

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

TEACHING HOW TO ENGINEER BEHAVIORS
FOR VIDEOGAME CHARACTERS

Jakub Gemrot
Faculty of Mathematics and Physics,

Charles University in Prague
gemrot@ksvi.mff.cuni.cz

Martin Černý
Faculty of Mathematics and Physics,

Charles University in Prague
cerny.m@gmail.com

Cyril Brom
Faculty of Mathematics and Physics,

Charles University in Prague
brom@ksvi.mff.cuni.cz

Abstract
In this paper we report on the practice lessons for the
course on Modeling Behavior of Human and Animal-like
Agents that teaches how to practically design and imple-
ment behaviors for videogame characters. We discuss edu-
cation challenges that come from the inherent complexity
of virtual behaviors as students need to learn how to inte-
ract with chosen virtual game environment before they can
apply theoretical knowledge acquired during lectures. We
present yaPOSH– a visual tool for design of behaviors that
allows for separation of the behavior design from the actual
behavior implementation. Students report that the tool
helped them to separate their thoughts and development
efforts between the design and implementation. Additional-
ly we show that implementation details of the yaPOSH tool
had positive impact on the effectiveness of learning.

Categories and Subject Descriptors D.2.2 [Software
engineering]: Design Tools and Techniques, K.3.2 [Com-
puters and Education]: Computer and Information
Science Education

General Terms Design, Languages

Keywords Education, Video Games, Virtual Behaviors

1. Introduction
Quality of videogame character behaviors is gaining more
and more attention from players community and it is slowly
becoming the tip on the scales that may bring the reception
of the game down or glorify it. Therefore, the education of
future video game developers should cover techniques how
to model behaviors of videogame characters as well as

provide them with an opportunity to practice these tech-
niques within the boundaries of complex 3D virtual envi-
ronments.

In this context, we run the Modeling Behavior of Human
and Animal-like Agents course that focuses primarily on
the virtual characters action-selection from the perspective
of artificial intelligence, computer games and ethology. The
course is running since 2005 and its theoretical part (lec-
tures) is described in [1]. Here we report on practice les-
sons (classes) we have created for the course in 2008 and
have been gradually improving since.

While the lectures are focused on the broader category
of virtual characters (intelligent virtual agents) including
topics on cognitive science research and computational
ethologic simulations [2, 3], classes focuses directly on the
development of video game character behaviors (referred to
as bots, bots behaviors or simply behaviors for brevity) for
3D video game. Technically, the classes utilize the Poga-
mut platform [4].

The paper is structured as follows. First, we discuss
educational objectives of the course classes. Second, we
report on the classes structure, detailing how respective
objectives are met. Third, we present the yaPOSH tool we
use to exemplify, how behaviors can be designed in an
implementation-agnostic way, teaching students a crucial
behavior design point; how to think about and structure
behaviors in a portable way. Last, we discuss students
feedback we collect on the Pogamut platform and yaPOSH
during final exam.

2. Related Work
As in other areas of programming, hands-on experience is
the key to understanding behavior development. The choice
of suitable environment that the students interact with (both
as players and as programmers) is of high importance.

There are multiple software packages that aim to teach
programming within the context of 3D virtual environ-
ments such as Alice [5] or CodeSpells [6]. While they pro-
vide 3D virtual environment for a programmer to work

with, they are not aimed at the development of behaviors
specifically; they are meant as environments for teaching
object first approach in introductory computer science
courses.

In the context of AI, educational scenarios based on Pac-
Man and other simple game environments [7] have been
proposed. Those are however not applicable to our case as
they focus on classical AI techniques and do not involve
environment comparable in complexity to 3D computer
games.

Finally, it is possible to build the course around existing
open-source (or at least not so expensive) 3D game engine
that features well-developed game editor, such as Unity 3D
[8], Unreal Engine 4 [9], Unreal Development Kit [10],
CryEngine FreeSDK [11], etc. Even though these clearly
are alternatives to the course tools described in this paper,
they cannot be used out of the box for the behavior devel-
opment education and the educator would need to invest
non-trivial effort for their adaptation.

3. Course Classes
3.1 Background

The course is tailored to computer science students at least
in their fourth term of bachelor studies after they attended
several courses on programming (10.51), mathematics (17),
general IT skills (8.5) and algorithms (5.5) [1]. Every year,
the course is attended by about 20 students. All students are
typically familiar with Java language used throughout the
classes.

3.2 Classes Objectives

Classes objectives are (1) to allow students to exercise
behavior development practically, (2) to exemplify a
layered architecture of behaviors, (3) teach students how to
separate action-selection from its implementation in order
to produce readable and maintainable code.

3.3 Virtual Environment

The choice of virtual environment for the behavior devel-
opment classes is the most crucial point. It may (a) strongly
affect the learning curve of the behavior development ba-
sics, (b) determine a range of behaviors students can prac-
tice on, (c) constrain the structuring of the classes and (d)
impose high requirements on the teacher.

The challenge here is to have an environment (and re-
lated tools) that would "sell" the course to students by of-
fering huge possibilities, but at the same, it should allow for
teaching the environment API in smaller steps, mixing the

1 Normalized number of courses on given topic; 1 course equals to 13
lessons unit (13 x 90 minutes). The course presented in this paper amounts
to 1.6 (classes included).

details of API with concrete tasks (behaviors to implement)
the students can practice on, while being relatively easy to
use.

We base our classes on an environment of Unreal Tour-
nament 2004 (UT2004), an older 3D first-person shooter
video game. The environment is of commercial quality and
complexity and still appeals to student graphically. Most
importantly, the game mechanics of UT2004 are very simi-
lar to mechanics of contemporary games.UT2004 provides
navigation graph [12] – standard interface for navigation
within the environment – and both individual and team-
oriented game modes. Individual game modes such as
death-match (DM) are easier to understand and allow for
quick implementation of bots that play the game well, but
offer only limited complexity. Team oriented modes, e.g.
capture-the-flag (CTF), require to mix both tactical and
strategic decisions and offer endless possibilities for im-
provements as well as for applications of advanced AI
techniques.

The game in its raw state is quite a hostile programming
environment – it features proprietary scripting language
that has no standard debugging support (watches, break-
points, etc.). Although more friendly programming envi-
ronments are very rare in the game industry, it would not be
a very good starting point for novice programmers.

To make the game suitable for education, we are using
the Pogamut platform [4] – a toolkit we have originally
developed for behavior development research. The plat-
form lets the programmer to control bots inside the game
via Java API (stable, bug-free, well documented)2. The
platform features in-game developer tools such as bot state
visualization, navigation visualization and logging (detailed
in [13]). It can also be used for creation of custom game
modes, which we use for fine structuring of the classes.
Finally, the Pogamut platform features yaPOSH – a visual
tool for design of behaviors that supports both editing and
debugging of yaPOSH plans. It is an incarnation of beha-
vior trees [14], which are considered to be an industry stan-
dard for the development of behaviors.

The drawback of the choice is the absence of smart ob-
jects within the environment [15], which is a useful tech-
nique for behavior structuring.

2 The use of Java language does not pose unnecessary obstacles for our
students as they learn it early during the studies (c.f. possible use of pro-
prietary language such as UnrealScript [16] for UT2004, Papyrus [17] for
Skyrim [18] or custom action-selection mechanisms such as UDK's
Kismet [19] or CryEngine behavior trees [20]).

Figure 1. Decomposition of the CTF bot behavior into
general behavior issues (solid border), UT2004 specific
knowledge or sub-behaviors (dashed borders) and task
specific sub-behaviors (dotted borders). Arrows depict
dependencies between individual topics.

Figure 2.Visualization of the part of the CTF bot behavior
(matches Fig. 3, left column) as presented by the yaPOSH
editor.

3.4 Classes Overview

The ultimate goal is to build a team of bots for the capture-
the-flag game mode. In order to successfully implement
behaviors for the team, students need to be taught various

programming skills, techniques and algorithms both gener-
ic and UT2004 specific (Fig. 1).

As the CTF task is daunting, students are presented with
simpler tasks first, which gradually teach them about dif-
ferent behavior issues, aspects of UT2004, the Pogamut
API and algorithms and programming techniques required
to implement team of CTF bots (Tab. 1). Tasks respect the
dependencies from Fig. 1 and behaviors for latter tasks
always build on experiences from doing the prior ones.

Key aspect of the classes is the behavior decomposition:
new low-level concepts are introduced one at a time and are
always accompanied with behavior development. Follow-
ing assignments then reuse the same low-level functionali-
ty, increase complexity of the behaviors and let the student
take advantage of his experience in the previous tasks
without letting him to copy-paste a previous solution. For
example, students learn to hide from other players and
reason tactically about their movement in the Hide&Seek
task. This is similar to the tactical movement of the CTF
bot, the very same API calls are used and the general phi-
losophy is alike, but the student needs to rethink the beha-
vior decomposition to balance positioning for a good shot
(new in CTF) with hiding from the enemy (known from
Hide&Seek). On a similar note, the students learn how to
create assault behavior while programming DM bot, but in
CTF bot, the assault must be balanced with handling the
flag and team cooperation and thus requires a redesign of
the behavior decomposition.

3.5 Lesson Structure

Each lesson is divided to theoretical and practical part.
Theoretical part lasts around 45 minutes and we explain the
goal of the lesson - which is usually to implement one of
the presented bot types - and all the necessary theoretical
knowledge and API calls that will be needed to solve the
lesson task. This is then followed by a practical part (45
minutes), where the students begin to solve the problem.
The tasks are mandatory and they are set in a way the stu-
dents usually will not complete the implementation on the
lesson, but need to finish it at home. To further motivate

Table 1. Classes, their topics and the tasks students have to solve.
No. Topic Task Bot Behavior Description
1 Low-level movement Dog Bot Follow the player around the environment.
2 Tactical movement Tag! Bot Play children Tag! game, both roles (catcher, runner).

3 Path finding, Stuck detection
and resolution, Navigation NavBot Navigate randomly around the environment, solves tucks.

4 Visibility, A* extensions Hide&Seek Bot Play childrenHide&Seek game, both roles (seeker, runner).

5 Items management ItemPicker Bot Navigate around environment and pick items, prioritize the
item order according to their distance and relevance.

6 Weapons manag., Shooting DM Bot Play DM mode of UT2004.
7 CTF rules CTF Bot Single bot that can play CTF mode of UT2004.
8 Team communication CTF Team Team of bots playing CTF mode of UT2004.

the students, we organize three tournaments during the
lessons for the fundamental tasks such as basic movement
(Tag! Bot), reasoning (Hide&Seek bot) and combat beha-
vior (DM Bot). All solutions of students from these task are
automatically submitted to the tournament and the results
are then shared and commented on. This improves student
engagement in the lessons and motivates the students to
spend more time on the assignments.

3.6 Behavior Oriented Design and yaPOSH

Behavior modeling approach taught during classes follows
the principles of Bryson's Behavior Oriented Design (BOD)
[21]. "BOD is a methodology for developing control of
complex intelligent agents, such as virtual reality charac-
ters, humanoid robots or intelligent environments." [22] As
such, it is applicable to video game characters and their
behaviors. The methodology encourages iterative develop-
ment that consist of multiple design-implement-test cycles.
Originally, the methodology is bound with the POSH lan-
guage that provides language constructs for respective
behavior primitives recognized by the methodology
(e.g. action sequences). We adapted the methodology for
the use within the Java language by mapping POSH lan-
guage constructs to Java language templates (based on
combination of method calls, if-then rules and finite state
machines) that provides user with similar expressiveness
while sustaining the favorable properties of POSH lan-
guage like self-documentation and the separation of beha-
vior structure and primitives and their implementation.

Not to teach BOD in Java only, we have created own
adaptation of POSH, so called yaPOSH (implemented in
Java). Additionally, as yaPOSH plan Lisp-like syntax (Fig.
3, left column) has been found confusing to our users, we
have developed graphical editor for yaPOSH plans and
integrated it tightly into NetBeans Java IDE. The yaPOSH
editor provides way for custom behavior primitives defini-
tion (in the form of Java classes, Fig. 3, right column),
allows to structure the behavior via drag&drop actions and
features plan debugger (Fig. 2) that allows to place break-
points on behavior primitives during bot runtime.

Later during the course, when students become familiar
with the methodology as well as somewhat versed in
UT2004 environment mechanics and related API, they are
introduced to yaPOSH where they are forced to exercise
the methodology in its pure form (without behavior struc-
ture hacks that are possible in Java such as execution of
actions from different places in parallel).

The key point of BOD demonstrated by the use of ya-
POSH is the separation of behavior structure and its im-
plementation. If the game rules were the same, the yaPOSH
behavior plan could have been reused between different
environments (Fig. 2); only the implementation of behavior

sensors and actions would have differed (Fig. 3, right col-
umn). The same applies to the Java mapping. If a student
decomposes the action-selection without references to the
environment API wrapping all API-dependent behavior
structures such as sensors and actions into separate method
calls, the action-selection code would again remain the
same between different environments (similar to the way
multi-platform software is written). The approach promotes
good coding habits such as code readability and maintaina-
bility as discussed by Bryson [21]. Therefore, the course
classes crosses the boundaries of UT2004 and its environ-
ment even though they are built around it.

Figure 3. Snippets of behavior code that are part of the
CTF bot behavior (matches Fig. 2). Left column: yaPOSH
plan and its Lisp-like syntax. Right column: Sensor Flag-
Visible and action TurnToFlag implementations within
the Java language.

// pickup-enemy-flag
if (isFlagOnGround("enemy")
 && isFlagVisible("enemy"))
 goToFlag();
else {
 goToFlag_Reset();
 // attack-enemy-with-our-flag
 if (canSeeFlagHolder("our"))
 attackEnemyFlagHolder();
}

Figure 4. Translation of yaPOSH behavioral plan from
Fig. 2 into Java code using if-then rules.

4. Evaluation
In order to improve the Pogamut platform and yaPOSH
editor, we are collecting opinions about their use from
students during the final exam of the course. We are moni-
toring how students are satisfied with the course (lectures
and classes separately) and how they are satisfied with
tools they had to use. We are collecting both objective and
subjective data.

4.1 Subjects

We report data and opinions from three years of the course
2011 (22 males), 2013 (18 males) and 2014 (13 males, 1
female). We used Chi-square test to confirm that differenc-
es between groups are not significant (age, number of AI
lectures studied, man-months spent programming in any
language, motivation to study behavior development). We

do not report data on students from 2012 as they were not
working with Java and yaPOSH.

4.2 Exam Structure

As a final exam, students are asked to solve two tasks
(create two behaviors). The first task is named GuideBot;
students had to create a bot that is capable to search for
other friendly agents and guide them. The second task is
named GuardBot; students has to extend the existing Gui-

Table 2. Summary of answers for Q2: What do you think about the Pogamut+UT2004 platform?
Category & Sample answers Count

 2011 2013 2014
No problem / Perfect / Easy to start or work with / Enjoyed
[2014] "Very easy to start with and create fun bots quickly, found no bugs during the
semester. Great library even by professional standards with good documentation."
[2013] "Easy to understand, easy to learn and yet very powerful tool."
[2011] "Great for its purpouse. Simple to write relatively complex behaviours."

2 7 7

Lot of functionality, but after a few use, easy to work with
[2014] "Very intuitive, after a few months, I still remember everything we were
taught."
[2011] "Lot of functions, but they are very easy to use."

6 2 5

Some caveats or issues, but easy or interesting or fun to work with
[2014] "Very easy to start with, some tricky caveats await for those who will play
with it, but all-in-all a very good platform for writing bots."
[2013] "Sometimes, documentation is not sufficient, but good overall."
[2011] "It’s sexy in the way it can co-operate with an AAA title like UT. The actual
API seems however a bit cluttered and cumbersome, which makes it quite difficult to
learn on your own."

8 6 2

Hard corners / Bugs / Some things could be better or should be added
[2013] "There a few things missing, like looking behind when the bot is running."
[2011] "It’s quite buggy, but nice education tool. When it gets fixed, it’ll be great."

4 3 0

Too complex
[2011] "There are so many possibilities that it’s hard to choose the right one some-
time."

2 0 0

Table 3. Summary of answers for Q3: Compare coding of bot behaviors in Java-ONLY to yaPOSH+Java.
Category & Sample answers Count

 2013 2014
A. yaPOSH Acknowledgements
It is easy to create behaviors with preimplemented primitives; you do not even need to be a pro-
grammer).
Easy to orient in / Easier to change behaviors /yaPOSH brings better behavior structuring

5
5

5
5

B. yaPOSH Editor Criticism
Editor not user friendly / Bugs / Plan visualization should be better

12

2

C. yaPOSH Behavior Structuring Criticism
Behavior plan structure limitations
Necessity to create class for every behavior sense or action

5
2

6
2

D. Java Behavior Structuring Critisim
Java tends to spaghetti code / Hard to orient in the code / Not seeing the whole behavior / Harder
to change the behavior structure

5 11

E. Java Acknowledgements
Java execution sematics is more clear.
If you can manage to keep the code tidy, Java is easier to orient in.

3
2

0
0

deBot behavior to include active protection of the guided
agent against hostile bot present in the environment. The
GuideBot behavior had to be extended with simple combat
sub-behavior and the switching between guiding and
guarding must be solved.

The second task also contains a twist; students did not
receive the same pre-prepared GuideBot behavior for the
extension, they are given the behavior created by other
student. This design introduced variables to control for, but
required the participants to work with behavior develop-
ment differently; they had to read and understand existing
behavior first before they could actually start extending it
(for more info see [27]). As the student can receive bad
code, they are not actually graded according to the outcome
of the second task but only for the first.

Students from 2011 and 2013 were split into two groups
according to the tool they were using (Java-ONLY or ya-
POSH+Java). Students from 2012 were using ya-
POSH+Java only.

4.3 Measured Variables & Asked Questions

Here we report time students need to finish respective exam
tasks (T1 for GuideBot task, T2 for GuardBot task). and
answers to the following questions. Q1. What do you prefer
for behavior development, Java-ONLY or yaPOSH+Java?
(11-Likert like scale, 0 - Java-ONLY, 10 - yaPOSH+Java).
Q2. What do you think about the Pogamut+UT2004 plat-
form? Q3. Compare coding of bot behaviors in Java-ONLY
to yaPOSH+Java. Questions Q2 and Q3 are formulated
vaguely in order to avoid leading questions and to obtain
the broad range of opinions. Question Q3 was added into
the questionnaire in 2013.

4.4 Results

Solution times are summarized in Tab. 4. Tool preferences
(Q1) are summarized in Tab. 5. Comments to the Pogamut
platform (Q2) and differences between plain Java and ya-
POSH+Java (Q3) are summarized in Tab. 2, resp. Tab.3.

Table 4. Solution times for respective tasks, groups and
years.

 Task 1 Time Mean
(SD)

Task 2 Time Mean
(SD)

 Java
ONLY

yaPOSH
+Java

Java
ONLY

yaPOSH
+Java

2011 162,9
(32,3)

170,6
(32,3) F F

2013 N/A 79,4
(25,9) N/A 112,5

(25,9)

2014 64
(34,3)

57,9
(26,3)

73,3
(27,9)

119,3
(48,9)

Table 5. Tool preferences (Q1) for respective years.

5. Discussion
Here we discuss the main highlights of our course and
methodology.

The Pogamut platform is matured. Looking at the Tab. 2
we can see clear shift towards positive feedback between
both year 2011 - 2013 and 2013 - 2014. In 2014, the major-
ity of students rate the platform either as "Perfect" or "Easy
to use".

yaPOSH editor user experience has been improved.
Looking at the Tab. 2, C, we can see drop in the number of
objections to the editor. The majority of objections were
resolved (between 2013-2014) by creating wizard for ac-
tion and senses creation.

Students spend less time with the platform and ya-
POSH. Looking at Tab. 4, we can see that times required to
solve final exam tasks have dropped dramatically between
2011 and 2014. We link this drop with the fact the Pogamut
platform is now stable and many yaPOSH usability issues
(as well as bugs) have been cleared out. This trend can be
seen in Tab. 5 as well, where students from 2014 prefer
yaPOSH over Java more than in previous years. Addition-
ally, students from 2013 and 2014 were able to finish the
task, c.f. students from 2011.

Recognition of well-formed behavior structure and its
presentation in yaPOSH. Looking at Tab. 3, A and D, we
can see that many students report that it is hard to orient in
behavior code in Java, whereas yaPOSH editor ease this by
providing visual representation that has fixed structure.
Interestingly, this recognition projects more to the negative
feedback for Java (Tab. 3, D) than positive comments to
yaPOSH (Tab. 3, A). We consider this as an indirect proof
that students learned BOD and accustomed to the structur-
ing of behaviors according to the methodology.

Still room for improvements. Looking at Tab. 3, C, there
are still rooms form improvements. The negative feedback
to yaPOSH behavior structuring are mainly related to the

 Tool preference

Strong
Java
Pref.
[0]

Java
Pref.
[1-4]

Neut.
[5]

yaPOSH
Pref.
[6-9]

Strong
ya-

POSH
Pref.
[10]

2011 4 6 5 6 1
2013 3 4 4 5 2
2014 1 1 5 3 4

yaPOSH inability of expressing parallel action. We are
planning to resolve this issue for 2015.

6. Conclusion
In this paper we have presented the objectives and structure
of practice lessons for the course on Modeling Behavior of
Human and Animal-like Agents. The paper presented the
challenges of behavior development education, namely the
necessity to bind the classes with concrete 3D virtual envi-
ronment and the implications of such a bond. The structure
of classes emphasize the necessity to balance the amount of
knowledge the students have to learn for respective tasks
and actual behavior development. Learning objective was
met by teaching BOD methodology with the use of ya-
POSH we developed specifically for this purpose. More
information about the classes as well as materials are freely
available at our website [23].

Acknowledgment
Human data were collected with APA principles in mind.

This research is supported by the Czech Science Foun-
dation under the contract P103/10/1287 (GACR), by stu-
dent grants GA UK No. 655012/2012/A-INF/MFF and
559813/2013/A-INF/MFF.

This research is partially supported by SVV project
number 267 314.

References
[1] Brom, C.: Curricula of the course on modelling beha-
viour of human and animal-like agents. In: Proceedings of
the Frontiers in Science Education Research Conference,
Famagusta, North Cyprus. pp. 71 - 79 (2009)

[2] Burges, N.: The hippocampus space, and viewpoints in
episodic memory. The Quart. Jn. of Exp. Psych., 55A(4),
1057-1080.

[3] Herbelin, B.L.: Virtual reality exposure therapy for
social phobia. PhD thesis, n. 3351. EPFL.

[4] Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R.,
Havlicek, J., Zemcak, L., Simlovic, J., Vansa, R., Stolba,
M., Plch, T., Brom C. Pogamut 3 Can Assist Developers in
Building AI (Not Only) for Their Videogame Agents. In:
Agents for Games and Simulations, LNCS 5920, Springer,
pp. 1-15. (2009)

[5] Teaching Objects-First In Introductory Computer
Science (PDF) Stephen Cooper, Wanda Dann, Randy
Pausch, SIGCSE 2003.

[6] Esper, S., Foster, S.R., Griswold, W.G.: CodeSpells:
embodying the metaphore of wizardry for programming.

In: Proceedings of the 18th ACM conference on Innovation
and technology in computer science education, Canterbury,
England, UK, pp. 249-254 (2013)

[7] DeNero, J., Klein, D.: Teaching introductory artificial
intelligence with pac-man. In Proceedings of the Sympo-
sium on Educational Advances in Artificial Intelligence.
(2010)

[8] Unity 3D Game Engine. http://unity3d.com/
(20.6.2014)

[9] Unreal Engine 4.
https://www.unrealengine.com/blog/welcome-to-unreal-
engine-4 (20.6.2014)

[10] Unreal Development Kit.
https://www.unrealengine.com/products/udk/ (20.6.2014)

[11] CryEngine FreeSDK.
http://www.crydev.net/dm_eds/download_detail.php?id=4
(20.6.2014)

[12] Navigation graph.
http://www.gamedev.net/page/resources/_/technical/artifici
al-intelligence/navigation-graph-generation-r2805
(20.6.2014)

[13] Bida, M., Cerny, M., Gemrot, J., Brom, C.: Evolution
of GameBots project. In: Herrlich, M., Malaka, R., Masuch,
M. (eds.) ICEC 2012. LNCS, vol. 7522, pp. 397-400.
Springer, Heidelberg. (2012)

[14] Champandard, A. J.: Behavior Trees for Next-Gen
Game AI. Internet presentation.
 http://aigamedev.com/insider/presentations/behavior-trees
(20.6.2014)

[15] Scripting and Sims 2: Coding the Psychology of Little
People Jake Simpson, presentation, Game Developer's
Conference 2005

[16] UnrealScript.
 http://udn.epicgames.com/Three/UnrealScriptHome.html
(20.6.2014)

[17] Papyrus scripting language for Skyrim.
http://www.creationkit.com/Papyrus_Introduction
(20.6.2014)

[18] Skyrim, the video game.
http://www.elderscrolls.com/skyrim (20.6.2014)

[19] UDK's Kismet
http://udn.epicgames.com/Three/KismetUserGuide.html
(20.6.2014)

[20] CryEngine Behavior Trees.
http://docs.cryengine.com/display/SDKDOC4/Behavior+Tr
ees (20.6.2014)

[21] Bryson, J.J.: Inteligence by design: Principles of Mod-
ularity and Coordination for Engineering Complex Adap-
tive Agent. PhD Thesis, MIT, Department of EECS, Cam-
bridge, MA. (2001)

[22] Behavior Oriented Design website.
http://www.cs.bath.ac.uk/~jjb/web/bod.html (20.6.2014)

[23] Modeling Behavior of Human and Animal-like Agents
Classes website.
 http://pogamut.cuni.cz/pogamut-
devel/doku.php?id=lectures (20.6.2014)

	Categories and Subject Descriptors D.2.2 [Software engineering]: Design Tools and Techniques, K.3.2 [Computers and Education]: Computer and Information Science Education
	General Terms Design, Languages
	Keywords Education, Video Games, Virtual Behaviors
	Introduction
	Related Work
	Course Classes
	Background
	Classes Objectives
	Virtual Environment
	Classes Overview
	Lesson Structure
	Behavior Oriented Design and yaPOSH

	Evaluation
	Subjects
	Exam Structure
	Measured Variables & Asked Questions
	Results

	Discussion
	Conclusion
	Acknowledgment
	References

