
DyBaNeM: Bayesian Framework for Episodic Memory Modelling
Rudolf Kadlec (rudolf.kadlec@gmail.com)

Cyril Brom
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic

Abstract
Episodic Memory (EM) plays a central role in cognitive ar-
chitectures and artificial agents that need ability to remember
and recall the past. Most of the currently implemented EM
systems resemble logs of events stored in a database with in-
dexes. However, these systems usually lack abilities of human
memory like hierarchical organization of episodes, reconstruc-
tive memory retrieval and encoding of episodes with respect
to previously learnt repeated schemata. Here, we present a
new general framework for EM modelling, DyBaNeM, that
has these abilities. From psychological point of view, it builds
on the Fuzzy-Trace Theory (FTT). On computational side, it
uses formalism of Dynamic Bayesian Networks (DBNs). We
describe abstract encoding, storage and retrieval algorithms,
two models we implemented within DyBaNeM, and evalua-
tion of the models’ performance using a dataset resembling a
log of human activity.
Keywords: Episodic Memory; Fuzzy Trace Theory; Dynamic
Bayesian Networks.

Introduction
EM (Tulving, 1983) is an umbrella term for memory systems
operating with personal history of an entity (as opposed to
semantic facts or procedural rules). Most EM systems imple-
mented to date capitalize on symbolic representations resem-
bling indexed logs of events. These data structures make it
hard to implement some of the most remarkable features of
human EM, such as hierarchical organization and reconstruc-
tive retrieval.

The goal of this paper is to present a new framework for
EM modelling, DyBaNeM, in which these two features are
naturally emerging properties. We also present two models
implemented within this framework. The framework is in-
spired by the FTT (Gallo, 2006). FTT hypothesizes two par-
allel mechanisms that encode incoming information: verba-
tim and gist. While verbatim encodes the surface-form of the
information in detail, gist encodes the meaning in a coarse-
grained way (Gallo, 2006), capitalizing on previously learnt
schemata (Bartlett, 1932) of episodes and parts of episodes.
There is also further evidence that people tend to perceive
episodes in a hierarchical fashion (Zacks & Tversky, 2001).

Models built within the DyBaNeM framework works as
follows. First the schemata of episodes are learned from an-
notated examples modeling procedural learning during child-
hood. Once learnt, the schemata remain fixed, becoming an
underlying structure for encoding, storage and episodic re-
trieval, as exemplified on Figure 1. Suppose that Bob tries
to remember what Alice does. While observing her, he seg-
ments what she is doing into a hierarchy of nested episodes.
This deduced hierarchy is used in encoding, where some of
the most interesting details are remembered. Some of the

details may be forgotten during storage (such as o3 on Fig-
ure 1). In the end, when Bob wants to re-tell what he saw, he
reconstructs the whole story using remembered knowledge
(E0

2∼T = c0
2∼T ;O1 = o1) and the previously learnt schemata.

However, due to imperfect perception, encoding and forget-
ting in storage, the recalled events may not completely match
the original story. In terms of FTT the initially stored facts
O1 = o1 and O3 = o3 are verbatim, since they correspond to
real observations, and E0

2∼T = c0
2∼T is a gist because this is

Bob’s interpretation of Alice’s actions.

ρ0 ρ1 ρTρ2 ρ3

o0 o1 oTo2 o3

b0
0~1 c0

2~T

a1
0~T

t

t

D
e
d
u

ce
d

 e
p

is
o
d
e

s

O
b

se
rv

e
d

Bob

Alice

G
is

t
V

e
rb

a
tim

o0 o1
oTo2 o3

b0
0~1 c0

2~T

a1
0~T

t

Bo
b’

s
st

or
ag

e
Bo

b’
s

en
co

di
ng

E0
2~T = c0

2~T

O1 = o1

O3 = o3

o0 o1 oTo2 o3

b0
0~1 c0

2~T

a1
0~T

t

Bo
b’

s
re

tr
ie

va
l

Hi Alice, I remember
you doing o1 so you
probably were doing
b0

0~1 at that time.

Bo
b’

s
pe

rc
ep

tio
n

Episodic

schemata
S

to
re

d

O3 = o3 forgotten
R

e
co

n
st

ru
ct

e
d

R
e
a

lit
y

Figure 1: Perception-encoding-storage-retrieval cycle. Alice
performs a sequence of actions, Bob perceives this and de-
duces Alice’s episodic hierarchy, then he stores encoded rep-
resentation until retrieval when he reconstructs the original
observation with the use of schemata. Notation xk

i∼ j means
that episode x on level k started at time i and ended at j.

The presented framework uses Bayesian formalism. It im-
plements both the perception (where Bob segments Alice’s
behavior) and episode reconstruction in retrieval with the
same class of probabilistic models — DBN (Koller & Fried-
man, 2009). The underlying DBN is also heavily used in en-
coding. In every step, different probabilistic queries are per-
formed over this model. Details of the model that had to be
omitted here due to space constraints are provided in (Kadlec
& Brom, 2013b). While the DBN formalism is widely used,
what is new here is exploration of its application on EM mod-
elling. FTT was previously implemented in a setting of static
scenes (Hemmer & Steyvers, 2009). Our work extends this
general approach also to sequences of events.

In the next section we discuss assumption of hierarchi-
cal decomposition of behavior. Then we introduce our Dy-
BaNeM framework for EM modelling. In the end we eval-
uate it using a corpora of hierarchically organized activities
and illustrate reconstructive recall in the model.

Hierarchical Activity Representation and
Probabilistic Models

One of the core assumptions of our framework is that flow of
events can be represented in a hierarchy of so called episodes.
This seem to be true both for humans (Zacks & Tversky,
2001) and for many computer controlled agents. Many for-
malisms popular for programming agents in both academia
and industry use some kind of hierarchy, such as hierarchical
finite state machines or behavior trees.

At the same time, there is a body of literature on
using DBNs for activity recognition that also uses the
episode/activity hierarchy, e.g. (Bui, 2003; Blaylock & Allen,
2006). In activity recognition, DBNs-based models can be
used for deducing abstract episodes, that is, for computing
posterior probability of episodes conditioned on observations.
In EM modelling, we need also the inverse way; asking “what
if” queries: what is a retrieved memory of a situation given
the agent remembers two particular facts? Luckily, the DBNs
are flexible enough to allow for this “reverse” path.

DyBaNeM: Probabilistic EM Framework
In this section we introduce our EM framework. We start
with auxiliary definitions needed for description of the model.
Then we show how DBNs can be used for activity/episode
recognition and how the episodic schemata are represented
by two particular network architectures. Finally, we present
the algorithms of encoding, storage and retrieval.

Notation. Uppercase letters will denote random variables
(e.g. X ,Y,O) whereas lowercase letters denote their values
(e.g. x,y,o). Probability mass function (PMF) of random vari-
able X will be denoted by P(X). When X is discrete, P(X)
will be also used to refer to a table specifying the PMF. Do-
main of X will be denoted as D(X). Notation Xi: j will be
a shorthand for sequence of variables Xi,Xi+1 . . .X j, analogi-
cally xi: j will be a sequence of values of those variables. The

subscript will usually denote time. M will be a probabilistic
model and V is a set of all random variables in the model.

Formalizing the episodic representation, world state, and
inputs/outputs. In this section we formalize what repre-
sentation of episodes and world state is assumed by the Dy-
BaNeM framework.

Definition 1 Episode is a sequence (possibly of length 1)
of observations or more fine-grained episodes (sub-episodes)
that has a clear beginning and an end.

Note that episodes may be hierarchically organized.

Definition 2 Episodic schema is a general pattern specify-
ing how instances of episodes of the same class look like.

For instance, an episodic schema (cf. the notion of script or
memory organization packet (Schank, 1999)) might require
every episode derivable from this schema to start by event a,
then going either to event b or c and ending by d.

Definition 3 Episodic trace ε0:n
t is a tuple 〈e0

t ,e
1
t . . .e

n
t 〉 rep-

resenting a hierarchy of episodes at time t; e0
t is the currently

active lowest level episode, e1
t is its direct parent episode and

en
t is the root episode in the hierarchy of depth n.

Example of an episodic trace can be ε0:n
0 =

〈WALK,COMMUT E〉 and ε0:n
1 = 〈GO BY BUS,

COMMUT E〉. The notation of episodic trace reflects the fact
that an agent’s behavior has often hierarchical nature.

Our model uses probabilistic representation, hence even if
there is only one objectively valid episodic trace for every
agent at each time step, input of the EM model will be a prob-
ability distribution. Let E i

t denotes a random variable repre-
senting a belief about an episode on level i at time t. While
the true value of E i

t is, say, ei
t , the PMF enables us to cope

with possible uncertainty in perception and memory recall.

Definition 4 Probabilistic episodic trace E0:n
t is a tuple of

random variables 〈E0
t ,E

1
t . . .E

n
t 〉 representing an agent’s be-

lief about what happened at time t. Analogically E0:n
0:t denotes

probabilistic episodic trace over multiple time steps.

The following data structure represents an agent’s true per-
ception of the environment state.

Definition 5 Let ρt denotes observable environmental prop-
erties at time t.

For instance, ρ can hold atomic actions executed by an
observed agent (and possibly other things too), e.g. ρ0 =
STAND ST ILL, ρ1 = GET TO BUS.

Analogically to E0:n
t and ε0:n

t , Ot is a random variable rep-
resenting belief about observation ρt .

Fig. 2 shows how these definitions translate to an example
DBN structure. In this paper, we describe implementation of
two DBN-based models and the figure depicts both of them.

Surprise. In encoding, the framework works with quantity
measuring difference between the expected real state of a ran-
dom variable and its expected state given the remembered
facts. We call this quantity surprise. In Bayesian framework

Ot

E0
t

E1
t

En
t

Ot+1

E0
t+1

E1
t+1

En
t+1

E0:n
t

E0:n
t:t+1

Ot:t+1

Hn
t

Fn
t

Hn
t+1

Fn
t+1

H1
t

F1
t

H1
t+1

F1
t+1

H0
t

F0
t

H0
t+1

F0
t+1

O
bs

er
va

tio
ns

1s
t
le

ve
l o

f
ep

is
od

es
2n

d
le

ve
l o

f
ep

is
od

es
(n

+1
)th

le
ve

l
of

 e
pi

so
de

s

Figure 2: An example of a DBN’s structure together with
our notation. Solid lines show network architecture of
CHMM (Blaylock & Allen, 2006) model, whereas when the
dotted drawing is added we obtain network of AHMEM (Bui,
2003) model.

surprise can be defined as “difference” between prior and pos-
terior probability distributions. We adopt approach of (Itti &
Baldi, 2009) who propose to use Kullback-Leibler (KL) di-
vergence (Kullback, 1959) to measure surprise.

Definition 6 KL divergence (Kullback, 1959) of two PMFs
P(X) and P(Y), where D(X) = D(Y) is defined as:

KL(P(X)→ P(Y)) = ∑
x∈D(X)

P(X = x)ln
P(X = x)
P(Y = x)

We use notation with → to stress directionality of KL di-
vergence; note that it is not symmetrical. We will use KL
divergence as a core tool of our framework. Another option
might be e.g. the Kolmogorov-Smirnov test.

Learning schemata
Episodic schemata are represented by parameters θ̂ of a DBN.
Expressiveness of schemata depends on the structure of a
model at hand. We will suppose that the DBN’s topology is
fixed. Thus learning schemata will reduce to well known pa-
rameter learning methods. DBN with unobserved nodes has
to be learnt by Expectation-Maximization algorithm (EM al-
gorithm), topologies without unobserved nodes are learnt by
counting the sufficient statistics (Koller & Friedman, 2009).

In our case examples of episodes that we want to use
for schemata learning will be denoted by D = {d1,d2 . . .dn}
where each di can be one day of an agent’s live, or any other
appropriate time window. di itself is a sequence of time
equidistant examples ct , that is, di = {ci

0,c
i
1 . . .c

i
ti}. Each ci

t is
a tuple 〈ε0:n

t ,ρt〉, it contains an episodic trace and observable
state of the environment.

DBN Architectures
For computing probabilities, our framework makes it possible
to use any DBN architecture where some nodes represent ob-
servations and some probabilistic episodic trace. In this paper
we use two architectures, simple CHMM (Blaylock & Allen,
2006) and more complex AHMEM (Bui, 2003).

As we said the schemata are represented by parameter θ̂,
that is, by all conditional probability mass functions (CPMFs)
of the DBN’s nodes. Expressiveness of the schemata depends
on the structure of DBN. In CHMM episodic schemata en-
code probability of an episode given previous episode on the
same level in the hierarchy and also given its parent episode
(P(E i

t |E i
t−1,E

i+1
t)). This is one of possible hierarchical ex-

tensions of a well known Hidden Markov Model (HMM).
CHMM is learnt by counting the sufficient statistic.

AHMEM is an augmentation of CHMM that extends each
episodic schema with a limited internal state (memory) rep-
resented by a probabilistic finite state machine (PFSM) with
terminal states. This automaton is represented by random
variables F i

t and H i
t in Fig. 2. This adds even more rich-

ness to the represented schemata. H i
t represents transition

between states of the PFSM (|D(H i
t)| is the number of the

PFSM’s states). F i
t is a variable indicating that some states

of the PFSM are terminal, thus the episode has finished
(D(F i

t) = {terminal,nonterminal}). Advatages of this model
are described in (Bui, 2003). Downside of the expressive
AHMEM models is that they are computationally more ex-
pensive than CHMM. Since AHMEM contains unobservable
variables H i

t , it has to be learnt by EM algorithm.

Encoding
The encoding algorithm computes a list of mems on the basis
of the agent’s perception, Per0:T , of the situation to be re-
membered. Per0:T is a set of PMFs such that Per0:T = { fX :
X ∈ Observable}, where fX is PMF for each variable X of
interest. Now we have to distinguish what scenario we are
going to use:

1. Observable = O0:T — Bob is going to encode Alice’s ac-
tivity whose εAlice is hidden to Bob, nevertheless Bob per-
ceives Alice’s atomic actions that are contained in ρAlice.
This is the use-case described in Figure 1. We introduce an
observation uncertainty by defining fOt ≡ smoothed1 ρt ;
P(E0:n

0:T) will be deduced during the encoding algorithm.

2. Observable = E0:n
0:T ∪O0:T — Bob is going to encode his

own activity, in this case the episodic trace εBob is available
since Bob knows what he wanted to do. Values of fOt are
computed as above and fE i

t
≡ smoothed ei

t .

Algorithm 1 is a skeleton of the encoding procedure. The
input of the algorithm is Per0:T , where the time window 0 : T
is arbitrary. In our work we use time window of one day. The
output is a list of mems encoding this interval.

1For details of smoothing see (Kadlec & Brom, 2013b)

Algorithm 1 General schema of encoding algorithm
Require: Per0:T — PMFs representing the agent’s percep-

tion of the situation (i.e. smoothed observations)
Require: M — probabilistic model representing learned

schemata
1: procedure ENCODING(Per0:T ,M)
2: mems← empty . List of mems is empty
3: while EncodingIsNotGoodEnough do
4: X ← GetMem(M ,Per0:T ,mems)
5: xmax←MLOPM (X |mems)
6: mems.add(X = xmax)
7: end while
8: return mems
9: end procedure

The algorithm runs in a loop that terminates once the
EncodingIsNotGoodEnough function is false. There are
more possible stop criteria. We use |mems|< K because this
models limited memory for each day. Other possibilities are
described in (Kadlec & Brom, 2013b).

In each cycle, the GetMem function returns the variable
X i

t that will be remembered. The MLO function (most likely
outcome) is defined as:

MLOPM (X |evidence)≡ argmax
x∈D(X)

P(X = x|evidence) (1)

This means that we get the most probable value for X and
add this assignment to the list of mems.2 In the end the pro-
cedure returns the list of mems.

We have developed two variants of the GetMem function,
each has its justification. In the first case, the idea is to
look for a variable whose observed PMF and PMF in the
constructed memory differs the most. This variable has the
highest surprise and hence it should be useful to remember it.
This strategy will be called retrospective maximum surprise
(RMaxS). It is retrospective since it assumes that the agent
has all observations in a short term memory store and, e.g.,
at the end of the day, he retrospectively encodes the whole
experience. RMaxS strategy can be formalized as:

X ← argmax
Y∈VOI

KL(PM (Y |Per0:T)→ PM (Y |mems)) (2)

where P(Y |Per0:T) ≡ P(Y |X = fX : fX ∈ Per0:T), we con-
dition the probability on all observations. VOI ⊆ V is a
set of random variables of interest whose value can be re-
membered by the model. There can be some variables in
the DBN that we do not want to remember since they are
hardly interpretable for human. In our implementation we
used VOI = E0:n

0:T ∪O0:T .
The alternative strategy called retrospective minimum

overall surprise (RMinOS) assumes a more sophisticated pro-

2Maximum a posteriori (MAP) (Koller & Friedman, 2009) query
would be more appropriate, we use MLO for simplicity.

cess. RMinOS picks the variable–value pair whose know-
ledge minimizes surprise from the original state of each Y ∈
VOI to its recalled state. The following equation captures this
idea:

X ← argmin
Y∈VOI

∑
Z∈V

KL

(PM (Z|Per0:T)→ PM (Z|Y = ȳ,mems)) (3)

where ȳ ≡ MLOPM (Y |mems). Ideally, one should
minimize KL divergence from P(E0:n

0:T ,O0:T |Per0:T) →
P(E0:n

0:T ,O0:T |Y = ȳ,mems); however, that would require com-
puting the whole joint probability. Thus, we use summation
of surprise in each variable instead.

Note that we remember only the most probable value, in-
cluding the time index, in the mems list instead of the whole
distribution. This helps to make mems clearly interpretable.
However full distributions can be used in the mems as well.

Storage and forgetting
During storage, the mems can undergo optional time decayed
forgetting. The following equation shows relation between
age t of the mem m, its initial strength S and its retention R
(e is Euler’s number) (Anderson, 1983): R(m) = e−

t
S . The

initial strength S of mem m can be derived from the value
of KL divergence in Eq. 2 or from the value of the sum in
Eq. 3, respectively. Once R(m) decreases under the threshold
β f orget , m will be deleted from the list of mems and will not
contribute to recall of the memory.

Retrieval
Retrieval is a simple process of combining the schemata with
mems. Algorithm 2 shows this.

Algorithm 2 Retrieval
Require: k — cue for obtaining the episode

1: procedure RETRIEVAL(k,M)
2: mems← getMemsFor(k) . List of mems associated

with the cue
3: return {PM (Y |mems) : Y ∈VOI}
4: end procedure

We simply obtain the list of mems for search cue k, which
can be, e.g., a time interval. Then we use assignments in the
mems list as an evidence for the probabilistic model. The
resulting PMFs for all variables of interest are returned as a
reconstructed memory for the cue k.

Implementation
As a “proof-of-concept” of the DyBaNeM framework, we im-
plemented two models, AHMEM and CHMM, and two en-
coding strategies RMaxS and RMinOS. The model was im-
plemented in Java and is freely available for download3. For

3Project’s homepage http://code.google.com/p/dybanem

belief propagation in DBNs, SMILE 4 reasoning engine for
graphical probabilistic models was used.

Evaluation
Aim. We tested how the number of stored mems affects recall
accuracy when a model is applied to a dataset resembling hu-
man activity. Multiple architectures of the underlying prob-
abilistic models were used to create several model variants.
We used both CHMM and AHMEM with one or two levels
of episodes. The CHMM models will be denoted as CHMM1

or CHMM2, respectively. In the AHMEM we also variated
the number of states (|D(Hi)|) of the PFSM consisting part
of episodic schemata. AHMEMl

s denotes a model with l lev-
els and s states of internal memory. We tested AHMEM1

2 , 1
8

and 2
2. AHMEM2

8 required more than 1.5 GB RAM that was
dedicated to test and hence it was not tested. For each proba-
bilistic model we tested both RMaxS and RMinOS encoding
strategies and encoded one, two and three mems in turn.

Dataset. We used Monroe plan corpus (Blaylock & Allen,
2005) which is similar to real human activity corpus. Mon-
roe corpus is an artificially generated corpus of hierarchi-
cal activities created by a randomized hierarchical task net-
work (HTN) planner. The domain describes rescue opera-
tions like cutting up a fallen tree to clear a road, transporting
wounded to a hospital, etc. The corpus contains up to 9 lev-
els of episodes’ hierarchy, we shortened these episodic traces
to contain only the atomic actions and one or two levels of
episodes (based on the DBN used). The corpus features 28
atomic actions and 43 episodes.

Method. For the purpose of the experiment we split the
stream of episodic traces into sequences of 10, each of which
can be viewed as one day of activities. The schemata were
learned on 152 days. We tested accuracy of recall of atomic
actions that happened in one of randomly picked 20 days (out
of 152 days). Inference over the DBN was performed by ex-
act clustering algorithm (Huang & Darwiche, 1996).

Results. Tab. 1 summarizes recall performances of the
models. We use a simple crude accuracy measure that mea-
sures how many actions were correctly recalled at correct
time. Only the most probable action at each step was used.

Discussion. To understand how well the models perform
we can construct a simplistic baseline model. The baseline
model would use mems only for storing observations (re-
membering only verbatim, no gist) and recall the most fre-
quent atomic action for the time steps where no mem was
stored. Therefore the schema in this model would be repre-
sented only by the most frequent action in the corpus, which
is NAV IGAT E V EHICLE appearing in 40% of time steps.
Thus the baseline model would score (40+ |mems| × 10)%
accuracy on average since we encoded only sequences of
10 observations for each day, thus remembering one mem
would increase accuracy by 10%. All models performed

4SMILE was developed by the Decision Systems Labo-
ratory of the University of Pittsburgh and is available at
http://genie.sis.pitt.edu/

RMaxS RMinOS
PPPPPPPParch

mems
1 2 3 1 2 3

AHMEM1
2 55% 75% 93% 57% 77% 92%

AHMEM1
8 67% 88% 97% 64% 90% 98%

AHMEM2
2 57% 78% 93% 53% 75% 93%

CHMM1 53% 70% 85% 56% 71% 86%
CHMM2 57% 69% 85% 59% 72% 87%

Table 1: Results of the recall experiment for all tested models,
encoding strategies and the number of stored mems.

better than the baseline. As expected, on average, it holds
that more complex probabilistic models better capture the
episodic schemata and hence have a higher recall accuracy. In
our experiment, AHMEM1

8 , the model with the highest num-
ber of parameters, dominates all the other architectures. On
the other hand there are only subtle differences in the encod-
ing strategies RMaxS and RMinOS. Since RMaxS requires
less computational time, it should be preferred at least on do-
mains similar to ours.

Example of recall. We now demonstrate how the number
of stored mems affects the recalled sequence. In an encoded
example day only direct observations (values of Ot) ended
stored in the mems, however this does not have to be true in
general. Fig. 3 shows probability distributions when consid-
ering different number of mems for recall of activities from
the example day. The mems are sorted according to the or-
der in which they were created by the encoding algorithm.
Hence we can visualize how the forgetting would affect re-
call since the third mem is the least significant one and it
will be forgotten as the first, whereas the first mem will be
forgotten as the last. After forgetting all the mems the model
would return NAV IGAT E V EHICLE for each time point giv-
ing us 30% accuracy because this action appears three times
in this particular sequence. This would be the same accu-
racy as the baseline’s. With one mem a remembered episodic
schema is activated and accuracy grows to 50% (10% more
than the baseline). The second mem further specifies the acti-
vated schema and changes the most probable action not only
in t = 9, which is the mem itself, but also in t = 3,5,6 and
8, and accuracy rises to 100% (50% more than the baseline).
The third mem removes the last uncertainty at t = 4.

Conclusion
We presented DyBaNeM probabilistic framework for EM
modelling. Evaluation has shown that increasingly complex
DBN architectures provide better episodic schemata and that
RMaxS strategy is sufficient for good encoding. Our model
can be used in general purpose cognitive architectures as well
as in virtual agents where it can increase an agent’s believ-
ability (Kadlec & Brom, 2013a). We can see the framework
as a tool for lossy compression of sequences of events, thus
long living agents can plausibly store more memories in the

Figure 3: Recall of observation probabilities for 10 time steps (one day) in AHMEM1
8 +RMaxS model with increasing num-

ber of mems used to reconstruct the sequence. Level of gray indicates probability of each atomic action at that time step.
The darker the color is the more probable the action is. The first figure shows P(Ot) for each time step in the remembered
sequence when only schemata are used, this is what the model would answer after forgetting all mems; the second shows
P(Ot |O0 = CLEAN HAZARD), recall with one mem; the third P(Ot |O0 = CLEAN HAZARD,O9 = CUT T REE) and the
fourth P(Ot |O0 = CLEAN HAZARD,O9 = CUT T REE,O4 = REMOV E WIRE). The mems are marked by circles, all the
other values are derived from the schema that is most probable given the recalled mems. Only the relevant actions are shown.

same space. However the used probabilistic model has to be
chosen carefully since computational complexity of inference
in DBNs is high. On the other hand there are efficient ap-
proximation techniques that can speed up the computation.
Our future work include learning the models using real hu-
man corpora, e.g. (Kadlec & Brom, 2011), and comparing the
models’ outputs with data from psychological experiments.

.

Acknowledgments
This research was partially supported by SVV project num-
ber 267 314 and by grant GACR P103/10/1287. We thank to
xkcd.org for drawings of Alice and Bob.

References
Anderson, J. (1983). A spreading activation theory of mem-

ory. Journal of verbal learning and verbal behavior, 22,
261–295.

Bartlett, F. (1932). Remembering: A Study in Experimental
and Social Psychology. Cambridge, England: Cambridge
University Press.

Blaylock, N., & Allen, J. (2005). Generating Artificial
Corpora for Plan Recognition. In L. Ardissono, P. Brna,
& A. Mitrovic (Eds.), Proceedings of the 10th interna-
tional conference on user modeling (UM’05) (pp. 179–
188). Edinburgh: Springer. Corpus is available from
www.cs.rochester.edu/research/speech/monroe-plan/.

Blaylock, N., & Allen, J. (2006). Fast hierarchical goal
schema recognition. Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI 2006), 796–801.

Bui, H. (2003). A general model for online probabilistic plan
recognition. International Joint Conference on Artificial
Intelligence, 1309–1318.

Gallo, D. (2006). Associative illusions of memory: False
memory research in DRM and related tasks. Psychology
Press.

Hemmer, P., & Steyvers, M. (2009). Integrating Episodic
and Semantic Information in Memory for Natural Scenes.
CogSci, 1557–1562.

Huang, C., & Darwiche, A. (1996). Inference in belief net-
works: A procedural guide. International journal of ap-
proximate reasoning(15), 225–263.

Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human
attention. Vision research, 49(10), 1295–1306.

Kadlec, R., & Brom, C. (2011). Towards an automatic diary
: an activity recognition from data collected by a mobile
phone. In IJCAI workshop on Space, Time and Ambient
Intelligence (pp. 56–61).

Kadlec, R., & Brom, C. (2013a). DyBaNeM :
Bayesian Episodic Memory Framework for Intelligent Vir-
tual Agents. Intelligent Virtual Agents 2013, in press.

Kadlec, R., & Brom, C. (2013b). Unifying episodic memory
models for artificial agents with activity recognition prob-
lem and compression algorithms : review of recent work
and prospects (Tech. Rep.).

Koller, D., & Friedman, N. (2009). Probabilistic graphical
models: principles and techniques. The MIT Press.

Kullback, S. (1959). Statistics and information theory. J.
Wiley and Sons, New York.

Schank, R. C. (1999). Dynamic memory revisited. Cambridge
University Press.

Tulving, E. (1983). Elements Of Episodic Memory. Claren-
don Press Oxford.

Zacks, J. M., & Tversky, B. (2001). Event structure in percep-
tion and conception. Psychological bulletin, 127(1), 3–21.

