
A periphery of Pogamut: from bots to agents and back
again

Jakub Gemrot, Cyril Brom, Tomáš Plch

 Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 2/25, Prague, Czech Republic

Abstract. Despite virtual characters from 3D videogames – also called bots –
seem to be close relatives of intelligent software agents, the mechanisms of
agent reasoning are only rarely applied in videogames. Why is this? One
possible reason is the incompatibility between representations used by agent
decision making systems (DMS) and videogame worlds, as well as different
handling of these representations. In recent years, we developed Pogamut,
which is a toolkit for coupling videogame worlds with DMSs originating within
the agent oriented research as well as other disciplines, allowing for controlling
in-game characters by these DMSs. To this end, Pogamut features an interface
bi-directionally bridging the “representational gap” between a game world and
an external DMS. This paper conceptualises functionality of this interface based
on our experience with connecting Pogamut to various game worlds, most
notably Unreal Tournament 2004. We present a general abstract framework,
which verbalises requirements an agent researcher must fulfil in order to
employ his/her reasoning mechanism for controlling in-game virtual characters.
This paper also reviews Pogamut, which the researcher can utilise.

Keywords. videogames, agents, action selection, Unreal Tournament

1 Introduction

After years of stagnation, the field of artificial intelligence (AI) for videogames seems
to have caught second wind [1]. Results achieved in disciplines such as planning [2],
evolutionary computation [3], or stochastic modelling [4] inspire new solutions and
approaches to known problems. Can knowledge accumulated by the multi-agent
systems (MAS) community during the last decade be, to some extent, also employed
in the context of 3D videogames? This idea stems from the fact that it may seem,
superficially, that fields of gaming AI and MAS study entities of the same kind.

Entities studied by the MAS community are often called intelligent software agents
[5]. Creatures employed in the gaming AI field are typically called bots, non-player
characters (NPCs), virtual characters or virtual agents. To avoid ambiguity, we will
strictly use the term agents for the former entities while bots for the latter.

The broad field of MAS studies includes many subfields, such as multi-agent
communication, cooperation and negotiation, learning, and agent reasoning. It can be
contemplated about how the knowledge gained in each of these subfields can be

employed in the context of videogames. This paper is concerned with reasoning of a
single or few agents, leaving the other subfields for future work.

 The field of videogames is as diverse as the MAS field. In this paper, when
speaking about videogames, we restrict ourselves only to 3D games modelling
individual persons such as first-person shooters (FPS) or role-playing games (RPG).
For the purposes of this paper, we also include 3D virtual reality simulations, such as
crowd simulations or virtual storytelling systems, into the definition of a “3D game”.
That is, virtual characters inhabiting these simulations and carrying out multiple
goals, often called intelligent virtual agents, will be considered as bots here. However
we will not use the term bots for conversational characters, unless they are fully
embodied within a virtual world and have multiple goals besides chatting (e.g., a sport
game commentator is not considered as a bot here unless he can also shoot, run, etc.).
Similarly, we exclude from the definition of a “3D game” games without individual
persons, e.g., statistical strategies and logical games, even though decision processes
in these games can be conceived as agents by some (e.g., [6]). We also exclude games
simulating only or predominantly vehicles, such as flight simulators and racing
games, even though when these vehicles are controlled by a computer, they may be
called bots by some.

Now, we can rephrase and refine the question this paper aims at analysing: Can
knowledge accumulated in the MAS field concerned with agent reasoning be used for
reasoning of individual bots or a couple of bots? That means, can developers of bots
employ MAS knowledge representations, reasoning algorithms, or goal-oriented
software architectures such as Jason [7], Jack [8] or Jadex [9]? How to achieve this?
What are the obstacles, what are the drawbacks and benefits?

This paper does not provide conclusive answers. Instead, it proposes the way
towards practical utilisation of MAS knowledge in the videogame domain, which
leads through connecting these architectures to game engines, enabling empirical
experiments. The paper explains what exactly it means to establish such connection
and offers a robust toolkit we have developed to help in this work.

An agent decision making system (DMS) can be connected to a game engine either
internally or externally (see also [10] on this point). Internal connection means
integrating a DMS into a game engine when the engine’s source code is available.
However, the source code of games is available only rarely and typically for ten years
old games (with some exceptions). Fortunately, several modern games allow for
information exchange between their worlds and an external system, enabling a
researcher to couple his/her architecture with a game externally, in most cases on a
client-server basis. However, the researcher should be aware of two stumbling blocks:
a) the way how bots are controlled internally (i.e., from the game within) may differ
from the way how the bots can be controlled externally, b) bot DMSs use different
input/output information than typical agent DMSs, no matter whether an agent DMS
is connected internally or externally (mind the distinction between a bot DMS and an
agent DMS1

1 Whereas a bot DMS is a native controlling mechanism hardwired within the game engine, an

agent DMS is a stand-alone application its creator is claiming it is MAS principles compliant.

). While Point (a) is merely technical, Point (b) presents a deep
conceptual difference. To understand this difference, Section 2 of this paper will
explain the main distinctions between agents and bots in detail.

When aiming at connecting an agent DMS to a game, it is an advantage to know
about what can be expected from game engines; which information is available and
which it is not, and how to acquire the desired information. To enable the reader to
understand these points, Section 3 formally conceptualises game engines, providing a
model of a bot DMS, game engine and information it holds. Based on this
formalisation, Section 4 discusses the issue of connecting an agent DMS.

Sections 3 and 4 did not appear from thin air. On the contrary, we have been
working for several years on Pogamut, which is a robust toolkit for coupling
videogame worlds with external DMSs [11]. This toolkit has been widely used, both
by us [e.g., 12, 13] as well as others for the purpose of prototyping gaming algorithms
[14] or for prototyping BDI-based agents acting in real-time, dynamic and complex
environments [15]. The formalisations are derived based on our experience we gained
during our work on Pogamut. Section 5 reviews Pogamut and presents a particular
instantiation of the formal model, a multi-layered AgentSpeak(L)-based DMS [16]
coupled to the Unreal Tournament 2004 game (UT 2004) [17]. The most important
point is that Pogamut can be utilised for connecting other agent DMSs to videogames
in an “out of the box” fashion (see also [15] on this point). Section 6 documents that
Pogamut can be used not only in the context of the UT 2004 game: it reviews our
work in progress on extending Pogamut to operate with Virtual Battle Space 2 [18],
which is a multi-agent military simulator, as well as connecting Pogamut to StarCraft
[19] and Defcon [20], strategy games.

2 Bots are not agents

The border between bots (as defined above) and agents (as understood by MAS
community) is not clear-cut, but there are several traits that help understand the
difference. Arguably, the two most important traits are believability and embodiment.
Firstly, bots should be believable, which is the ability to convey the illusion of reality
[21] by whatever means necessary. In this aspect, bots and agents differ; while the
ideal of agents is strong autonomy, which does not necessarily imply believability in
terms of [21], believable bots need not be strongly autonomous. Secondly, bots are
embodied; they have virtual bodies subject to constraints of their 3D virtual worlds2

Because of their embodiment, and this is crucial, bots require different information
inputs about their surroundings than typical agent-oriented DMSs work with. Because
of real-time constraints, bots have to cope with ever-changing virtual world rapidly,
which requires acquiring and processing of external information in a timely fashion.

.

3

2 Recall that we call intelligent virtual agents bots here.

We will now elaborate on these two points.

3 Note that the meaning of the word “rapid” differs from the MAS community’s use: in gaming
industry, constant algorithms tend to be considered as fast while polynomial are considered
to be slow in general, let alone exponential (of course, this depends on a particular situation).
For instance, traversing expression trees of dynamic lengths built out of domain specific
language checking for event triggers, which is linear, is found to be slow [22]. That work
suggests using only expression trees that fit into a rather small pre-allocated array.

One useful way of categorising incoming information is based on the level of
abstraction. It is useful when the information about some aspects of a bot’s
surrounding is provided in an abstract manner while other aspects are presented in a
low level way, i.e., more akin to inputs from robotic sensors. Thus, at the same time, a
bot can get information like “a projectile is coming from 170o”, “there is a wall or
something 2.34 meters at 54o”, “this is a position from which you can shoot”. The
important point is that the level of abstraction is not determined by an ideal of
psychological plausibility or the logical coherence of the DMS, but by technical
rationale, including the real-time constraints and the believability requirement.

Another useful categorisation divides information into static and dynamic [10].
Static information is bound to properties of the virtual environment that do not change
in the course of the simulation. For instance, whether a place is suitable as a cover in
respect to a sentry gun fixed inside a bunker depends on the outlook of the sentry gun
and the landscape. In an environment that does not change its topology, this
information is known during the design time, i.e., the information has a static context,
and can be precompiled. On the other hand, the information where defenders of a
bunker have the weakest spot depends on their current positions, their patrol
behaviour etc., i.e., it has a dynamic context implying the necessity to compute or
acquire it during runtime. This distinction is crucial both technically and conceptually.

Now, to be able to contemplate on how an agent DMS coupled with a game
engine can access information, we need to know how data are provided by engines. In
our experience, game engines tend to export only information that is available via
regular bots’ access mechanisms (because providing different access mechanisms
would present only additional unnecessary development). Thus, we have to take a
look on how bots sense their worlds.

Due to real-time constraints, game developers must balance the necessity of bots
having to perform active sensor querying against bots’ automatic, i.e., passive, event
notifications whenever a respective event occurs in the game engine. Note that the
active vs. passive distinction may not mirror the static vs. dynamic dichotomy. The
rationale behind the active vs. passive mechanisms is to automatically notify bots
about important events that the bots would check anyway, such as “bot has been
killed” or “bot has hit a wall” – this is the passive sensing. On the other hand, there
are many events that bots need to know only from time to time. It is more efficient
when bots actively request information about these events only when the information
is really needed.

What does it imply for an external agent DMS? Generally, there are three ways
how information can be obtained. 1) The information that is passively sensed by bots
is also automatically exported by the game engine (push strategy). 2) The information
that can be actively requested by bots can also be requested from the engine (pull
strategy). 3) The information that is not provided by the game engine itself but it may
be inferred from existing information (inference strategy).

Here is a distinction between agents and bots concerning these information access
strategies: While bot DMSs tend to access information by several special purpose
mechanisms, capitalising on both push and pull strategies, agent DMSs tend to use
one generic mechanism only. This fact alone poses technical troubles for some agent
DMSs. For instance, many goal-oriented agent architectures, such as AgentSpeak(L)
[23] derivates, require for underlying agent worlds to keep them automatically

informed about events, which corresponds to the push strategy. For these
architectures, the lack of ability to cope with pull and inference strategies must be
compensated.

Having the notion of key differences between bots and agents, the paper continues
with discussing game engines in general. This will help the reader to better
understand the prerequisites of connecting an agent DMS to a game engine.

3 Game engines

This section presents a generic framework for understanding game engines (GE). The
section starts in an informal tone and continues with a formal definition of a GE,
functioning of a bot DMS, and relations between various data kept by the engine.

3.1 GEs informally

“A game engine is a software system designed for the creation and development of
video games. Game engines provide a suite of visual development tools in addition to
reusable software components. These tools are generally provided in an integrated
development environment to enable simplified, rapid development of games in a data-
driven manner.” [24, see also 25] A GE itself is not a game, rather a middleware used
by the game developers, who may arbitrarily extend it to suit the game’s needs. As a
middleware, it usually empowers the developers with the ability to script game rules
using interpreted languages such as Lua [26], Python [27] or a proprietary language
such as UnrealScript [28].

The high level task of a GE is to simulate a game’s virtual world in (nearly) real-
time providing smooth visualisation to players while reflecting their actions. One of
the challenges GEs are facing is to arbitrate available CPU and GPU power between:

1) game visualization, e.g., performing animations, managing polygons, textures
and shader programs in the graphic card’s memory, etc.;

2) (simplified) physics simulation, e.g., computing the trajectories of moving
objects, performing collisions and deformations, etc.;

3) game mechanics, e.g., triggering game events at correct time, executing scripted
situations, etc.;

4) artificial intelligence, e.g., providing believable behaviour for interactive game
objects such as bots.

Game engines tend to prioritize these issues in the given order. Smooth visualization
is preferred over AI computations, which do not affect the simulated world every
frame. Thus AI computations are interleaved with scene rendering, physics engine
etc., and in most cases, are not given extensive computational facilities.

In the previous section, we discussed how information can traverse from a GE to a
bot. Now, we are going to discuss how these data are stored within the GE and how
they are managed.

GEs as managers of facts. GEs can be conceptualised as managers of game facts
(grounded formulae of first order logic), which are true in the certain point of time.
GEs represent them as data structures of a native programming language. GEs can
also be seen as rule engines that transform given facts as the game proceeds. A GE
maintains a virtual clock, which measures time in ticks. Each tick, the GE transforms
game facts according to game rules that are encoded inside the GE or written outside
by game developers in a language the GE can interpret. We will refer to this
transformation as TICK function.

The following (non-exhaustive) list presents examples of such game rules:

1) Physics. Change locations of objects, the speed of which is greater than 0, as if
0.05 seconds has passed, and compute collisions along the way.

2) Game mechanics. If a rocket explodes, compute damage and process the damage
(lower health) to all bots and players in the radius of 500 m.

3) Trigger. When a player steps on a jump pad, apply force of 1000 N to his avatar
in the direction perpendicular to the jump pad.

4) Bot API: If a bot issues a move command, change the bot’s speed to 20 km/h.

Section 2 has divided a bot’s information into dynamic and static. This dichotomy
comes from the GE itself as it is the GE which defines, which information can change
in the course of the simulation and which can not. Static information (facts) contain
the GE’s configuration, together with the underlying geometry of the land, game
triggers, events or programs in a language that GE can interpret, etc. Examples of
dynamic information (facts) includes the current number of bots and items in the
game along with their state, i.e. position, current speed, animation in progress, etc.

The distinction between static and dynamic facts is technical as well as conceptual.
Technically, a DMS must handle dynamic facts differently, i.e., it must be ready to
handle their change and offer the developer a way to act upon such changes.
Conceptually, the more the game world is dynamic, the more sophisticated algorithms
must be employed. For example, there are games where objects forming the borders
of the virtual world are destructible by bots and players, e.g., it is allowed to blast a
hole into a building’s wall, which makes the navigation mesh a dynamic fact. Thus a
dynamic path finding algorithm, e.g., D* [29], must be used instead of a classical one.

Now, let us proceed to the question how these facts are stored within a GE.

Game facts division. Game facts that are true about the game in a given time can be
categorised into three groups. We will refer to these groups as game facts classes.

1) A GE usually provides an API to access all game facts it stores within its
internal data structures, such as level geometry or a bot’s level of health. Accessing
these facts is computationally efficient. We will refer to these facts as Class 1 facts.

2) Additionally, there are facts that can be computed on request by invoking a
method of an API that uses Class 1 facts to infer new facts. Such facts are, e.g., ray
cast results or a path to a distant location. We will refer to these facts as Class 2 facts.

3) Finally, there are facts that can not be obtained through the GE’s API but that
are algorithmically inferable, such as the shortest path a bot should follow to collect
all items in the world (leads to the well-known Travelling Salesman Problem). We
will call these facts Class 3 facts.

Sending requests to GEs. So far, only the information flow from a GE to a bot has
been discussed. Fortunately, the other way is easier. A GE usually offers a set of
methods that can be invoked by bots, e.g., GoTo(Location), Shoot(Actor), or
GetPath(Location). These methods are of two types: 1) actions the bot’s body
should carry out in the game world (GoTo, Shoot, etc.), and 2) computation requests
that induce facts not present implicitly in GE’s data structures, i.e. Class 2 facts (e.g.
GetPath). Both commands and computation requests may last (and usually last)
several TICKs before they are finished. The number of TICKs depends on the
request’s complexity, e.g., say “Hello!” command will take less time to perform than
GoTo(Hospital). Similarly, a ray cast request will finish well before the A*
algorithm finds out that a requested path does not exist.

Two major issues linked to the requests are to be handled by an agent DMS.
Firstly, the DMS should be able to handle the lag between a computation request and
its returned result. Especially the path requests should be made in advance. Secondly,
GEs may not report success or failure of an action. In these cases, a DMS must
actively watch over a bot’s related facts to infer whether the action is being carried
out as expected (e.g., has the bot just hit an obstacle?). If a deviation from an expected
result is detected, actions to compensate should take place. Such success/failure
reporting is required, e.g., by BDI systems. Whenever the bot has an intention to go to
the hospital, it needs to know whether the GoTo(Hospital) command has been
executed successfully or failed in order to maintain, delete or re-plan the intention.

3.2 GE (more) formally

This part of the paper summarises formally description of GEs in order to facilitate
thinking about connecting agent DMSs to GEs. Therefore, the definition intentionally
emphasises management of game facts and their accessibility, but not the issue of
bots’ action selection and carrying out action commands by GEs. Note also that GEs
may differ in important implementation details; what we present here is only our view
of GEs. We are not aware of any widely accepted formal definition of a GE.

Fig. 1. Visualization of TICK and DMS functions together with the sequence diagram of
subsequent calls. The mark “X” (on the left figure) denotes a bot’s mental states and requests,

i.e.,)()(RPVMP bb × . The bots in the figure are marked as “internal”, i.e., they are native to
the GE and controlled by bot DMSs. This labelling will become important later on in Figure 2.

Definition 1.

),,,,,,(TGSTICKBPIFGE =
 (Game engine, managed facts) Game engine

is characterized by:
 Facts F . This is the set of all ground formulae that can be possibly true

about the game during some moments.
 The set F consists of three classes: 321 FFFF ∪∪= .

 Class 1 game facts FF ⊆1 is a set of all ground formulae that (a)
can be possibly true about the game and (b) they are stored in
appropriate data structures iff they are true.

 Class 2 game facts FF ⊆2 is a set of all ground formulae that
can be inferred by any inference function Ii∈ (see below), i.e.,

Ii

irangeF
∈

=)(2 .4

 Class 3 game facts

FF ⊆3 is a set of all ground formulae that
can be possibly true about the game, but they are never stored
within a GE’s data structure and they are not obtainable through
any inference function Ii∈ .

 Additionally, F can be divided amongst dynamic facts
FDDDD ⊆∪∪= 321 and static facts FSSSS ⊆∪∪= 321 , where

iii SDF ∪= , ∅=∩ ii SD . Dynamic facts can be changed between
TICKs (see below), whereas static facts remain the same throughout the
whole simulation.

 Inference functions I . This is a set of all functions that the GE can use to
infer facts of Class 2:)()()(: 221 FPFPFPIi →×∈ .

 Embedded bots B . This is a set of all possible bots in the game. See Def. 2.
 Embedded players’ abstractions P . This is a set of all possible

manifestations of players in the game. See below.
 Function TICK. This function)()()()()(: 22111 SPDPDPDPSPTICK ××→×

is used to advance the game situation.
 Concrete facts that can be changed by TICK function, i.e.,

1\))()((STICKrangeTICKdef ∪ are called managed facts.
 Game settings GS.),,(πβω=GS is characterized by

 initial game situation)(1FP∈ω ,
 list of bots B⊆β and players P⊆π connected to the game.

 Terminal states T. This is a list of game situations that terminates the GE,
)(21 FFPT ∪⊆ .

4 In fact, a GE may cache results of inference functions making these facts Class 1 facts.

However, these functions often compute dynamic facts, which are being quickly invalidated
as the simulation advance forward, therefore we will omit caching.

Definition 2.),,,,(DMSRVMPVBBb =∈ (Bot, bot's facts) Bot is characterized by:

 the set of virtual body facts 1FVBb ⊆ ,
 the set of facts that can be possibly perceived 21 FFPb ∪⊆ ,
 the set of mental facts 1FVMb ⊆ ,
 the set of requests the bot can possible make 1DRb ⊆ ,
 decision making system function

)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbbb ×→××× ,
 the set of all bots’ facts)()()()(RPVMPPPVBPbot bbbbb ∪∪∪= .

Abstractions of players from Def. 1 can be defined similarly to the bot’s definition

(Def. 2) except the DMS function is unknown and brings uncertainty to the game.
Def. 1 and 2 result from the informal discussion from Section 2 and 3.1. The last

thing to explain is how the function TICK and DMS work.
)()()()()(: 22111 SPDPDPDPSPTICK ××→× is being used to compute a next

game state ()(1DP from range(TICK)) as well as requests made by bots

()()(11 DPSP ×). Concerning dom(TICK), inside)(),(11 DPSP , there lies currently
true facts about all bots’ virtual bodies, true facts bots are currently informed about, as
well as their mental states and their active requests. The TICK function applies game
rules to advance the game’s progress a small fraction of time forward, i.e., it replaces
the current)(1DPt∈ of true facts with a new set. Additionally, it handles the bots’
requests by removing them and providing DMSs with)(),(22 DPSP facts that are
accessible for a short period of time (they are invalidated in next few TICKs).

)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbb ×→××× assesses the current

state of the virtual body)(VBP b , facts that are known to the bot)(PP b , the current

DMS state)(VMP b and unfinished bot’s requests)(RP b , and produces zero or more

requests while altering its own state. Note that facts)(PP b and)(VBP b are
computed by the TICK function. Conceptually, the TICK function also computes the
DMS functions; however, for intelligibility, it is better to conceive these two functions
as separate.

The DMS function model suggests what needs to be done in order to connect an
external agent DMS to a GE. This issue will be further elaborated in the next section.

4 Connecting an agent DMS to a GE

Arguably, the final goal of the whole endeavour is that game industry starts using
some ideas stemming from the subfield of agent reasoning in videogames or even
employs a whole agent DMS for the purpose of controlling in-game bots. As already
said, an agent DMS can be coupled with a game either internally or externally. In a

final application, it is likely that bots will be controlled internally – this is more
efficient than external connection both in terms of memory and processor
requirements (see [10] for a different view). However, in our opinion, before this can
happen, it is necessary to connect several agent DMSs to a single GE and evaluate
them. These DMSs should be compared with existing AI techniques currently used by
the game industry, such as finite state machines [30], behavioural trees [31] and
simple planning [22]. They should be compared along several lines, most notably in
terms of computationally efficiency, improvement of bots’ cognitive abilities, and
design time. For instance, before these DMSs can start to compete with industry
solutions, they should accommodate multiple bots at the same time and they should
be intelligible for game designers who may not have strong AI knowledge.

All of this means that for the time being, the goal is not to employ an agent DMS
within a videogame to be marketed, but to implement several prototypes. Should they
employ the external or internal coupling? This section evaluates these two approaches
and argues that the external one is better for prototyping purposes. It also makes it
explicit what the external coupling means in terms of the formalism from Sec. 3.

Be it internally or externally, both approaches require researchers to write
additional code binding a DMS and a GE together. It would be an advantage if the
researchers can use a middleware facilitating this infrastructure work. It would be
even better, for the purposes of evaluation, if all of these researchers use a common
middleware. Section 5 proposes that Pogamut can be used for this purpose.

4.1 Internal or external coupling?

Integrating a DMS into a game engine. Integration of an existing DMS into a GE
means to re-implement the existing solution inside the framework (code base) of the
engine.

The advantages are as follows:
 The integration may utilise all features of the GE.
 The implementation may blend with the original code of GE resulting in

optimal performance, which suits the needs of the game industry.
The disadvantages are as follows:
 The DMS must be re-implemented in the native programming language of

the GE.
 The code of the engine must be opened.
 The solution will be GE dependent and may not be reusable with different

engines.
 The implementation could not be developed over a common architecture that

adapts the GE to the DMS, which will make empirical comparison of
different DMSs troublesome.

Note that in [10], this is called a server-side approach. That work also claims that
the DMS must be completely synchronised with the GE, being integrated in the
default game loop. However, this is not the case. Even internally coupled DMS can
perform decisions in several time steps if it is able to interrupt and resume its
computations.

Connecting DMS to GE externally. The other way is to utilise existing DMS
implementations and connect them to a GE externally via, for example, TCP/IP.

The advantages are as follows:
 The translation of game facts and requests on both the GE’s and the DMS’s

sides can be reused.
 The creation of a general layer between the GE and the DMS can result in a

common platform for empirical comparison of different DMSs.
 The general layer could be extended to comfort more GEs.
 The DMS and the GE may run on different computers, allowing for

distributed simulations.
 The DMS can be implemented in a language favoured by the developer.

The disadvantages are as follows:
 Game facts and requests have to be exported and translated between the GE

and the DMS, which results in worsened performance.
 The bot’s reactions to events take longer because there is a round trip time

between the DMS and GE.

Our experience gained during the implementation of Pogamut has shown that the
disadvantages of the external approach are not so sever or troublesome. The
translation of facts and requests between the GE and the DMS does not take such
extensive time to harm the bot’s reactive capabilities (i.e., Pogamut can easily
communicate synchronously with several bots on 4Hz, while asynchronous messages
are handled in milliseconds). Thus, we will continue only by assessing the external
approach. We will briefly return to the internal approach in Sec. 6.

4.2 DMS as an external GE's component

According to Def. 1, an internal bot DMS is a function
)()()()()()(: RPVMPRPVMPPPVBPDMS bbbbbb ×→××× . To provide the same

mechanism externally, we need to export facts about the virtual body and facts
perceived by the bot from the GE to an external DMS and to provide the DMS with a
way to pass requests to the GE. The bot’s mental states need not be present inside the
GE as the mental states are utilised only by a native DMS that will not be active.
Instead, agent DMS may represent mental states derived by itself. Figure 2 depicts the
desired model of a GE bound together with an external DMS.

When comparing Figure 2 with Figure 1, Figure 2 divides bots between internal
and external. The internal bots are controlled by their bot DMS functions (native to
the GE) whereas external bots are controlled by agent DMSs, which are modelled
separately of GE. The sequence diagram on the right reflects this distinction. Figure 2
also contains many additional arrows between the GE and the agent: 1) load, 2)
update, 3) requested, 4) requests, commands. These arrows denote the translation of
facts and requests between the GE and the engine. The load, update and requested
arrows are functions exporting facts from the GE and translating them to the
representation used by the agent DMS. Load is invoked only at the beginning of the
simulation, and it exports some (or all) S1 facts. Some S1 facts may stay managed by
the GE and become later requested. Thus, the requested arrows realise the pull

strategy (see Sec. 2) returning facts from D1, S! and more importantly from D2, S2.
The update arrow realises the push strategy returning some facts from D1 regularly.
Note that technically, even external bots may use some AI algorithms implemented by
the GE, algorithms operating with unexported facts, such as path-finding algorithms.

The requests, commands arrow depicts the way the agent DMS passes requests
back to the bot inside the GE. Requests are managed inside D1 class, i.e., as dynamic
facts. Additionally, the agent DMS may implement supplementary inference
algorithms to infer Class 3 facts as inferred arrow suggests.

Importantly, by introducing push and pull strategy, the GEs conceptually differ
from simple worlds such as grid worlds, in which many AI algorithms are tested,
where all information is usually present as F1 facts but not F2 facts.

Fig. 2. The figure pictures the information flow between GE–DMS together with sequence
diagram of GE–DMS interaction. The mark X has the same meaning as on Fig. 1

4.3 Summary

This section has presented a model of a GE bound with an external DMS, capitalising
on the conceptual framework from Section 3. As every abstraction, the model
presented here may not fit an actual GE entirely, but we believe it is robust enough to
embrace most of them and to provide useful guidance in coupling agent DMSs with
GEs. The next section will look at this topic from more technical standpoint,
introducing a particular implementation of the abstract model.

5 Pogamut 3 platform, GE–DMS mediation layer

The purpose of this section is to present the architecture of Pogamut 3 as a mediation
layer between a GE and an agent DMS. The development of such layer is technically
hard by itself. First, developers need to understand the complex, often undocumented
code of the GE before they can even start thinking about the translation of facts into
an agent DMS. Then, the developers’ have to address many tedious technical issues,
mostly out of the main scope of their work, such as development of a debugger. Many
of such issues are addressed repeatedly, which is in most cases a waste of time.

For past four years, we have been developing the Pogamut platform, which
provides general solutions for many of these issues, allowing developers to focus on
their main goals – experimenting with various DMSs inside simulated 3D worlds
provided by the game industry. We remark that Pogamut is already widely used [e.g.,
12, 13, 14, 15]. A new major version, Pogamut 3, has been already released [11].
Importantly, Pogamut 3 is also suitable for education [32].

Pogamut 3 currently utilises the well-known Unreal Tournament 2004 action
videogame [17]. The game features a lot of pre-built objects, maps, and a map editor,
allowing for custom modifications of the original game content, including creating
simple maps for experiments. Section 6 reviews our work in progress concerning
bindings Pogamut 3 with more game engines.

Pogamut 3 is programmed in the Java language and is currently most suited for
utilisation of DMSs implemented in Java, Python or Groovy language. The platform
already allows to experiment with a few agent DMSs, namely POSH [33], ACT-R
[34] and an AgentSpeak(L)-like system [16].

Pogamut 3 has been already discussed in depth in [11, 32, 35] where comparison
with related work is given as well. This paper focuses more on the layers standing
between DMSs and GEs. In the rest of this section, Pogamut’s generic agent
architecture implementing the ideas from Sec. 3 and 4 will be introduced and
exemplified on an implemented AgentSpeak(L)–based agent [16], called here AS
agent, demonstrating Pogamut’s technical flexibility.

5.1 Architecture of Pogamut agent

The generic architecture of Pogamut 3 agent is depicted on Figure 3. The architecture
introduces a set of layers that shields an agent DMS from the low-level
communication with a GE, taking care of the load, update, requested and requests
arrows from Figure 2. These layers are: WorldView, Working memory, Inference
engine, and Reactive layer. The layers were implemented by the AS agent using Java,
tuProlog [36], RETE-engine Hammurapi rules [37], and again Java, respectively
(tuProlog and Hammurapi where chosen due to their available Java implementation
that fits nicely with Pogamut). Additionally, the AS agent employed our proprietary
AgentSpeak(L)-like system [16] as the DMS.

The DMS selects actions to execute based on facts represented in Working
memory. It is more comfortable to work with facts like “bot Tom is chasing bot
Clara” at the level of DMS (and thus at the level of Working memory) rather than

with facts like “bot Tom is at position <x,y,z>” and “bot Clara’s speed is V”. It is the
job of Inference engine to infer the former kind of facts, i.e., Class 3 facts.5

The main component of the architecture, and the only mandatory, is WorldView.
This component arose from the need to provide an abstraction of game facts for the
other components of the architecture. WorldView has two major functions: 1)
synchronising facts incoming from a GE as well as the other components, 2)
providing these facts to multiple components at once. The component can be seen as a
blackboard [38].

Fig. 3. High-level architecture of the Pogamut 3 agent implemented by the AS agent.

It implements both push and pull strategy information retrieval, i.e., it is possible to

query WorldView directly, or attach listeners that are informed whenever facts are
updated. Importantly, this update event model of WorldView is flexible, in the sense
that WorldView understands an ontology of Java objects that comes out of the Java
class hierarchy. This works as follows. Let us assume that the virtual world simulated
by the GE can be populated by items such as fruits and vehicles, but currently only
apples and cars are supported. Concerning agents populating this world, this means
that designers must provide a way for the agents to recognise items of these two
kinds. When WorldView is used, designers have to create the following classes
representing the objects’ types and their categories: “item”, “fruit”, “vehicle”,
“apple”, and “car”. Utilising Java class inheritance, designers will further define that
classes “vehicle” extends “item”, “fruit” extends “item”, “apple” extends “fruit”, and
“car” extends “vehicle”. WorldView then propagates events according to this
ontology; for instance, when an event happens on the object of class “apple”, it is
propagated also to “fruit” and “item”. This makes the object model of WorldView

5 We also tried to infer these facts inside the DMS directly, but, at least for our AS agent, it

turned out that that was inefficient and specification of the inference rules was cumbersome.
A separate RETE engine ([37]) turned out to be more suitable for this task. These practical
aspects motivated the separate component for inferring Class 3 facts in our architecture.

flexible as any other agent’s component may listen on all “fruit” events by attaching a
listener on the class “fruit” instead of attaching the listener on every instance of fruit.
This feature is not present in most GEs today.

The application of WorldView for various knowledge representations is
straightforward. Whenever a different knowledge representation is required, it
suffices to create a translator from Java objects into a desired representation and vice
versa. The WorldView event model will then take care of propagation of fact updates
to such a translator. For the AS agent, we have implemented this mechanism for all
the four components WorldView communicates with (Fig. 3). For instance, the RETE
inference engine has its listeners attached to desired Java classes inside WorldView
and when it infers a new fact, this fact is propagated via WorldView to other
components when they have their listeners up.

The last component of the architecture is Reactive layer, which is useful for coping
with situations like “projectile is coming” in a swift way. While it is possible to model
this kind of reflexive behaviour within a high-level goal-oriented DMS, our
experience is that it is better to have a separate module handling these reflexes (for
instance due to time efficiency and due to the fact that reflexive behaviour is easier to
manage in Java than in such DMS). This reflexive—deliberative decomposition is a
reminiscence of layered control architectures [39].

 The key point of the blackboard architecture is that individual components are, to
a large extent, oblivious to existence of the other components. This is important for at
least two reasons. First, a developer can use arbitrary Java libraries for different
modules. Second, a new module can be added during development. In our case, we
have added the inference engine in this way, but in the context of videogames, other
modules come into mind, such as an emotion model or episodic memory.

6 Pogamut 3 beyond UT 2004

So far, this paper discussed predominantly coupling between a GE and an external
agent DMS for controlling a single bot. Additionally, only a UT 2004 implementation
has been presented. It is natural to ask whether our approach can be extended. This
section discusses three possible directions of such extension.

1) Different game engine. Does our approach work well for a different GE?
2) Internal coupling. How the framework from Fig. 3 should be refined when an

agent DMS is coupled internally?
3) Multiple agent generalisation. How our framework can be generalised when

multiple agents connect to a same GE?

In fact, we already have prototypes of binding to Unreal Tournament 3 [40],
Unreal Development Kit [41], Defcon [20], StarCraft [19] and Virtual Battle Space 2
(VBS) [18] which provides us a broad range of game engines and game types for the
validation of our approach (Point 1).

Internal coupling (Point 2) is being tested mainly on binding to Defcon [20].
Defcon is a completely different game than UT 2004. It is a simulation of a global
thermonuclear conflict played in real-time, where a player takes a role of a

commander in charge of military forces under the flag of one nuclear nation.
Secondly, this work demonstrates that Pogamut can be used also beyond the domain
of 3D bots. Thirdly, Pogamut is connected to Defcon via the game’s internal API,
demonstrating that internal binding is possible. In future, we plan to investigate the
relation between the framework presented on Fig. 2 and the Defcon binding in detail.

Finally, connecting Pogamut to Virtual Battle Space 2 (VBS) [18], a military
simulator, is important due to Point 3. Almost every 3D game features multiple bots.
When these bots are represented as individuals, that is, each follows the architecture
from Fig. 3, following observations can be made:

a) Repetitive queries. Facts, both static and dynamic, are often queried repetitively.
b) Concurrent access. Bots may access the game engine concurrently, creating

synchronisation issues.
c) Locality of facts. Nearby bots tend to acquire similar fact sets.
d) Shared facts. Bots may share some static and dynamic information, e.g.

discovered map and known topology, communication channels, etc.
e) Bots communication. If it is believable, bots may be allowed to communicate

directly each other with, which opens the possibility to bypass the GE concerning the
communication.

Based on these observations, we designed the MultiBotProxy (MBP) architecture
extending the architecture from Fig. 3. The MBP architecture covers the possibility of
multiple externally connected DMSs to a single GE. This architecture is now being
implemented using the VBS simulator.

Figure 4. MultiBotProxy schema. The MBP may allow connection of agent DMSs
developed by different means (i.e., not only by Pogamut) to the same GE.

The MBP is a 3-tier architecture (see Figure 4), where the MBP node is the place

between the GE and the externally connected agents. The MBP provides, besides its

obvious proxy functionality, an interface for communication and data flow
management – information caching, request optimisation, and data processing.
SharedWorldView, the main component of the architecture, can be conceived as a
blackboard shared by the GE and all the agents.

7 Conclusion

This paper started with the question Can knowledge accumulated in the MAS field
concerned with agent reasoning be used for reasoning of individual bots or a couple
of bots? We argued that to answer this question, it is necessary to connect several
agent DMS to a single GE and compare them against existing AI techniques currently
used by the game industry. To facilitate this process, we have presented a theoretical
framework (Fig. 1, 2) for thinking about coupling external agent DMSs to GEs and
the software toolkit Pogamut for practical development of such couplings. We have
also presented an AgentSpeak(L)-based system fully connected to the UT 2004 game,
demonstrating applicability of Pogamut. Finally, we reviewed our work in progress
aiming at applying Pogamut beyond the domain of UT 2004: most notably for two
strategy games, for new UT versions, and for a 3D game featuring teams of bots.

We conclude this paper with an interesting observation that our architecture from
Fig. 3 implementing the theoretical framework from Fig. 2 could be, per se,
conceived as a multi-agent system. In other words, our suggestion is that a “mind” of
a single agent connected to a game engine can be perceived as a system of interacting,
fully or partly autonomous agents. It would be interesting to elaborate on this idea in
future, since this may bring the possibility to use, in games, knowledge the MAS field
gained on negotiation; not for negotiation between different bots, but between
different components of their “minds”.

Acknowledgement. This work was partially supported by grant P103/10/1287 (GA
ČR), research project MSM0021620838 (MŠMT ČR) and by students grants GA UK
No. 44910 and GA UK No. 21809.

References

1. Champandard, A. J.: Key Trends in Game AI – Are You Ready for These? In:
AiGameDev.com online, April 17, 2009. URL:
http://aigamedev.com/open/editorial/key-trends/ (7.2.2010)

2. Orkin J.: Three States & a Plan: The AI of F.E.A.R. In: Proceedings of Game
Developer’s Conference, 2006.

3. Stanley, K. O., Bryant, B. D., Miikkulainen R.: Real-time Neuroevolution in the
NERO Video Game. In: IEEE Transactions on Evolutionary Computation, 9(6),
pp. 653–668, 2005.

4. Zubek, R.: Introduction to Hidden Markov Models. In: AI Game Programming
Wisdom 3, Charles River Media, 633-646, 2006.

5. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
2002.

6. Briot, J. P., Sordoni, A., Vasoncelos, E., Irving, M., Melo, G., Sebba-Patto, V.,
Alvarez, I.: Design of a Decision Maker Agent for a Distributed Role Playing
Game – Experience of the SimParc Project. In: Agents for Games and
Simulations, 2009, LNCS 5920, 2009.

7. Bordini, R. H., and Hübner, J. F.: BDI agent programming in AgentSpeak using
Jason. In: Proceedings of the Sixth International Workshop on Computational
Logic in Multi–Agent Systems (CLIMA VI), pp. 143–164, 2006.

8. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java, AgentLink News, Issue 2, 1999.

9. Braubach, L., Pokahr, A.: Jadex: BDI Agent System. URL:
http://jadex.informatik.uni-hamburg.de (27.9.2009)

10. Dignum, F., Westra, J., van Doesburg, W. A., Harbers, M.: Games and Agents:
Designing Intelligent Gameplay. In: International Journal of Computer Games
Technology, vol. 2009 (2009)

11. Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L.,
Simlovic, J., Vansa, R., Stolba, M., Plch, T., Brom C. Pogamut 3 Can Assist
Developers in Building AI (Not Only) for Their Videogame Agents. In: Agents
for Games and Simulations, LNCS 5920, Springer, pp. 1–15, 2009.

12. Brom, C., Bída, M., Gemrot, J., Kadlec, R., Plch, T.: Emohawk: Searching for a
“Good” Emergent Narrative. In: Proc. of 2nd Joint Int. Conference on Interactive
Digital Storytelling ICIDS, LNCS 5915, Springer, pp. 86-91, 2009.

13. Burkert, O., Brom, C., Kadlec, R., Lukavský, J.: Timing in Episodic Memory:
Virtual Characters in Action. In: Proceedings of AISB workshop Remembering
Who We Are – Human Memory For Artificial Agents, Leicester, UK (to appear)

14. Arrabales, R. Ledezma, A. and Sanchis, A.: Towards Conscious-like Behavior in
Computer Game Characters. In: Proceedings of the IEEE Symposium on
Computational Intelligence and Games, pp. 217-224, 2009.

15. Hindriks, K. V., van Riemsdijk, M. B., Behrens, T., Korstanje, R.,
Kraaijenbrink, N., Pasman, W., de Rijk, L.: Unreal GOAL Bots: Conceptual
Design of a Reusable Interface (AGS'10), May 2010.

16. Gemrot. J.: Joint behaviour for virtual humans. Master's thesis. Charles
University, Prague, 2009.

17. Epic Games: Unreal Tournament 2004. (2004) URL:
http://www.unrealtournament2003.com/ (7.2.2010)

18. Virtual Battlespace 2. Bohemia Interactive. URL:
http://www.bistudio.com/bohemia-interactive-simulations/virtual-battlespace-
2_czech.html (7.2.2010)

19. StarCraft. Blizzard Entertainment. URL: http://eu.blizzard.com/en-gb/games/sc/
(21.8.2010)

20. Defcon: Everybody dies. Introversion software. URL:
http://www.introversion.co.uk/defcon/ (7.2.2010)

21. Loyall, B. A.: Believable Agents: Building Interactive Personalities. Ph.D. diss.
Carnegie Mellon University, 1997.

22. Orkin, J.: 3 States & a Plan: The AI of F.E.A.R. In: Game Developer's
Conference Proceedings, 2006.

23. Rao, A. S.: AgentSpeak(L): BDI agents speak out in a logical computable
language. In: Agents Breaking Away, LCNS 1038/1996, 2006.

24. Game Engine. Wikipedia. URL: http://en.wikipedia.org/wiki/Game_engine
(7.2.2010)

25. Zerbst, S., Duvel, O.: 3D game engine programming. In: Course Technology
PTR, 2004.

26. Lua programming language. URL: http://www.lua.org/ (7.2.2010)
27. Python programming language. URL: http://www.python.org/ (7.2.2010)
28. UnrealScript programming language. URL:

http://unreal.epicgames.com/UnrealScript.htm (7.2.2010)
29. Stentz, A.: Optimal and Efficient Path Planning for Partially-Known

Environments. In: Proceedings of the International Conference on Robotics and
Automation, 1994

30. Houlette, R., Fu, D.: The Ultimate Guide to FSMs in Games. In: AI Game
Programming Wisdom 2, Charles River Media, 2003.

31. Isla, D: Managing Complexity in the Halo 2 AI System. In: Proceedings of the
Game Developers Conference, 2005.

32. Brom, C., Gemrot, J., Burkert, O., Kadlec, R., Bída, M.: 3D Immersion in Virtual
Agents Education In: Proceedings of First Joint International Conference on
Interactive Digital Storytelling, ICIDS 2008 Erfurt, Germany, November 26-29,
LNCS 5334, Springer-Verlag, Berlin, pp. 59-70, 2008.

33. Bryson, J.J.: Inteligence by design: Principles of Modularity and Coordination for
Engineering Complex Adaptive Agent. PhD Thesis, MIT, Department of EECS,
Cambridge, MA, 2001.

34. Anderson, J.R.: How can the human mind occur in the physical universe? Oxford
University Press, 2007.

35. Gemrot, J., Brom, C., Kadlec, R., Bída, M., Burkert, O., Zemčák, M., Píbil, R.,
Plch, T.: Pogamut 3 – Virtual Humans Made Simple. In: Gray, J., Nefti-Meziani,
S. (eds.), Advances in Cognitive Systems, IET Publisher (in press).

36. tuProlog. URL: http://alice.unibo.it/xwiki/bin/view/Tuprolog/ (7.2.2010)
37. Hammurapi rules. URL: http://www.hammurapi.biz/hammurapi-

biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html (7.2.2010)
38. Hayes-Roth, B. A blackboard architecture for control. In: Artificial Intelligence

26(3), pp. 251-321, 1985.
39. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,

pp. 99, 2002.
40. Epic Games: Unreal Tournament 3, URL:

http://www.unrealtournament.com/uk/index.html [1.9.2010]
41. Epic Games: Unreal Development Kit (UDK), URL: http://www.udk.com/

[1.9.2010]

