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ABSTRACT 
 
Anyone who aims at developing a virtual reality application featuring a large artificial 
world inhabited by intelligent virtual humans will face two problems—the problem 
with simulation speed, and the problem with adding new components to the 
simulation both during the development and after the release. We have developed a 
framework that copes with these issues. The solution is based on augmentation of the 
level-of-detail AI technique and theories of affordances and practical reasoning. 
Contrary to existing approaches, our solution is theoretically well-founded, robust and 
deals with both these issues at once. In this paper, we present the key concepts of our 
framework and evaluate a test scenario. 
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INTRODUCTION AND MOTIVATION 
 
This paper concerns itself with simulations of large virtual worlds inhabited by 
intelligent virtual humans. Above all, we think of the worlds of role-playing computer 
games and interactive virtual storytelling applications.  

By virtual human we mean a piece of software that imitates behaviour of a human 
in a virtual world and that is equipped with a virtual body visualized by a graphical 
viewer. We are focused on intelligent virtual humans, by what we mean that they 
carry out more complicated tasks than just walking, object grasping or chatting in 
Elisa-like manner. (The word “virtual” will be abbreviated as “v-”, e.g. a v-human.) 

What sort of problems do we have with a large v-world? Originally, we aimed at 
developing a large long-lasting interactive computer game emphasising a story. 
Without any trouble, we have prototyped behaviour of several game actors in a 
toolkit, which we developed formerly (Bojar et al., 2005). However, not surprisingly, 
it has happened that it had been almost impossible to run all the actors on a single PC 
because of limited computational and memory resources. These actors had to be 
intelligent; they should have performed in real-time complex tasks like gathering the 
harvest, having fun in a pub, or travelling. As an example, consider a v-merchant 
riding with its donkey within a v-kingdom. Yet assume there are tens of such v-
humans important for the course of the game. 

There is yet another problem with large v-worlds. Typically, one needs to 
supplement the simulation with new components easily. Inserting of new objects and 
actions should be allowed anytime both during the development and after the release. 
However, using classical symbolic representation of the v-world, v-humans must be 
equipped with a learning algorithm (which teaches v-humans what are the symbols 
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denoting the new objects like “gun” good for), or modify the control algorithm of each 
v-human for every extension. While the former option is like a sledgehammer to crack 
a walnut, the latter is asking for a trouble with unmanageability.  

To sum up; there are two problems with large v-worlds we have stumbled on: 
 

1) Easy extensibility must be allowed, but without use of any learning algorithm. 
2) Speedy simulation must be allowed, in spite of the limited resources. 
 

We have aimed to develop a framework, or say architecture, for applications 
featuring large v-worlds, that would cope with these two issues. The framework has 
been called IVE (intelligent virtual environment). In seeking for solution we decides 
to take advantage of three successful concepts: psychological theory of affordances 
(Gibson, 1979) for the perception of v-humans, the theory of practical reasoning 
(known also as BDI; Bratman, 1987) for their decision making, and level-of-detail 
technique for controlling the overall simulation—but contrary to its typical use in 
computer graphics, we have used is for AI (LOD AI). These three main points help us 
to simulate the v-world efficiently and to facilitate its design. In particular, the 
simulation is simplified on unimportant places automatically, and new actions and 
places can be loaded into the v-world of IVE as plug-ins and v-humans are able to 
adapt to them without using any machine-learning algorithm. Hence, the two 
aforementioned issues are solved and we are planning to use IVE in our next project. 
The framework code, a test-case scenario and the documentation can be downloaded 
at: http://mff.modry.cz/ive.  

The goal of this paper is to explain the key theoretical concepts underlying the 
IVE framework. We will start with setting the ground of related works concerning our 
project. Then, we describe the main concepts of the framework. Finally, we present 
the evaluation and discuss the future works. 

 
RELATED WORKS 
 
As far as we know there is no work that combines all of the three tenets of our 
framework: affordances, intentions and LOD AI. Notable exception could be The 
Sims, but it unfortunately cannot be compared, since there is no published paper on it. 
This section describes the most relevant works concerning the main principles of IVE. 
 

Virtual affordances. The concept of virtual affordances enables us loading new 
components into the v-world as plug-ins. It resembles so-called smart object approach 
to interactions of v-humans with v-objects (Kallmann, 2001). A smart object is an 
entity with the ability to describe in detail its functionality, its possible interactions as 
well as behaviour of an interacting v-human. We can say, that the purpose of a smart 
object is “engraved” in it directly. Using smart objects, the v-world can be described 
in the terms of a purpose-oriented language, and since v-humans can directly perceive 
this purpose, they do not need to infer it from a symbolical representation. It follows 
that an object can be loaded into the v-world as a plug-in and v-human can interact 
with it automatically. However, smart objects encapsulate only low-level “graphical” 
information like a v-human’s position during execution of an action, or a desired 
hand-shape. Ciger (2005) extended smart objects so that they can pass on planning 
operators to a v-human, which can use a planning algorithm to generate a more 
complicated sequence of actions. This work actually equipped smart objects with 
“AI”, however, since planning suffers from combinatorial complexity, it does not fit 
well to the domain of applications with highly dynamic v-worlds as computer games 
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are. We present a concept similar to smart objects, the concept of “smart 
materialisations”, which, however, encapsulate AI that is rather reactive. In addition, 
in IVE, new actions and places (not only objects) can be loaded as plug-ins. 

In many existing computer games the problem of meaningless v-worlds is tackled 
by adding some semantic marks (e.g. firing positions). Contrary to IVE, these ad hoc 
solutions are not theoretically founded, and cannot cope with aforementioned issues. 
 

Level-of-detail AI. In a classical simulation, the v-world is simulated in its entirety. 
The idea behind LOD for AI is not to compute such details that a user cannot see, or 
that are otherwise unimportant for the overall course of the simulation. Sometimes, 
computer games reflect this fact, but only to a limited degree: creatures out of the 
sight of the user are simulated not at all typically. This approach “all – or nothing” 
would cause scenic inconsistencies in a game emphasising the story. Moreover, it 
allows for only one important place in the v-world; the place observed by the user. 
The method “see – not see” brings a problem with places that are important at a given 
instant, but unobserved. Contrary, our method allows for (a) simulation of all places 
that are important (not only the observed ones), (b) partial simulation of partially, and 
important places, and (c) gradual simplification of simulation complexity between an 
important and an unimportant place. 

Relatively robust approaches have been presented in (Brockington, 2002; 
Champandard, 2003). Our approach resembles most the work of Champandard, who 
used hierarchical state machines for controlling behaviour of v-humans to simplify the 
simulation smoothly, but the work has remained in a sketch, not further explored. 
 

Intentions. A huge amount of works exploiting BDI exists; this architecture is 
becoming nearly an industrial standard for modelling of action-selection. In our 
framework, we use probably its most traditional version described e.g. in 
(Wooldridge, 2002), but we augment it with affordances and level-of-detail.  
 
THE FRAMEWORK OF IVE  
 
In this section, we describe the basic features of IVE; virtual affordances, the 
intentions, the hierarchical mechanism of action selection, and the LOD technique. 
 
Virtual affordances and virtual world architecture  
Affordances have been introduced by J. Gibson, a perceptual psychologist, in so-
called ecological theory of perception. He claimed that we tend to perceive what the 
environment offers us rather than simple physical properties of objects. The 
environmental offers were called affordances. “...the affordances of the environment 
are what it offers the animal, what it provides or furnishes (Gibson, 1979, p.127)”. 

He wanted to say, metaphorically, that we directly perceived the meaning of the 
objects—what they were good for—not the objects themselves. Of course, a human or 
an animal had to “pick up information” about the meaning somehow, and this 
“information pick-up” was carried out by the animal’s brain and its moving body. 
However, the cognition was fold into the perception according to the theory. Gibson 
adopted a different level of description of reality—the ecological level of description. 

Fundamental properties of an affordance are its relativity to a particular actor and 
its independence of actor’s ability to perceive it. To Gibson, affordances are 
relationships. They exist naturally: they do not have to be perceivable, known or 
desirable. Thus, a potty affords sitting to a child, not to an adult, because the potty is 
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not “sittable” for adults. However, some children may not be able to perceive this 
possibility, even if they are technically able to sit on the potty.  

The theory both has been criticized and has inspired a lot of researchers, who have 
brought new interesting experimental results. Here, we are interested in the theory’s 
implementation potential. The level of description in the theory is close to the level of 
representation of a v-world, therefore the theory can underlie a development of a large 
application featuring v-worlds and v-humans. The advantage of the concept is its 
close relationship to the v-humans’ actions. If we allow a v-human to directly perceive 
its possible actions, there is no need for emulating the cognitive processes in its mind, 
which are still rather unclear, in spite of the psychological and AI research.  

In our effort at framework allowing for easy extensibility and LOD AI we have 
refined Gibson’s theory to allow for its implementation. In IVE, a typical v-human is 
not perceived as intelligent and autonomous (i.e., with its own “AI algorithm inside its 
mind”). Instead, it is navigated by intelligent environment. Nevertheless, the illusion 
of intelligence of these dummy actors is retained. The refinement constitutes a ground 
for the architecture of v-worlds in IVE, and is described in this subsection.  

  

Topology. In IVE, way-places are the ground constituting a v-world. Each way-place 
is a place that affords standing to a v-human, and that cannot be further divided. Way-
places are represented as nodes of a topology graph. An edge of the graph affords 
crossing to a neighboring way-place. Way-places resemble the concept of way-points, 
however, contrary to way-points, which are used only for path-finding, in IVE, the 
way-places constitute the “physical” reality of the v-world. Way-places are organized 
in a hierarchical structure, which is always a tree. All way-places are leaves of the 
tree, a non-leaf node is a location, and the root represents the whole world. See Fig. 2. 

 

Objects. IVE distinguishes two types of “physical entities”: objects and actors, where 
actors are v-humans’ bodies. Typically, each object and an actor are located in a way-
place. This can be violated during a so-called LOD contraction as described later. An 
object or an actor has so-called attributes, which represents its physical properties.  

 

Actions. From the AI perspective, a v-world from an application featuring v-humans is 
viewed as a set of objects that are represented symbolically, and as a topology 
structure. Actions are then perceived as transformations of the objects’ attributes. 
Each v-human must decides which action to perform in order to satisfy its goals, or 
say, intentions. V-human’s decision is based on a manipulation with the symbols 
denoting the objects and their properties, e.g. in the course of look-ahead-planning or 
evaluating of options. After the action is chosen, its name is passed on to the server of 
the v-world, which performs the transformation of the attributes of affected objects. In 
IVE, we adopt the same view, with one notable departure from it. Actions, in IVE, 
have similar status as objects—they are entities located in the v-world (at a way-place 
or a location), entities that can be perceived directly. We call them materialisations.  

Direct perceiving of an entity means (in our terms) that the entity can be accessed 
in a linear time. In the case of materialisations, it means that having an intention, a v-
human’s control algorithm is able to find a materialisation that accomplishes the given 
intention in O(n), where n is the total number of materialisations that accomplish the 
intention. No problem-solving algorithm suffering from combinatorial complexity 
need to be executed in order to infer the name of the action.  

A materialisation is equipped with slots. Relation between a materialisation and an 
object is represented by so-called reference from the object to a slot. The slots are like 
parameters of a function of a programming language. Similarly to materialisations, 
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references and slots can be perceived directly. As an example, consider watering a 
garden bed by a can held by a v-human. First, a materialisation accomplishing the 
intention of watering a bed is to exist in the given v-world. Second, the materialisation 
will be equipped with at least three slots referenced by three types of objects: 
something that is to be watered (i.e., the “what-affords-waterability”), something that 
is able to water (i.e., the “what-affords-performing-of-watering”), and something that 
can be watered with (i.e., the “what-affords-watering-with-possibility”). The first 
parameter can be a garden bed. The second one can be a v-human (but not a v-frog). 
The last parameter is whatever that can be used for watering, e.g. a watering can or a 
bucket. See Fig. 1. Notice, that in IVE, the v-human does not perceive the symbol of 
“can_12”, or “garden_bed_15”, but the materialisation, their slots and the respective 
references. Only through the references, it can perceive the objects and their 
attributes.  
 

Suitabilities. Apparently, in real world, a human waters rather with a watering can 
than with a bucket, even if the bucket is suitable too. It is also obvious that a child will 
prefer watering with a smaller can than an adult, while the adult’s preference is the 
other way round. In addition, more ways of accomplishing a given intention can exist: 
e.g., a hosing can compete with watering provided that a hose exists in the garden.  

In IVE, each materialisation is equipped with a suitability, an entity pre-given by a 
designer, which is a function that on the basis of attributes of objects referring to the 
materialisation (including the actor) computes how convenient the performance of the 
materialisation would be in the given context for the given actor. Suitability is a part a 
part of the v-world, with a status similar to the status of materialisation. An actor can 
perceive the suitability on a given materialisation directly.  

 

To recapitulate, there are five important entities comprising the “physical reality” 
of a v-world in IVE. These entities are way-places (and locations), objects (together 
with actors), materialisations, references, and suitabilities. We differ from typical v-
world architecture because the last three entities are directly a part of the v-world, 
they are not to be inferred by the actors’ minds. We can say that materialisations and 
suitabilities mediate perception of the objects in a meaningful way to the actors. Their 
role in perception of v-humans is similar to the role of a graphical viewer in 
perception of a human observer. The purpose of a viewer is just to mediate symbolic 
objects to the observer by means of a neat graphical representation. This is actually a 
consequence of refinement of Gibson’s theory in an implementable way.  

Since all materialisations and suitabilities are a part of the v-world, and not a part 
of the actors’ minds, the v-world can be easily extended. Adding a new actor entails 

 
Fig. 1: An actor directly perceives two possibili-
ties in a garden. Legend: objects are blue, 
suitabilities are red, materialisations are green. 

Fig. 2: A hierarchical structure of a v-kingdom. 
While all actions in Town C are simulated only 
partially, Houses 3–6 are simulated in detail.   
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just equipping the actor with a set of intentions linked with the materialisations; 
adding a new object is just about creating its references to respective materialisations. 
Below, there is a sketch of the algorithm of perceiving the environmental possibilities. 

 

Algorithm 1. Perceiving of possibilities. 
The algorithm is performed whenever the v-human aims to accomplish an intention. 
Input: An actor with an intention situated in a given location. 
Output: The materialisation that is most suitable for the actor in a given context.  
1) M ← set of all applicable materialisations that accomplish a given actor’s intention 
2) M* ← set of all applicable instantiated materialisations (based on M) 
3) mbest  ← the most suitable materialisation from M*, or 0, if no materialisation exist 

 

Subsequently, the actor is allowed to pass on mbest to the server of the v-world, 
which will perform the desired transformation (e.g., it will cause that the garden bed is 
wet, the can is empty, and the v-human becomes more tired). 

Notice that a part of the step (2) is a so-called instantiation of a materialisation. It 
is a process of assignment a set of particular objects. Hence, in the step (3), the set M* 
can contain for example: (a) the materialisation of watering with the small can, (b) the 
watering with the big can, and (c) the hosing with the hose.   
 
Intentions, genii, and intention-action selection 
We have described how a v-human of IVE perceives environmental possibilities in 
order to perform a simple action. We now turn to a problem of accomplishing a task, 
that is a chain of actions, and a problem of selecting a task to perform. We outline a 
theory of practical reasoning we use, and on the basis of it, we present the second part 
of the algorithm that controls behaviour of v-humans in our framework.  

According to the theory of practical reasoning (Bratman, 1987; Wooldridge, 
2002), the state of each rational human can be viewed as a triple <B, D, I>; where B is 
a set of present human’s beliefs, which in fact constitutes the memory; D is a set of 
present human’s desires; and I is a set of intentions. Intentions are the states that guide 
the human’s present and future conduct—they are desires that are committed to be 
performed. Their important feature is their persistence. Once a rational human has 
committed an intention, it will act in order to accomplish the intention, until the 
intention is satisfied, or it is believed that it is impossible to achieve the intention.  

The process of adopting new intentions is called deliberation. Deliberation is not 
carried out in every instant, but on certain occasions only. The already committed 
intentions play a significant role in one’s deliberation, since one would typically not 
adopt a new intention that is in disagreement with an already committed intention, 
unless a committed intention is being reconsidered.  

The second part of reasoning is the means-ends analysis. In a nutshell, it is a 
process of elaborating how to accomplish a given intention. Intentions can be 
hierarchically nested. More specifically, in order to accomplish an intention, one can 
adopt a sub-intention as result of the means-ends analysis. For example, in order to 
make a trip to one’s cottage, one should adopt a sub-intention of taking the key. Sub-
intentions of more intentions can be interleaved; that means, for example, that one can 
take the key (in order accomplish a sub-intention of the cottage-trip-tomorrow), and 
then buy a plane-ticket (in order to accomplish a sub-intention of a business-travel-
after-cottage-trip), and then drive a car to the cottage. Sub-intentions can be adopted 
continuously, filling one’s partial plans about the future. 

In our framework, the theory is used in the intention-action selection algorithm. 
This algorithm is performed by genii that are bodiless entities guiding one or more 
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actors. In a basic case, each v-human is a couple <actor, genius>; it is driven by just 
one genius.1 The algorithm of intention-action selection commits the v-human’s 
desires as intentions according to the v-human’s internal drives, schedules pre-given 
by a designer, or artificial emotions. At a given instant, one intention is chosen as 
active (i.e., present-directed in the terms of Bratman); this intention serves as the input 
for perceiving the environmental possibilities in Algorithm 1. When the active 
intention is attained by a materialisation, a new intention becomes active.  
 

Algorithm 2. Intention-action selection (flat). 
This algorithm is performed by a genius of a v-human in the simple case, i.e. when the v-
human is a couple <actor, genius>.  
Input: An actor in a given location, and its genius with the set of desires and intentions. 
1) if a genius of a v-human wants to deliberate, then I ← set of all adopted intentions (based on 

desires, internal drives, past failures, and artificial emotions) 
2) ia ← active intention (from I) 
3) mbest ← Algorithm 1 (based on ia) 
4) if mbest is 0, then ia has failed, and go to the step 1 
5) pass on mbest to the server of v-world 
6) if mbest succeeded, go to the step 1; 

otherwise, go to the step 3 and look for a new materialisation.  
 

This algorithm is modified and extended version of classical BDI-action-selection 
algorithm (e.g., Wooldridge, 2002). Notice, that the algorithm joins deliberation and 
means-ends analysis. However, it is “flat”; no sub-intentions can be adopted. 

 
Hierarchical action-selection mechanism 
We now extend Algorithms 1 and 2 in a hierarchical manner. It is just this extension, 
which makes IVE unique among other architectures of v-worlds, and which actually 
combines intentions with affordances and enables for the LOD AI technique. 

In IVE, each materialisation is not only coupled with its suitability, but also with a 
breakdown. Let us have a v-human v executing a materialisation m achieving an 
intention i. We say, that breakdown of m is a set of pairs <sub-intention, advise>. A 
sub-intention is an intention that v has to commit itself to in order to accomplish a part 
of m. An advise is a rule that v should follow in a future in Algorithm 2 in the step (2) 
for choosing the active intention. Following advises, v will be activating sub-
intentions of m in such order that, finally, original intention i will be attained. 
Essentially, m will be performed by execution of some other materialisations that 
accomplish the sub-intentions. For example, sub-intentions of a breakdown of 
watering a garden, can be (a) finding a “what-affords-performing-of-watering” (a 
can), (b) filling it, (c) finding a “what-affords-waterability” (a bed), (d) cleaning-up 
the “what-affords-performing-of-watering”. In accord with advises, (c) will be 
performed in a loop, for each bed once. See Algorithm 3 below. 

In the step (2) of Algorithm 3, the genius chooses the active intention on the basis 
of all advises of sub-intentions passed on from the v-world, and on the basis of the v-
humans’ internal drives, schedules, and emotions. The step (6) presents means-ends 
analyse, however, it is performed instantly due to the breakdown. The sub-intentions 

                                                 
1  Our framework allows for more complicated cases, where one actor is guided by more genii. In 
addition, one genius can guide more actors. For example, in a pub, so-called genius pub-specialist can 
guide behaviour of v-humans in a central manner. In this case, a basic genius of a v-human, just before 
entering the pub, is allowed (but not required) to pass on the actor to the pub-specialist. Then, both 
genii will control the actor simultaneously. This technique is called role-passing. It is implemented in 
IVE, as detailed in the extended version of the paper (Brom at al., 2005). 



This work was presented at Game Set and Match 2 Conference, Delft, The Netherlands. 
Published by Episode-Publishers (c) in the conference proceedings. 

are perceived directly like affordances. It helps with extension of v-world. Consider a 
v-human with a top intention of “having fun” activated in the evenings according to 
an internal schedule. According to Algorithm 1, the v-human will perceive directly all 
materialisations accomplishing the intention. Let us assume they are “gossiping at a 
square” and “visiting a concert”. However, a designer may want to add “enjoying in a 
pub”. In IVE, she is allowed to load it as a plug-in comprising a v-pub and a “recipe” 
how to act in it (parts of the recipe are materialisations, suitabilities, sub-intentions, 
and v-objects). The v-human will perceive the new possibility of “enjoying in a pub” 
directly. Further decision of the v-human will be carried on in accord with the loaded 
sub-intentions from the recipe, even if the v-human has not learned what the symbols 
“pub”, “bar”, or “beer” mean. The v-human will act upon them automatically. 
Moreover, still, suitabilities will allow a v-gossip to prefer the gossiping at a square, 
while a v-worker to prefer the newly added pub.  

  
Level-of-detail AI 
Remember that the idea behind LOD AI is not compute the details that a user cannot 
see, or that are otherwise unimportant for the overall course of the simulation. The 
technique of LOD AI can be applied in our framework in a robust and yet 
straightforward way due to the breakdown structure of materialisations. 

To describe our approach we use a membrane metaphor—imagine an elastic 
membrane cutting through the hierarchy of way-places and locations (see Fig. 2). 
Only the locations above this membrane do currently exist and only these locations 
are simulated. During the development, so-called LOD complexities are assigned to 
the levels of hierarchy of materialisations by a designer. For example, LOD 
complexity of watering a garden can be 3, while watering an individual garden bed 
can be 4. Then, in the course of simulation, on the basis of important objects (e.g., a 
human observer), and events (e.g., a story-generated local uprising), in every instant, a 
LOD values are assigned to all locations. The values denote the desired complexity of 
the simulation in the given location; the values shape the membrane. In addition, the 
step (5) of Algorithm 3 is refined as follows:  
 

if mbest is an atomic act, or mbest.LOD_complex = location.LOD_value, then ... 
 

It means that the breakdown of mbest will not be passed on to the genius, provided 
the LOD value is too low. Instead, the mbest will be performed as it was atomic. For 
example, in the case of watering a garden atomically, the execution will mark the 
whole garden as being watered, and will reduce amount of water in a barrel. On even 
higher level, the garden may exist not at all, and only a materialisation of growing will 
be executed at the level of a village. Hence, in the course of partial simulation, some 

Algorithm 3. Intention-action selection (hierarchical). 
This algorithm is performed by a genius of a v-human in the basic case. 
Input: An actor in a given location, and its genius with the set of desires and intentions. 
(1) if a genius wants to deliberate, then I ← set of all adopted intentions, and sub-intentions 
(2) ia ← actual intention (from I) 
(3) mbest ← Algorithm 1 
(4) if mbest is 0, then ia has failed; and go to the step 1 
(5) if mbest is an atomic act, then  

  pass on mbest to the server of v-world 
  if mbest succeded, go to the step 1 
  otherwise, go to the step 3 and look for a new materialisation.  
(6) otherwise, I ← I ∪ mbest[breakdown]; and go to the step 1 



This work was presented at Game Set and Match 2 Conference, Delft, The Netherlands. 
Published by Episode-Publishers (c) in the conference proceedings. 

objects or actors may cease to exist, and the other objects will be located in localities, 
not in way-places (e.g., the barrel will stay in the garden “somewhere”). 

LOD values are assigned so that the values of neighbouring locations differ at 
most by one. The algorithm of values assessment is detailed in (Šerý at el., 2006).  
 
IMPLEMENTATION AND EVALUATION 
 
The described framework is implemented in Java and tested with a scenario 
comprising about 60 actors acting in four villages; each with a pub, four mines, and 
nine houses (see Fig. 3).  

Direct perception requirement is achieved due to exploitations of hash-maps. 
Advises are implemented as fuzzy if-then rules with lazy evaluation. The overall 
simulation uses discrete simulation paradigm. The benchmarking results suggest, not 
surprisingly, that the LOD simulation acceleration is significant. The exact numbers 
depend, of course, on the tasks performed. The highest speed-up is achieved in LOD 
contraction of materialisations performed in loops (e.g. loading a cart in a mine). IVE 
overhead on LOD management takes 
about 5-10% of simulation time. 
Implementation and evaluation are 
detailed in the extended version of the 
paper (Brom et al., 2005). 
 
DISCUSSION AND FUTURE WORK 
 
We aim to use the framework, or at least 
its concepts, in a larger virtual-
storytelling application. The story will 
be generated and adjusted continuously 
by means of a special story-generating genius. This kind of genius is similar to so-
called drama manager of Mateas (2002). The v-humans will be equipped with an 
episodic memory for direct access of objects’ positions (which is not included in the 
current version).  

We plan to use two main types of actors; dummy actors, and persistent actors. 
While the former will exist only for a particular period and carry out only a specific 
task, the latter will carry out complex tasks for a longer period, and will be allowed to 
increase LOD value in the locations they will be located in.   

We remark, that even if we disregard the role of symbolic learning and problem 
solving in large applications featuring v-humans, we do not deny them. For example, 
in our framework, each genius is allowed to use (or even develop) its own 
suitabilities, regardless of the environmental ones, which may lead to starting an 
inappropriate process, e.g., watering with a pen. This feature is vital for modelling of 
symbolic trial-error learning. Nevertheless, we think we hardly use it in our 
application. 

There are several notable limitations of IVE in the current version. First, each v-
human can perform just one materialisation in a given instant, e.g. eating during 
walking is not allowed. Second, the innate structure of materialisations is hierarchical, 
what denies the use of non-hierarchical action-selection models. Other limitation, but 
merely terminological, is the fact, that all materializations must be performed 
intentionally. As Bratman (1987) put it, some actions are not performed with an 
intention, consider reflexes as an example.   

 
Fig. 3: Mine scenario, a screenshot. 



This work was presented at Game Set and Match 2 Conference, Delft, The Netherlands. 
Published by Episode-Publishers (c) in the conference proceedings. 

 
CONCLUSIONS  
 
In this paper, we have presented the main principles behind IVE, the framework of large 
v-worlds featuring intelligent v-humans. The principles were virtual affordances, 
intentions, and LOD AI. The combination of these three allows us to achieve the two 
goals of the project: enable easy extensibility of a v-world, and enable speedy simulation 
by means of smooth simplification of simulation detail on unimportant places. Contrary 
to similar approaches, the framework copes with both issues at once, additionally allows 
for a role-passing technique, and is robust and theoretically well-founded. In particular, 
it augments the theory of practical reasoning with the theory of affordances refined in an 
implementable manner. Details can be found at: http://mff.modry.cz/ive. 
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