
Planning is the Game: Action Planning as a Design Tool and Game Mechanism

Rudolf Kadlec and Csaba Tóth and Martin Černý and Roman Barták and Cyril Brom
Charles University in Prague, Faculty of Mathematics and Physics

Malostranske nam. 25, Praha 1, 118 00, Czech Republic
{rudolf.kadlec, toth.csaba.5000, cerny.m}@gmail.com, bartak@ktiml.mff.cuni.cz, brom@ksvi.mff.cuni.cz

Abstract

Recent development in game AI has seen action plan-
ning and its derivates being adapted for controlling
agents in classical types of games, such as FPSs or
RPGs. Complementary, one can seek new types of
gameplay elements inspired by planning. We propose
and formally define a new game ”genre” called anticipa-
tion games and demonstrate that planning can be used as
their key concept both at design time and run time. In an
anticipation game, a human player observes a computer
controlled agent or agents, tries to predict their actions
and indirectly helps them to achieve their goal. The pa-
per describes an example prototype of an anticipation
game we developed. The player helps a burglar steal an
artifact from a museum guarded by guard agents. The
burglar has incomplete knowledge of the environment
and his plan will contain pitfalls. The player has to iden-
tify these pitfalls by observing burglar’s behavior and
change the environment so that the burglar replans and
avoids the pitfalls. The game prototype is evaluated in
a small-scale human-subject study, which suggests that
the anticipation game concept is promising.

Introduction
Planning technologies have attracted a lot of attention in aca-
demic community and, more recently, even among game de-
velopers. So far, the research has focused mainly on adapt-
ing planning techniques to the needs of current game gen-
res, be it at design time or during gameplay. The aim of the
game industry and of many of the researchers is to replace or
enrich traditional approaches of scripting and reactive plan-
ning. Besides trying to tailor planning for current games, we
can attempt to create brand new types of gameplay elements
that revolve around action planning and would be impossible
with reactive decision making only.

Interactive Storytelling (IS) may be considered a step in
this direction. In IS, planning is often used as a technology
that enables creating or maintaining a coherent story plot.
However, the existence of a plan remains hidden to the user.
Contrary to this approach we propose a new type of games
where the fact that we have a complete plan of agent’s ac-
tions plays a key role. We call them anticipation games.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Imagine you play a game where the main agent has a mission
that he must accomplish. He creates a plan for this mission
but due to incomplete knowledge of the environment there
are some pitfalls in his plan. The human player has more
complete knowledge of the environment, thus when observ-
ing execution of the agent’s plan, she can anticipate these
pitfalls (in further text, agents will be referred to in mas-
culinum, while the player in feminimum). Once she iden-
tifies a pitfall, she can modify the environment so that the
agent has to re-plan and the new plan avoids this pitfall. The
player influences the agent only indirectly through changes
of the environment.

Besides using planning as the key element of the game-
play, we also use it to assist the game designers to assure suf-
ficient complexity of the level. In particular we check several
properties of a game level with the same planning algorithm
that was employed to plan agent’s actions. Briefly speaking,
the goal is to find a game level where the initial agent’s plan
contains a given number of pitfalls and these pitfalls can be
avoided by players’s actions that force the agent to re-plan.

The goal of this paper is to define formally the anticipa-
tion games, exemplify it on our implemented prototype, and
describe algorithms used at design time and run time.

The rest of the paper continues as follows. In the next
section we will detail previous work related to use of both
planning and anticipation in games. Then, for explanatory
purposes, we will describe game-play of our burglar game.
Then we will define formally the class of anticipation games
and describe our game from a technical perspective as an
instance of the anticipation game. Finally, we will present a
small evaluation of the concept of anticipation games, where
we use the burglar game as an instrument.

Related Work
Considering planning in the context of computer games, a
huge body of work focuses on the use of planners in design
and verification of levels, e.g. (Pizzi et al. 2008; Li and Riedl
2010; Porteous and Cavazza 2009). We consider this as an
off-line use of planners.

On-line use of planning during actual gameplay is
severely limited by the available computing time. With re-
spect to commercial games, the most successful algorithm is
the GOAP (Orkin 2003; 2006), a simplified STRIPS (Fikes
and Nilsson 1972) like planner. So far 14 game titles have

used this planner1. Custom HTN planners have also been
used in commercial games (Champandard, Verweij, and
Straatman 2009). Aside from planners created specially for
purposes of games, there were also attempts to use off-
the-shelf PDDL compatible planners (Bartheye and Jacopin
2009) or HTN planners (Muñoz-Avila and Hoang 2006) in
games directly. PDDL is a modeling language used to de-
scribe planning domains in International Planning Competi-
tion (IPC) and it became a de-facto standard input language
used by many planners.

In accord with IPC challenges, benchmark tasks moti-
vated by needs of FPS games have been proposed recently
(Vassos and Papakonstantinou 2011).

The main difference of our game prototype compared to
the above-mentioned systems is that 1) we use planning
in both level design and gameplay and 2) planning is not
merely a decision-making algorithm hidden from the player,
it forms a key part of the gameplay.

A different body of work related to planning in games
comes from the IS field. Although the game prototype we
propose is not directly related to IS, it may be extended with
IS techniques. Those possiblities along with relevant refer-
ences will be discussed in Future Work section.

The gameplay element of anticipating autonomuous agent
actions and indirectly influencing them is found in many
games. In From Dust (UbiSoft 2011), one of the game ele-
ments is that the player sees the planned movement of mem-
bers of his tribe and alters the landscape so that they may
safely travel to their location. In Frozen Synapse (Mode 7
2011) the player has to anticipate enemy movement and cre-
ate plans that are then resolved simultaneously with enemy
plans. Quite a few other strategy games employ anticipation
and indirect commands at various levels, for example Black
And White (Lionhead Studios 2001) or The Settlers (Blue
Byte Software 1996).

A very different kind of anticipation is present in The
Incredible Machine (Sierra Entertainment 1992) and its se-
quels. The player tries to alter a given setup of devices, items
and animals so that upon simulating the system according to
a modified laws of physics it evolves to a specified goal con-
dition (e. g. a ball reaches a designated place).

In all of the above mentioned games, the player antici-
pates either a very simple behaviour or the actions of an-
other player - which are very hard to guess on the other
hand. Incorporating planning allows the agents in our game
to exhibit more complicated behaviour which might be more
fun/challenging to try to foresee and thus the anticipation
gameplay element can be brought to a new level and play a
more central role.

Burglar Game Description
For explanatory purposes, we will detail mechanics of our
game prototype first. Anticipation games in general will be
defined later.

The overall situation in all game levels is that a burglar –
a computer controlled agent – tries to steal a valuable arti-

1For the list of commercial games using GOAP see
http://web.media.mit.edu/∼jorkin/goap.html, 23.11.2011

fact from a secured museum. Apart from the burglar, there
is one more class of active agents in the level, the guards.
The game world consists of interconnected rooms of differ-
ent sizes and shapes. The rooms can contain one of these ob-
jects: cameras; containers, that can hold keys; artifact, that
is the target for the burglar; sleeping guards, which can be
tied down and the burglar can use their uniforms to sneak
under the cameras; and finally doors between rooms. If the
burglar or a guard has a proper key, they can both lock and
unlock a door or a container.

The burglar is caught if he gets into the same room with a
patrolling guard or with an active camera. In the rest of the
paper such places will be called trap rooms. The complica-
tion is that the burglar knows only some of these dangers.

The human player observes the game world from a bird’s
eye view. The player’s goal is to change small details of the
environment, such as locking the doors and containers or
even disabling cameras, to prevent the burglar getting caught
on his mission. The player wins when the burglar runs away
with the artifact, she looses if the burglar gets caught or has
no valid plans to reach his goal. The levels are designed in
a way that without help of the player the burglar will surely
be caught.

While the player can alter state of any object in the game,
each interaction costs her a price in action points expense of
which she should keep minimal. The player can also spend
action points to take a look at the visualized plans of any
agent’s future actions, the more actions the player sees the
more she pays. It is important to highlight that though clas-
sical path planning is part of the problem, action planning
is very important there as the burglar needs to plan actions
such as opening the doors, stealing the uniform etc.

At the beginning of the game the burglar is always posi-
tioned at the entrance to the game area, and that is also the
place where he has to return. Initially, the burglar knows the
layout of the map, the exact location of the artifact and po-
sitions of some traps. Based on this incomplete knowledge,
the burglar makes a plan how to steal the artifact and then
escape from the museum. However it is guaranteed by the
design process that his plan will contain pitfalls. There will
always be trap rooms on his way and it is the player’s task
to make the burglar avoid them. For instance, there are cam-
eras in predefined rooms. When the player finds out that the
burglar will enter a room with a camera, she can lock a door
on the burglar’s path so that he has to change his route and
misses the trap room.

The burglar and the guards have their own belief-base
about the environment, which they use to plan future actions.
Their knowledge may of course be wrong. The belief-base is
updated whenever the agent finds an inconsistency with the
world state. This may trigger re-planning and thus it may
cause change of the actual plan. Through the game, it is up
to the player to predict the actions of the agents. However if
she decides to spend action points to take a look at the visu-
alized plan of an agent, the view also highlights where the
belief base of the agent differs from the real world state.

On Figure 1 there are two game situations. On the left
image, the player locks a door on the burglar’s path to pre-
vent him encounter the guard. When the burglar discovers

Figure 1: Locking a door causes the choice of another path, seen from the burglar’s perspective. Visible objects are: 1) the
burglar, 2) a guard, 3) a closed container, 4) a closed door, marked with a darker colour to symbolize it is not fully consistent
with the burglar’s belief base, 5) the level entrance, 6) a camera, that is marked with deep dark colour to symbolize that it is
completely unknown to the burglar, 7) an intent line showing the future path of the burglar in the game area with arrows to
mark his direction, 8) a container holding the artifact, with textual description what the burglar intents to do with it.

that the door is closed, he re-plans. The right image captures
this situation, and also points out that there is another locked
door on the burglar’s new path, that he is not aware of yet.

The difficulty of a level is given by the number of places
where the player has to assist the burglar. The harder the
level, the more trap rooms are put to the world, but on the
other hand there has to be some sequence of actions (in-
cluding the player’s actions) leading to a successful end.
Hence when designing the game level, planning techniques
are valuable to verify these properties.

Anticipation Game Definition
We will now abstract our game and we will formally define
a class of games that we call anticipation games. We will do
so by defining properties of the game level of such games.

Anticipation game is a tuple:

〈S, S0
real, Aplayer, Agents,mainAgent, prohibited(S)〉

where S is a set of possible world states, S0
real ∈ S

denotes the real world state at the beginning of the level,
Aplayer is a set of actions available to the human player,
Agents is a set of agents in the level, mainAgent ∈
Agents is the agent the player should help to, the other
are background agents. The predicate prohibited(S) defines
which states of the world contain a pitfall and thus are pro-
hibited to the main agent. Each agent is specified by a tuple
〈S0

agent, Aagent, goal(S)〉 and its decision making system
(Alg. 1). S0

agent ∈ S is an initial world state as known by the
agent, Aagent is a set of his possible actions and goal(S) is
a predicate that defines states of the world the agent is trying
to achieve. An action is a partial function a : S′ ⊂ S → S.
Action is applicable in every state s ∈ S′ and the corre-
sponding function value is the new state after applying such
action. In each cycle the agent executes Alg. 1, that is, he

executes one action from its plan P . P is a sequence of ac-
tions ai ∈ Aagent, that is P = a1, a2, ...an. Then he ob-
serves the new state of the world and updates his belief base
according to it. In the end he decides whether he should re-
plan or not. We will specify the particular implementation
of updateBeliefBase and shouldReplan functions used
in our game prototype later as they are not needed in the de-
scription of a general anticipation game. We should note that
the updateBeliefBase also models the agent’s perception.

Algorithm 1 One step of an agent’s decision making
Require: P — plan that is being executed
Require: G — goal pursued by the agent
Require: St

agent — agent’s prior knowledge of the level
1: action← getNextActionFromPlan(P)
2: if action 6= undefined then
3: St+1

real ← action(St
real)

4: end if
5: St+1

agent ← updateBeliefBase(St+1
real, S

t
agent)

6: if action = undefined or shouldReplan(St+1
agent, P)

then
7: P ← plan(St+1

agent, G)
8: end if

Not all details of the real world state St
real in time t

have to be perceivable by the agent (e.g. objects in differ-
ent rooms). His internal believed world state St

agent does
not have to correspond to the real world state.

Each level of an anticipation game has to be constructed
so that there will be some pitfalls in the agent’s initial plan.
At the same time, the player should have the possibility to
choose some actions whose outcome will make the agent to
re-plan and pick a new plan. We formalize this requirement
using the following formula:

∃Ā ⊆ Aplayer∃t : P = plan(S0
mainAgent, G)∧

numFlawsInP lan(P, S0
mainAgent) = 0 ∧ (1)

numFlawsInP lan(P, S0
real) = n ∧ n ≥ 1 ∧ (2)

Ā⊕ S0
real = S1

real ∧ S0
real 6= S1

real ∧ (3)

shouldReplan(St
mainAgent, P) ∧ (4)

∀t′ < t : ¬shouldReplan(St′

mainAgent, P) ∧ (5)

P ′ = plan(St
mainAgent, G) ∧ (6)

¬flawed(P ′, St
mainAgent) ∧ ¬flawed(P ′, St

real) (7)

Where numFlawsInP lan(P, St) = |{t′ ∈ N, t′ ≥ t :
execution of plan P in state St will lead the agent into state
St′ , such that prohibited(St′)}|. Thus it returns the number
of pitfalls in plan P when executed from the state St.

The formula requires that there is an initial world state
S0
real and its modified version known to the agent S0

agent
such that a plan P chosen by the agent seems to be solv-
ing the task given the agent’s initial knowledge (Cond. 1)
but that contains n ≥ 1 pitfalls in reality (Cond. 2) . More-
over there must be a set of the user’s actions Ā application
of which on the initial state results in a new different state
(Cond. 3), the ⊕ operator is used to apply effects of actions
on a world state. There must also be some time t when the
agent first re-plans due to inconsistency between St

agent and
St
real (Cond. 4 and 5). Eventually, after re-planning at time t,

the agent will create a new plan P ′ (Cond. 6) that is without
pitfalls both in St

agent and St
real (Cond. 7). Thus P ′ could be

followed by the agent without the player’s intervention and
it will result into a successful completion of the level.

Note that the main agent does not know the plans of the
background agents. This definition can also lead to creating
levels where the initial burglar’s plan contains n pitfalls but
it can be solved with just one user’s action. We would like
to overcome these limitations in future work, but there is a
simple case, where no further requirements are needed: if the
number of pitfalls, that may be resolved by a single action, is
bound by a constant k, the minimal number of user actions
is at least n/k.

Anticipation Game Level Design
With the anticipation game definition provided in the previ-
ous section we can create a generic level design algorithm.
Suppose that a designer specifies S0

agent that describes the
main agent’s initial knowledge of the level. In the end we
want the world state with pitfalls, that is, we want S0

real
Alg. 2 shows a brute force solution of the game level de-
sign problem. First at Line 1 we create a plan solving the
level. Then we iterate over all combinations of plan steps
where we possibly could place some pitfall (Line 2), the
possibleP itfalls function returns such steps. Next we mod-
ify the level so that there will really be pitfalls when the
agent gets to these steps of the plan. At Line 4 we tell
the agent where the pitfalls are (the agent knows the real
state of the world Sreal) and ask him to make a plan avoid-
ing these pitfalls (this requirement is contained in the goal

G). If there is such a plan the last step is finding human
player’s actions that will force the agent to re-plan and
pick the plan P ′, this is done by the userReplanActions
function. Note that possibleP itfalls, placeP itfalls and
userReplanActions procedures are game specific.

Algorithm 2 Anticipation game level design
Require: S0

agent — initial world state by the designer
Require: n — number of required pitfalls in the level

1: P ← plan(S0
agent, G)

2: for all pitfalls ⊆ possiblePitfalls(P) ∧|pitfalls| = n
do

3: Sreal ← placePitfalls(S0
agent, P, pitfalls)

4: if ∃P ′ : P ′ = plan(Sreal, G) and ∃Ā : Ā =
userReplanActions(Sreal, P, P

′) then
5: return 〈Sreal, Ā〉
6: end if
7: end for
8: return null

Anticipation Game Instance
In the previous sections we introduced a formal definition of
anticipation games. The decision-making and game-level-
design algorithms were also described in an abstract way.
Now we will describe our prototype game in terms of the
previous definitions. A more detailed description can be
found in the related thesis2 (Toth 2012).

Burglar’s and Guards’ Planning. In the on-line phase
the burglar and the guards can perform the following actions:
approach, open, close, lock, unlock, enter and operate. All
these actions are atomic and take exactly one time unit to
execute. Actions related to game objects can be performed
only when the agent stands right next to the object. From the
planner’s point of view there is no difference between room
sizes, or distances between the objects.

All the agents have the same planning domain. The only
real difference between the two types of agents is in their
goals. The guards’ goals consist of a list of rooms that they
need to visit, while the burglar has a single goal room and
an artifact to gather. The guards are repeating the same plan
again and again - once a guard visits all the rooms he starts
again - unless the change of environment, such as locked
doors, forces him to re-plan. If the guard has no plan to
achieve his goal, he remains still.

The updateBeliefBase function from Alg. 1 is imple-
mented in a way that the burglar gets information about pres-
ence of all objects in his current room. However he recog-
nizes some details of the objects only when he tries to use
them (e.g. he realizes that the doors are locked only when he
tries to open them).

The shouldReplan function returns true only if the agent
comes upon an instruction in his plan he is unable to exe-
cute (e.g. he finds a locked container that was supposed to be

2downloadable from http://burglar-
game.googlecode.com/files/thesis.pdf [23.07.2012.]

opened, without the key to open it). An alternative approach
would be to re-plan each time the agent finds an inconsis-
tency of his internal believed world state with the real world
state. However this can cause much higher frequency of re-
planning, thus leading to less predictable behavior. We tested
this approach but finally we decided to use the first method
where the agent re-plans only when the inconsistency causes
a failure of his plan. Nevertheless our posthoc evaluation has
shown that the latter approach is closer to human behavior,
which opens the door for future work.

When implementing the plan function that utilizes ex-
ternal PDDL planners we made the following observa-
tion. When the burglar knows that there is a pitfall in e.g.
Room3, then the goal G should contain negative predicate
¬visitedRoom(Room3). However such negative predicate
significantly slows down all the tested planners. It is much
more convenient to emulate this requirement by removing
the Room3 from the planning domain and running the plan-
ner on this modified domain.

Level Design. In our design process, the designer speci-
fies the map layout and possibly adds some objects to it.
That becomes the main agent’s prior knowledge S0

agent. The
map layout remains fixed, the pitfalls that are placed on the
burglar’s initial path by the placeP itfalls function are cam-
eras or guards. The general Alg. 2 can be simplified because
there are always some user actions Ā that are to be found by
the function userReplanActions: each pitfall is in a room
and the player can lock the doors to this room. Thus for each
pitfall there is a player’s action that will force the burglar to
re-plan. The only open question is placing the pitfalls in such
a way that there still exists a plan for the burglar. We use
some domain specific information there. For example we do
not try to place pitfalls in rooms that the burglar is unable
to avoid, like graph chokepoints, or rooms that hold objects
necessary for completion of the burglar’s mission.

Note that generating plans for agents and the level build-
ing is more complex than path finding. It is not enough to
find the shortest route, the acting agents may have to pick
up items, use objects, lock and unlock doors; while doing
this, the agents change the world state. In addition, to control
whether there exists a valid solution for a level, the program
has to take into account both the agents’ and the player’s
possible actions.

Even though the algorithm still has time complexity ex-
ponentional in the number of rooms and objects, it proved to
be usable on our small testing domains. Moreover it could
be executed offline since it is run only at design time.

Implementation
The game has been implemented as a Java application, it
uses an external game engine Slick3 and an external planner
SGPlan 5.22 (Chen, Wah, and Hsu 2006). SGPlan can be re-
placed with other planners capable of solving problems in
PDDL 2.2. We use Planning4J4 interface, that works with

3Slick homepage: http://slick.cokeandcode.com [18.5.2012]
4Planning4J homepage: http://code.google.com/p/planning4j/

[17.5.2012]

several different planners. The Navigation library is used
to smooth movement of the agents. While the planner uses
high-level actions such as enter a room or approach an ob-
ject, the particular path between two points in the environ-
ment is planned using the classical A* algorithm. The game
prototype is downloadable and open-source5.

Domain Size and Performance
The planning domain of the game agents has 12 predicates
describing properties of the environment, 10 different op-
erators and 20 types of objects. We created a level with
28 rooms to test performance of the planners. When trans-
lated to the burglar’s PDDL planning problem this level
had 74 PDDL objects and 167 initial facts. The exact num-
ber of facts and objects may vary based on the actual be-
lief base of the agent, but the one used in this example
had a near flawless knowledge of the world. The result-
ing plan for the problem above contained 78 grounded ac-
tions. On the current test configuration (Intel Core i7 2GHz,
2GB RAM), the time required to create such a plan is
about 300 ms including the initial construction of the prob-
lem description in PDDL from the internal representation
in Java and parsing the returned instruction list. Several
PDDL planners have been tested on this level, FF 2.3 (Hoff-
mann 2001), Metric-FF (Hoffmann 2003), SGPlan 5.22 and
MIPS-XXL (Edelkamp and Jabbar 2008) all ended within
half a second, however Blackbox (Kautz and Selman 1999),
HSP (Bonnet and Geffner 1998), LPG (Gerevini, Saetti, and
Serina 2006), LPRPG (Coles et al. 2008), Marvin (Coles and
Smith 2007) and MaxPlan (Xing, Chen, and Zhang 2006)
ended with error or reported that the problem is unsolvable.

The hardest game level so far was a 10 by 10 room maze
with all neighboring rooms interconnected, the problem def-
inition contained 290 PDDL objects and 912 initial facts. In
this level only FF 2.3, SGPlan 5.22 and Metric-FF found
solution in 8 seconds limit. MIPS-XXL needed nearly 50
seconds and the other planers failed.

Evaluation
By experimental evaluation we wanted to obtain the follow-
ing information concerning the gameplay of an anticipation
game. First, whether the players can play the game in a way
we expected (Task 1). Second, what strategy would humans
use for re-planning (Task 2). This was done with a study of
human players trying our game prototype. The evaluation
was performed with 20 college students, 13 of them studied
computer science. There were 16 men and 4 women between
20 and 32 years old.

In Task 1 we had four questions, we tested if the play-
ers can: Q1) predict burglar’s path, Q2) identify the pitfalls,
Q3) pick the action that will make the burglar re-plan and
avoid the pitfall and Q4) predict its new plan. In Task 2 we
modified the game so that the players controlled directly the
burglar and they had access only to the information the bur-
glar has. We wanted to know if they would re-plan when an
action from the initial plan fails (Strategy 1), or when a new

5Homepage of the game is http://burglar-game.googlecode.com
[23.07.2012]

shorter plan emerges because of a new knowledge (S2); or if
they will explore the environment after noticing the change
but before re-planning (S3).

Method. In the first part of the evaluation the participants
were introduced to the key concepts of the game by playing
3 tutorial levels6 that demonstrated all the concepts needed
to solve the test levels. If they made some mistake they were
allowed to play the level again until they solved it.

In Task 1 they were presented with three previously un-
seen levels A, B and C printed on a paper7 showing the
same information as on a computer screen. Then they were
asked to draw how they would solve the level with minimum
penalty points. After drawing the solution they could run the
simulation on a computer. Then they were asked to rate its
difficulty using a five point Likert item ranging from 1-easy
to 5-difficult. After completing levels A, B and C they rated
overall enjoyment of the game. Answers to Q1-4 were ob-
tained by measuring percentage

8

of participants that had correctly drawn the plans (Q1 and
Q4) and marked pitfalls (Q2) and objects whose state has to
be changed (Q3) (Fig.).

In Task 2 we let the participants directly control the bur-
glar in two different levels to find out how they would be-
have if they were the burglar. Both levels were designed in
a way that there were some initially unknown objects, doors
or even whole rooms that make it possible to create a new
shorter plan if they were perceived by the human player (cor-
responds to S2). In the second level there were also many
possibilities for exploratory behavior not following any plan
(S3). Fig. shows these two levels.

Participants were allowed to ask the experimenter ques-
tions about mechanics of the game both during the tutorials
and in the testing phase. Each participant had about one hour
to complete the whole procedure.

Results. Results of Task 1 are summarized in the Table .

Level Q1 Q2 Q3 Q4 Avg. dif. rating
A 100% 95% 85% 90% 3
B 85% 95% 75% 80% 4
C 83% 72% 89% 78% 2.6

Table 1: Percents of players that were successful in tasks
designed to answer Q1-4 and avg. rating of difficulty. Level
C was played by only 18 participants.

In Task 2 we found that in the first level (Fig. left) all par-
ticipants re-planned as soon as they realized that there is a
shorter plan (when they enter the room with a sleeping guard

6Levels 1, 2 and 4 as can be found in the downloadable distri-
bution of the game.

7The levels can be obtained on http://burglar-
game.googlecode.com/files/AIIDE-12 test levels.zip
[23.07.2012.]

8We compared the plan drawn by a participant with the actual
plan chosen by the burglar. If the plan diverged in an insignificant
detail (e. g. a different, but still minimal path through a set of empty
rooms), we treated the plan as guessed.

Figure 2: One of the evaluation levels with the solution
drawn by one of the participants. Blue solid line shows the
burglar’s initial plan as drawn by the participant (Q1). Red
dashed circles mark pitfalls on the selected path (Q2). Yel-
low square marks door that should be closed (Q3). Green
dashed line shows the final path (Q4) where the burglar dis-
guises himself as a guard, taking advantage of the previously
unknown sleeping guard.

Figure 3: Two situations where human participants directly
controlled the burglar. Dark objects, doors and rooms were
initially unknown to the player.

they can take his uniform and sneak under the camera with-
out avoiding this room), thus following S2. In the second
level (Fig. right) 12 players decided to explore previously
unknown rooms that could even contain potential pitfalls,
this corresponds to S3. The other 8 followed the plan based
on the initial knowledge of the level. They re-planned only
when they were sure that the new path will be safe given
their updated belief base — S2.

Discussion. We see that even after a brief period of train-
ing the participants were able to play the game quite well.
They were able to guess the burglar’s plan, identify the pit-
falls, fix them and predict the new plan (see Table). Thus
the concept of the game seems to be viable. It is also pos-
itive that most players rated the game as entertaining when
the average rating was 0.5 on the scale -2 ... +2.

The experiments where the burglar was controlled by hu-
mans show us that humans follow strategy S2 and in some
situations S3, none of the participants used S1 implemented
in our shouldReplan procedure. This posses a question
whether the burglar should not re-plan as a human. Future

research is needed to investigate this question.

Future Work
As long as the whole game concept is based on players’ abil-
ity to predict the burglar’s plans, we need the planner not
only to produce some plans but arguably to produce plans
that resemble plans of humans. Current off-the-shelf plan-
ners are not optimized for this type of objective, but we can
get inspiration from the IS field. For instance there are works
that try to extend planning algorithms to account for inten-
tions of agents (Riedl and Young 2010), suspense (Cheong
and Young 2008) or emotions (Aylett, Dias, and Paiva 2006).
We think that these properties can make the plans more en-
gaging for humans. We can also focus on the re-planning
strategy and change it as suggested by our evaluation. Or
we can extend the definition to require existence of harmful
player’s actions that lead to capturing the burglar.

Conclusion
In this paper we defined formally a game genre of anticipa-
tion games, which advocates a novel form of exploiting ac-
tion planning in games: both at design time and run time.We
also presented a game prototype and a small-scale evaluation
of the anticipation game concept. The game concept can be
useful for academy as a research platform and although the
game levels can only be of medium complexity given state
of the art planners, it can be useful also for industry, e.g. for
creating specific game missions.

Acknowledgment
This work was partially supported by the student re-
search grant GA UK 655012/2012/A-INF/MFF, by the
SVV project number 265 314 and by the grants GACR
201/09/H057 and P103/10/1287.

References
Aylett, R.; Dias, J.; and Paiva, A. 2006. An affectively-
driven planner for synthetic characters. In Proceedings of
ICAPS 2006, 2–10.
Bartheye, O., and Jacopin, E. 2009. A real-time PDDL-
based planning component for video games. In Proceedings
of AIIDE 2009, 130–135.
Blue Byte Software. 1996. The Settlers II.
Bonnet, B., and Geffner, H. 1998. HSP: Heuristic search
planner. AIPS-98 Planning Competition.
Champandard, A.; Verweij, T.; and Straatman, R. 2009. Kil-
lzone 2 multiplayer bots. In Game AI Conference 2009.
Chen, Y.; Wah, B. W.; and Hsu, C. 2006. Temporal planning
using subgoal partitioning and resolution in SGPlan. Articial
Intelligence 26:323–369.
Cheong, Y., and Young, R. 2008. Narrative generation
for suspense: Modeling and evaluation. In Proceedings of
ICIDS 2008, 144–155. Springer.
Coles, A., and Smith, A. 2007. Marvin: A heuristic search
planner with online macro-action learning. Articial Intelli-
gence Research 28:119–156.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. A hybrid
relaxed planning graph-LP heuristic for numeric planning
domains. In Proceedings of ICAPS 2008, 52–59.
Edelkamp, S., and Jabbar, S. 2008. MIPS-XXL: Featur-
ing external shortest path search for sequential optimal plans
and external branch-and-bound for optimal net benefit. In
6th. Int. Planning Competition Booklet (ICAPS-08).
Fikes, R., and Nilsson, N. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. Artificial Intelligence Research
25:187–231.
Hoffmann, J. 2001. FF: The fast-forward planning system.
Articial Intelligence 22:57–62.
Hoffmann, J. 2003. The metric-FF planning system: Trans-
lating “ignoring delete lists” to numeric state variables. Ar-
ticial Intelligence 20:291–341.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proceedings of IJCAI 1999, 318–
327.
Li, B., and Riedl, M. 2010. An offline planning approach
to game plotline adaptation. In Proceedings of AIIDE 2010,
45–50.
Lionhead Studios. 2001. Black & White.
Mode 7. 2011. Frozen Synapse.
Muñoz-Avila, H., and Hoang, H. 2006. Coordinating teams
of bots with hierarchical task network planning. AI Game
Programing Wisdom 3.
Orkin, J. 2003. Applying goal-oriented action planning to
games. AI Game Programming Wisdom 2(1):217–227.
Orkin, J. 2006. Three states and a plan: the AI of FEAR. In
Game Developers Conference, volume 2006, 1–18.
Pizzi, D.; Cavazza, M.; Whittaker, A.; and Lugrin, J. 2008.
Automatic generation of game level solutions as story-
boards. In Proceedings of AIIDE 2008, 96–101.
Porteous, J., and Cavazza, M. 2009. Controlling narra-
tive generation with planning trajectories: the role of con-
straints. In Proceedings of Interactive Storytelling, 234–245.
Springer.
Riedl, M., and Young, R. 2010. Narrative planning: bal-
ancing plot and character. Journal of Artificial Intelligence
Research 39(1):217–268.
Sierra Entertainment. 1992. The Incredible Machine.
Toth, C. 2012. Planning systems in game level design and
agent control. Master’s thesis, Charles University in Prague,
Faculty of Mathematics and Physics.
UbiSoft. 2011. From Dust.
Vassos, S., and Papakonstantinou, M. 2011. The SimpleFPS
planning domain: A PDDL benchmark for proactive NPCs.
In Workshops at the AIIDE 2011, 92–97.
Xing, Z.; Chen, Y.; and Zhang, W. 2006. Maxplan: Optimal
planning by decomposed satisfiability and backward reduc-
tion. In Proceedings of ICAPS 2006, 53–56.

