
Creating game bots in a few easy steps
Rudolf Kadlec

rudolf.kadlec@gmail.com

Ond ej Burkertř
Charles University in Prague

Malostranské nám. 2/25

Prague, Czech Republic

ondrej.burkert@gmail.com

Cyril Brom

brom@ksvi.mff.cuni.cz

ABSTRACT
This paper describes the content of our tutorial concerned with the
development of artificial intelligence for virtual characters in
computer games, so-called bots. The Pogamut platform was
chosen for this tutorial.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific architectures.

General Terms
Design, Experimentation.

Keywords
Virtual agents, Decision making, Java, Unreal Tournament 2004.

1. INTRODUCTION
The creation of computer game bots acting in complex and life-
like virtual worlds has been the domain for expert programmers
for a long time. However, in recent years, software tools designed
for use by the non-expert programmers have emerged [2]. The
Pogamut software platform [1] was designed with the novice
programmer in mind.

Thanks to Pogamut, the creation of bots can be made easier and
therefore more accessible for a beginner programmer. But still
there are some key programming concepts that a beginning
programmer should be familiar with before making his or her first
bot. In this tutorial, we will explain these concepts, creating one
example bot using the Pogamut platform.

2. BASICS OF BOT PROGRAMMING
Typically, bots have a modular control architectures. While one
module can be responsible for high level reasoning, another one
can deal with issues like long term planning of the bot’s
movement or obstacle avoidance. Many modules can coexist
depending on the bot’s purpose, but the three mentioned above
are common in almost all life-like bots. Thus, these modules will
be discussed during the tutorial a bit closer.

The high level reasoning module, often called decision making
system (DMS) or action selection mechanism (ASM), is the
central arbiter coordinating other modules. The main task of this
module is to decide what to do next. Typically, a bot has a
possible set of actions it can execute and the DMS basically
selects the most appropriate for a particular situation. Two of the
most widespread techniques used for creating DMS are finite
state machines (FSM) and reactive rules (also known as IF-THEN
rules). Both of these methods will be explained during the
tutorial.

Every bot acts in a at least 2D space., where it has to move from
one location to another from time to time. The path planning
module is responsible for finding a path between the bot’s current
location and its intended destination. The A* algorithm, a known
heuristic graph search algorithm, is often used for this task,
optimizing the path based upon various factors – distance,
elevation difference etc.

Once the path is computed, the bot starts following it. However,
in a dynamic environment, the mindless following of a
precomputed path may not always work. For example, other bots
or movable objects can block the path or the conditions may
change making the path unsuitable. Fortunately, several simple
and computationally efficient algorithms dealing with the issue of
intelligent avoiding of obstacles can be used to overcome the
issue. In general, these algorithms are derived from the original
steering mechanisms described by Reynolds [6]. Both the A* and
steering mechanisms will be introduced during the tutorial,
including how they are merged with selection of other actions by
a DMS.

When dealing specifically with human-like bots, other issues
arise. Simulating and generating emotions becomes important.
Emotional responses to the objects and events the bot encounters
in the virtual world can be either scripted by hand or generated by
a general emotion appraisal model, such as ALMA [3]. General
emotion models make it possible to generate responses the
designer didn’t intend, thus leading to fully emergent behaviour
of the bot. The issue of emotional modeling will be introduced
during the tutorial.

3. POGAMUT PLATFORM
The Pogamut platform is an open source software tool for easier
developing and testing of a bot’s DMS. Solutions for the low
level problems like path finding, obstacle avoidance etc., are
provided by the platform, thus the user can concentrate on
creating the bot’s behaviour.

The Pogamut platform consists of these main components:

• Virtual environment – the commercial game Unreal
Tournament 2004 extended by a GNU licensed
communication interface GameBots2004 is used as the
virtual reality simulator for programmed bots; Figure 1
shows a screenshot of the environment.

• Class library – a set of Java classes providing API for
programming the behavior.

• Integrated development environment – Pogamut
provides a plug-in for Netbeans IDE, assisting with
debugging and tuning of the bot.

• Emotional generator – a general model of emotion
appraisal can be parameterised for each bot to give him
an unique personality

The overview of the Pogamut's architecture is shown in Figure 2.
Bot’s bodies are embodied in the Unreal Tournament 2004 and
are controlled like puppets via the GameBots2004 communication
interface. Thus, their “minds” are programmed out of the Unreal
Tournament 2004, making it possible to use any arbitrary
technique for their controll. During the tutorial, the interface
provided by GameBots2004 will be used by the Java library
(“Pogamut agent” on Figure 2). Thanks to the Gavialib
component, the underlying TCP/IP communication is handled
transparently with respect to the bot’s code eliminating the need
to take care of the low-level communication by the user . Bot’s
logs and internal parameters can be observed from the user-
friendly Netbeans IDE with the installed Pogamut plug-in.

The plug-in contains about 10 well commented example bots that
can be used as a template for creating one’s own bots.
Documentation and online support on forums are provided via the
homepage of the Pogamut project [5]. Besides introducing the
theoretical concepts for controlling bots, an example bot – a
hunter bot – will be programmed during the tutorial. The hunter
bot’s abilities include walking, object avoidance, following,
objects’ collecting and weapon selection behaviour. All these
behaviours are encoded in a collection of IFTHEN rules.

Pogamut is still being actively developed. We are working both
on extensing the core functionality as well as refining applications
built on top of the Pogamut platform. New core extensions
include the binding for the ALMA emotional model [3] and the
programming language StorySpeak [4] designed for coordination
of multiple agents when programming simple storytelling
applications. The ALMA model and how it can be used for
modifying bot’s behaviour will be introduced in the presented
tutorial.

4. CONCLUSION
The purpose of this paper was to give a short overview of the
problems concearned with bots’ development and to present the
Pogamut platform - a software tool designed for easy bot
prototyping. Both the theoretical background and the Pogamut
platform will be discussed more thoroughly in the tutorial session.
The attendees will also have the opportunity to install Pogamut on
their notebooks and try to create their own bots during the
session.

5. ACKNOWLEDGMENTS
This work was supported by the grant GAUK no. 21809. It was
also partially supported by the Program “Information Society”
under project 1ET100300517, by the grant 201/09/H057, and by
the research project MSM0021620838 of the Ministry of
Education of the Czech Republic.

6. REFERENCES
[1] Burkert, O., Kadlec, R., Gemrot, J., Bída, M., Havlíček, J.,

Dörfler, M., Brom, C. 2007. Towards fast prototyping of
IVAs behavior: Pogamut 2 In: Proceedings of 7th
International Conference on Inteligent Virtual Humans,
LNCS Vol. 4722. Paris, France. Springer-Verlag, Berlin.

[2] Cooper, S., Dann, W., Pausch, R. 2003. Teaching Objects-
first In Introductory Computer Science. In Proceedings of the
SIGCSE technical symposium on Computer science
education (Reno, Nevada, USA). ACM New York, NY,
USA. 191-195.
DOI=http://doi.acm.org/10.1145/611892.611966

[3] Gebhard, P. 2005. ALMA - A Layered Model of Affect. In:
Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS'05),
29-36, Utrecht. URL:
http://www.dfki.de/~gebhard/alma/index.html [5.6.2009]

[4] Gemrot. J. 2009. Joint behaviour for virtual humans. Master
thesis. Charles University in Prague

[5] Pogamut project homepage, URL:
http://artemis.ms.mff.cuni.cz/pogamut [20.6.2009]

[6] Reynolds, C. 1999. Steering Behaviors for Autonomous
Characters. In Game Developers Conference 1999

Figure 2: Architecture of Pogamut platform

Figure 1: Interaction of two bots in modified environment of
game Unreal Tournament 2004 (Copyright 2009 Epic Games)

http://publications/TeachingObjects-firstInIntroductoryComputerScience.pdf
http://publications/TeachingObjects-firstInIntroductoryComputerScience.pdf
http://publications/TeachingObjects-firstInIntroductoryComputerScience.pdf
http://doi.acm.org/10.1145/611892.611966
http://doi.acm.org/10.1145/611892.611966
http://artemis.ms.mff.cuni.cz/pogamut

	Creating game bots in a few easy steps
	1. INTRODUCTION
	2. BASICS OF BOT PROGRAMMING
	3. POGAMUT PLATFORM
	4. CONCLUSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES

