread). 

The iteration count for a batch of tests is increased from 100 to 20000 iterations per 
run. We conducted 5 runs for every combination of setups and the resulting value is a 
mean of the measured runs. 

 Resulting time of executions are normalized to operations processed per second. 
This representation can easily show whether such performance meets expectations for 
real-time usage or not. Measurements contain not only time consumed by processing 
of requests but also time spent in scheduling of request in application code. 

We performed our evaluation on a Windows 7 64bit operating system running on a 
Core 2 Quad 2.4GHz (E6600) processor. Our build target was a 32bit platform. The 
actual testing application was running on a Virtual Box hosted Fedora 16 platform 
with one dedicated CPU for the virtualization. 

5.2 Results 

In Figure 7 we show the read throughput of the database. Because read operations are 
blocking operations (i.e. have to finish before returning to the caller), we do not need 
to perform Setup 2, because it behaves like Setup 1. The scheduling mechanism scales 
properly in both the single and multithreaded setup. 

 
Fig. 7. Read throughput – attributes accessed by long series of reads 



In Figure 8 we show the write throughput of the database. The performance for 
Setup 1 and 2 perform as expected. In Setup 2, write operations are asynchronous and 
can be performed in parallel - the database works with Object Instance attributes, 
rather than whole objects. Therefore the increase in Setup 2 in respect to Setup 1 is 
almost four times. The Setup 3 behaves slightly better, because the inserting into 
dispatcher’s request queues is done on behalf of the requesting thread’s runtime and 
therefore can insert more requests to be processed by the dispatcher thread. 

 
Fig. 8. Write throughput – attributes are access in a long series of writes 

In Figure 9 we show a series of writes followed by a read. This ordering of 
operations is interesting due to the fact that the read has to wait until all the writes are 
processed to acquire the current data. All setups can be seen to scale well. Setup 1 and 
2 behave as expected – write operations are processed asynchronously and only final 
read operations do block. Parallel processing of asynchronous writes in Setup 2 might 
provide the observed speedup. The Setup 3 also behaves as expected and scales well. 
The doubling in speed is due to the same effect described earlier. 

 
Fig. 9. A series of writes followed by a read operation 

In Figure 10 we can see a completely randomized ordering of requests for single 
thread and multiple thread setups. Both setups behave as expected – they come close 
to each other because of the necessary synchronization on attribute asynchronous 
writes and blocking reads which have to wait for each other. The multi-thread setup is 



still better then the single thread setup, but both are usable, thus HLA Proxy does not 
favor a single or multi thread design approach. 

 

Fig. 10. Randomized ordering of requests on read and write operations 

5.3 Discussion 

Performance results collected by our benchmark look promising. The middle value of 
performance equals to 16860.6 (multithreaded) and 14285.7 (single-threaded) random 
operations per second. Most engines are limiting its frame rate to 50-60 frames per 
second. Therefore the database can perform around 250 operations per single frame. 
This result is beyond our initial expectation of 100 operations per single frame. 
Engines could adapt to the current load of updates by scheduling less operations thus 
providing a less accurate virtual world’s representation. To conclude, the performance 
meets expectations for usage of the middleware for interconnection between computer 
game engines and ARS or MAS. 

One limitation is that maximum possible performance is limited. Measured limits 
can be seen in Figure 7 and Figure 8 and are close to 25000 operations per second. 
The performance bottleneck is the thread scheduling mechanism and it does not 
matter how many cores the machine has, because we use only one dispatcher thread.  

Due to the fact, that most operations on an object’s attributes within the engine are 
performed within one thread’s runtime – the most important information is how fast 
HLA Proxy is processing operation requests from a single thread. A performance 
improvement might be achieved by using multiple scheduling modules, thus 
introducing more dispatcher threads for single non-concurrent thread access on 
different attributes. Unfortunately such modification would introduce a more complex 
scheduling algorithm and thread synchronization issues.  

Due to the fact that the HLA Proxy middleware would run within an engine’s 
runtime it is expected that performance of the internal database will degrade, because 
game engines tend to consume enormous resources – i.e. memory and processor time. 
Engine’s resource consumption is beyond our reach and this issue has to be addressed 
on a per integration basis. 



6 Conclusion and Future Work 

In this paper, we presented the C++ based HLA Proxy middleware prototype for 
interconnecting applications and engines, as well as various engines with each other 
in a general, simple, transparent and accessible way. We developed an architecture 
with good results in synthetic benchmarking in respect to internal operation.  

Our proof-of-concept integration with CryENGINE 3 and Source Engine proved to 
be successful, despite the fact that the SDKs provided are undocumented. Our 
middleware is aimed at shortening the time for creating an application↔game engine 
coupling – HLA proxy hides network management and data management layers from 
the developer and provides simplistic update mechanisms (e.g. simple function calls 
on get, set update functions, Interaction notification callbacks etc.). We also managed 
to connect to CryENGINE 3 in less than a week. 

The use of HLA Proxy is simplistic and can be integrated into an application via 
dynamic or static linkage. The capability to generate code (i.e. get and set update 
function etc.) based on the FOM provides a unique solution not only to connecting to 
environments, but also when exchanging data in various domains. 

For future work, we need to connect a true decision making mechanism and a 
development platform to at least one environment. We also look forward to enhance 
the capabilities of HLA Proxy to support more of the current HLA standard – namely 
various time management mechanisms. We also plan to test our architecture in a more 
complex environment with multiple simulations – create a federation where two 
different engines are connected (e.g. Source engine and CryENGINE 3) to an agent 
decision making mechanism. We also intend to study integration times and 
capabilities for HLA Proxy and Pogamut/GameBots integration into a computer game 
engine. 
Acknowledgments: This work was partially supported by SVV Project no. 265 314, 
student grant GA UK No. 0449/2010/A-INF/MFF, by project P103/10/1287 (GA ČR) 
and GA UK No. 655012/2012/A-INF/MFF. 

 
1. Valve: Source SDK (2011) [url: http://source.valvesoftware.com/sourcesdk.php 20.2.2012] 
2. Crytek: CryENGINE 3 SDK  (2011) [url: http://mycryengine.com/ 20.2.2012] 
3. Epic Games: Unreal Tournament 2004 (2004), [url: http://www.unreal.com (20.2.2012)] 
4. Gemrot, J., Brom, C., Plch, T.: A periphery of Pogamut: from bots to agents and back 

again. In: Agents for Games and Simulations II, Springer (2011). 
5. Ierusalimschy, R., Celes. W., de Figueiredo L., H.: Lua programming language [url: 

http://www.lua.org/ 20.2.2012] 
6. IEEE1516.1-2010 IEEE Standard for Modeling and Simulation (M&S) High Level 

Architecture (HLA) - Federate Interface Specification (2010) 
7. BWAPI (2004) [url: http://code.google.com/p/bwapi/ 20.2.2012] 
8. Facepunch Studios: Garry’s mod (2004) [http://garrysmod.com/ 20.2.2012] 
9. Adobbati, R., Marshall, A., N., Scholer, A., Tejada, S., Kaminka, G., Schaffer, S., Sollitto, 

Ch.: Gamebots: A 3d virtual world test-bed for multi-agent research, Proceedings of the 
2nd  international workshop on Infrastructure for Agents MAS and Scalable MAS (2001) 



10. Kadlec, R., Gemrot, J., Bída, M., Burkert, O., Havlíček, J., Zemčák, L., Pibil, R., Vansa, 
R., Brom, C.: Extensions and applications of Pogamut 3 platform. In: Proc. 9th IVA, 
Springer (2009) 

11. Gemrot, J., Brom, C., Bryson, J., Bída, M.: How to compare usability of techniques for the 
specification of virtual agents' behavior? An experimental pilot study with human subjects. 
In: Proceedings of Agents for Games and Simulations, AAMAS workshop (2011)  

12. Bida, M., Brom, C.: Emohawk: Learning Virtual Characters by Doing. In: Proceeding of 
ICIDS 2010, Springer, (2010) 

13. Introversion Software: DEFCON (2006) [url: http://www.introversion.co.uk/defcon/ 
20.2.2012] 

14. Bohemia Interactive: Virtual Battle Space 2 [url: http://vbs2.com 20.2.2012] 
15. Calytrix Technologies: LVC Game 
16. IEEE 1516.2-2010 Modeling and Simulation (M&S) High Level Architecture (HLA) - 

Object Model Tempalte (OMT) Specification 
17. VT MÄK, [url: http://www.mak.com 20.2.2012] 
18. Department of Defense, [url: http://www.defense.gov/ 20.2.2012] 
19. van Oijen, J.; Dignum, F.; Scalable Perception for BDI-Agents Embodied in Virtual 

Environments. Web Intelligence and Intelligent Agent Technology (WI-IAT) (2011) 
20. Eagle Dynamics: Lock On: Modern Air Combat (2003)  
21. IEEE 1516 Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) 

– Framework and Rules (2010) 
22. Garcia-Molina, H., Ullman, J., Widom, J.: Database Systems: The Complete Book, 

Prentice Hall (2001) 
23.  Jedlička, T.: Utilizing HLA for agent based development platforms. Master thesis, Charles 

University (2012) 
24. Oijen, J. van; Vanhée, L. and Dignum. F.: CIGA: A Middleware for Intelligent Agents in 

Virtual Environments In Proceedings of the 3rd International Workshop on Agents for 
Education, Games and Simulations, AAMAS11 (2011) 

25. Lees, M., Logan, B., Theodoropoulos, G.: Agents, games and HLA. Simulation Modelling 
Practice and Theory,  (2006) 

26. Sloman A., R. Poli, R., SIM_AGENT: A toolkit for exploring agent designs. Intelligent 
Agents II: Agent Theories Architectures and Languages (ATAL-95), Springer (1996) 


	1 Introduction
	2 High Level Architecture
	2.1 Data representation and exchange
	2.2 Example

	3 HLA Proxy Middleware
	3.1 Design
	3.2 Internal Architecture

	4 Proof-of-concept implementation
	5 Performance
	5.1 Benchmarking method
	5.2 Results
	5.3 Discussion

	6 Conclusion and Future Work

