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Abstract. Believable spatial behaviour is important for intelligent virtual agents 
acting in human-like environments, such as buildings or cities. Existing models 
of spatial cognition and memory for these agents are predominantly aimed at 
issues of navigation and learning of topology of the environment. The issue of 
representing information about possible objects’ locations in a familiar 
environment, information that can evolve over long periods, has not been 
sufficiently studied. Here, we present a novel representation for “what-where” 
information: memory for locations of objects. On a simplified model of a 
virtual character living in a virtual house, we investigate how this representation 
is formed and how it evolves based on how objects are moved within the 
environment. The behaviour of the model is also compared with behaviour of 
real humans conducting an analogical task. The results allow us to conclude 
that this model can be incorporated to other memory models for virtual agents. 

1 Introduction 

Humans act in space. They furnish the space they live in with objects. Be it a van 
Gogh’s painting or a pen, it pays to remember where ones’ belongings are located. 
This makes life much simpler. Intelligent virtual agents (IVAs) usually act in space as 
well. This demands them to have similar “what-where” information as humans do. In 
many present-day applications, IVAs read this information directly from the world 
map, which corresponds to complete environmental knowledge. While this approach 
may suffice for static words or dynamic but fully observable words, it results in 
unbelievable behaviour in dynamic words that are not fully observable. The latter 
kind of environments is increasingly employed by today applications. For instance, 
think of non-player characters (NPC) from a role-playing game (RPG), or 
virtual/robotic companions required to orient themselves in humans houses. Here, a 
better approach is needed.  

Why not to memorise all objects that an agent encountered? Assume we have a 
large, partially observable environment with objects that are passive but whose 
locations can be changed by external forces beyond the agent’s capabilities. For 
instance, a pen can be moved by a fellow agent. In this situation, we can expect 
multiple memory records of a position of each object based on the history of the 
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object’s moves. Where is the pen: at the working table or next to the TV? A simple 
list of memory records can not answer this.  

How can we improve the performance? Consider objects that humans use. Humans 
have some organisation of the placement of their belongings; things are not placed 
randomly within their surroundings, instead, they are clustered purposefully according 
to their needs and cultural norms. Some objects appear regularly at some places 
(newspapers inside a mailbox). Other objects are almost never being relocated (a van 
Gogh’s painting). Yet others are being relocated so often that it is not practical to 
remember their exact position. Consequently, when a human searches for an object, 
often, a sort of stimulus-response mechanism is employed. For a different object, 
several places are inspected in a specific order; sometimes, the whole house is 
scrutinised but starting at a specific place.  

This brings us to the notion of searching rules, which are basically a sequence of 
places that should be inspected when searching for an object of a particular kind. 
Importantly, we mean by place any logically coherent space abstraction. These 
abstractions can differ in size and can be hierarchically nested; e.g. a bedside table, a 
place between this table and the bed, a corner of the living room, a living room, a 
house, etc. This corresponds to the way humans are supposed to cluster space [e.g. 8]. 
A “what-where” memory for IVAs acting in large, partially observable environments 
with movable objects should have the ability to develop searching rules.  

In this paper, we present a model with this ability. To its advantage, it is quite 
simple. The model has been integrated with our agent with general memory 
capabilities [3] and investigated in scenarios mimicking a situation of a person 
moving into a new house. Specifically, we focused on the questions of how the initial 
representation is formed, how (and whether) searching rules emerge, and how the 
model relearn, measuring effectiveness of the model’ behaviour. We also investigated 
behaviour of the model with different parameters, aiming to find a point of 
“optimality.” Additionally, we conducted a simple experiment with human subjects 
that mimicked the agent’s task using a simple Flash application, and evaluated the 
model qualitatively against the acquired human data.  

The results allow us to conclude that the searching rules emerge easily and quickly 
and that they are qualitatively similar to searching rules developed by humans in their 
version of the task. The model also relearns well. Additionally, humans’ data helped 
us to isolate one feature of human behaviour that cannot be explained by the notion of 
searching rules straightforwardly, but it can be added onto a top of the model easily. 
In overall, our opinion is that the model is now ready to use in real-world applications 
requiring plausible “what-where” memory.  

The structure of the paper is as follows. Sec. 2 reviews related work. Sec. 3 details 
the memory model. Sec. 4 details the experiments. Sec. 5 discusses the results.  

2 Related work 

From the psychological perspective, the ability to locate objects is a faculty of spatial 
cognition, which is tightly connected to spatial memory. Spatial memory is conceived 
as a set of multiple interconnected systems rather than a monolithic block [4]. 
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Recently, several general memory frameworks for IVAs were presented [3, 9, 10, 
16, 18]; however, the degree to which they address any issue of spatial cognition is 
minimal. Fortunately, several works directly focussing on some aspects of spatial 
cognition for IVAs have emerged to increase believability of their spatial behaviour, 
including mapping, localisation, and navigation. Noser et al. developed IVAs learning 
topological structure of the environment and navigating using this structure [15]. In a 
psychologically more plausible manner, Thomas and Donikian [23] addressed similar 
issue. A mechanism for anticipating position of an object that can move itself, e.g. a 
sheep, was presented by Isla and Blumberg [11]. Unfortunately, neither of these 
works addressed sufficiently the issue of “what-where” memory for passive, but 
movable objects. Unlike these models, the mechanism presented in [20] directly 
aimed at representing both topological as well as “what-where” information and this 
information could gradually deteriorated when not refreshed. However, neither this 
model was designed to cope with objects that can be moved several times, lacking the 
ability to develop searching rules.  

The field of gaming AI predominantly addresses believable and efficient path-
finding and automatic construction of space representation [e.g. 7, 21]. To our 
knowledge, the issue of “what-where” memory is not addressed. Finally, we are not 
aware of any work either from computational psychology or robotics that could suit 
our purpose directly. Robotics tend to focus on the issues of localisation and terrain 
mapping [e.g. 13], which are “low-level” from the perspective of IVAs, pointing to 
the significant difference between application domains. Even designers of robots with 
episodic memory systems [e.g. 6] do not seem to consider the “what-where” issue as a 
crucial one for their discipline. Psychological experiments investigating spatial 
abilities of humans are of considerable interest to the field of IVAs [see 4, 22 for 
reviews of some], but computational psychology tend to produce special-purpose 
models replicating data gained during laboratory tasks [e.g. 1]. It is hard to imagine a 
meaningful application in which an IVA could be engaged in such a task. 
Additionally, regarding “what-where” information, psychology tends to investigate 
what would be called in our context short-term representations of positions of static 
objects and their mental rotations, e.g. for the purposes of elucidating the 
allocentric—egocentric tension [reviewed in 4].  

3 Model 

The purpose of this section is to introduce our model, the “what-where” memory, 
starting in an informal tone and proceeding to the model’s formalisation. The 
integration of the model with the rest of an IVA’s “mind” will be described in Sec. 4. 

The model is a simple associative network. It is composed of two kinds of nodes: 
objects and places (Fig. 1). Place nodes represent places with different levels of 
complexity and they are hierarchically nested. Object nodes have weighted links with 
place nodes; these stand for “what-where” information: a possible occurrence of a 
particular object at a particular place. Now, if an object is found by the agent, or 
comes to the agent’s attention, the links to all the locations where it has been found 
are strengthened (e.g. the links from the glasses to a) the bedside table, b) to the 
bedroom, and c) to the whole house – see Fig. 1).  
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How could searching rules possibly emerge from this network? Note several 
things. (1) Links from an object node to nodes representing places at a similar level of 
complexity approximates the probability distribution of finding the object at given 
places. (2) Links to nodes representing more abstract places are strengthened more 
often than links to nodes of concrete places (“glasses are always in the house, but only 
sometimes at the bedside table”). Now, if queried for an object position, we can find 
the appropriate object node and past locations of the object’s occurrence via the 
object—place links. Assuming that the pattern of the object’s movement will be same 
in the future as it was in the past, we can arrange the place nodes in order of the 
strengths of the links leading to them (Point (1)). However, because of Point (2), 
before we do this, we need to scale the links’ strengths by an inverse function of the 
complexity of places; otherwise, the abstract places will be always first in the list.  

The fundamental assumption is that with an appropriate scaling function, the result 
will be a list with balanced ordering of concrete and abstract places where the object 
can be looked for, a searching rule. Concrete places should be first on the list 
provided that there are only a few concrete places where the object can be found. 
Otherwise, an abstract place should be first or very close to the beginning of the list. 
Particular places can be searched directly (e.g. the bedside table) while abstract places 
should be inspected (e.g. scrutinise the kitchen). The fact that this mechanism really 
produces believable searching rules is demonstrated in the next section. 

An important question is how to deal with distances. The present version of the 
model ignores distances, conceiving the searching rules as verbal answers on the 
question: “Where do you think is an object X?” Our searching rules are disembodied. 
Our opinion is that in a middle-sized environment, e.g. in the ground-floor house 
employed by our experiments, we can ignore distances letting the agent search for at 
most probable places, but distances become important in larger environments, such as 
in multi-floor buildings or cities. How to take distances into account? One can 
basically take disembodied rules as inputs for an engine solving the travelling 
salesman problem (TSP) penalising the improbable places. Ideally, the penalisation 
should reflect how people solve the same problem. Surprisingly enough, it seems the 
TSP with uncertainties has not been investigated in psychology until recently [24], 
and this work is not conclusive from the standpoint of IVAs. There are only many 
works revealing heuristics human use to tackle the classical TSP [24]. Thus, we 
assign the question of plausible penalisation of distances as future work. 
 
Definition.  Formally, the network is a triple <P, O, E>.  

P is the set of all place nodes, each of which is a quintuple <p, up, down, level, 
size>, where p is the node, up its super-location, down its sub-locations, size is a 
number of its sub-locations, and level is the level of abstraction. Abstractions are 
numbered from the bottom: level for a specific place is 1, and then the levels are 
enumerated by one towards the root of the hierarchy.  

O is the set of all object nodes, i.e. the object records. 
E is a set of weighted edges, each of which is < x, found, missed >, where x ∈ P×O 

is the edge, and found ∈ N is the number of times the object was found (and taken) or 
seen at the particular place, and missed ∈ N is the number of times the object was 
being searched for at the place but not found there. 
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In the present version of the model, we assume that P is specified in advance by a 
designer and fixed during the simulation (but see also Sec. 5). 

 

       
 
Learning mechanism. When the model is requested to store positional information 
about an object, it first checks whether the corresponding object node exists and 
creates a new one if needed. Then, the found variable of links between the object node 
and place nodes of all the places where the object was found are increased by 1 (e.g. 
the house, the bedroom, the bedside table). When the agent is looking for an object at 
a specific place and this object is not there, the missed variable is increased by 1. If 
the agent is searching in a location and the object is not in any of its sublocations, 
missed variables for this location and all the sublocations are increased by 1. 
 
Rules formation. This is perhaps the trickiest part. When the model is queried for an 
object position, so-called size-normalised trustfulness (SNT) is computed for every 
place the object has an edge with as: 
 

  SNT = f (found, missed) / complexity (level, size)    (1) 
 

The function f determines influence of the found and missed variables on the 
estimation of likelihood of finding the object at the given place and complexity is the 
scaling function. There are more options how to choose f and complexity. In our 
experiments (Sec. 4), we will investigate how the model behaves with the following 
functions, where a, b, and c are parameters to be found: 
 

  f = b.found – missed      (2) 
 complexity = levela       (3) 
 complexity = sizec      (4) 
 

The places are arranged in order of SNT. More specific places after their super-
location are dropped from the rule. The sorted list presents a searching rule. 

Notice that (3) completely disregards sizes of places, leading to assigning the same 
SNT to two rooms: one with six containers and another with only one container. 
Clearly, a human would prefer to inspect the latter room first. This motivates Eq. (4). 
Further discussion on how f can look like follows in Sec. 5. 

Fig. 1. Spatial 
memory. Some nodes 
from the 
experimental scenario 
are schematically 
depicted; the glasses’ 
links are highlighted. 
The width of the links 
denotes the size of 
the found variable. 
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4 Implementation and Experiments 

Motivation and Synopsis. The most important questions relate to whether searching 
rules emerge an how quickly. In particular, we aim to investigate: A. Do searching 
rules emerge? B. Does the time to emergence depends on the frequency of usage of an 
object? C. Is searching effective? To this end, we designed the first set of experiments 
investigating the model with the SNT defined by Equations (1) – (3) and with fixed 
parameters (a = 2, b = 1.3).   

Assuming positive answers, we ask further: with which parameter settings does the 
model behave optimally? The “optimality” has two components. On the one hand, we 
can ask: D. How quickly the rules emerge with a particular setting? E. How quickly 
the network relearns with a particular setting? F. Is there one setting optimal for all 
situations? To this end, we designed the second set of experiments in which we 
investigated how the behaviour of the model changes based on varying parameters a, 
and b, and also varying c after replacing Eq. (3) by (4). On the other hand, we should 
ask: G. Are the rules similar to those used by humans; are they believable? As 
discussed above, we are not aware of any psychological experiment that has produced 
data against which we can validate our model. Therefore, we designed a simple Flash-
based application in which we investigated behaviour of human subjects in a task 
similar to the task used in experiments with the model.  

 

Implementation. The “what-where” model has been integrated within our generic 
agent with episodic memory capabilities [3] (see Fig. S1 – note that all figures from 
Supplementary materials have S prefix). From the perspective of this agent, the model 
presents the long-term memory for positions of objects (LTSM). The agent also 
possesses an attention filter through which only some percepts can pass, a simple 
short term memory – an intermediate stage for object records that are to be later stored 
in the LTSM –, and an autobiographic memory with forgetting. For the purposes of 
forgetting, the agent features a simple valence-based emotion model. A simple 
linguistic module allows the agent to tell short stories about its “life.” The action 
selection mechanism is a derivation of the BDI [2]. Presently, we have five 
independent implementations, four of them employing a 2D grid world, the last one 
using a 3D world of the action game Unreal Tournament 2004 [12]. Here, we use a 
2D world for simplicity. Given the abstract nature of the “what-where” map, we find 
a 2D world appropriate for our purpose and do not see the scaling to the 3D world as 
a problematic issue.  

To investigate the experimental questions, we need an “ecologically” plausible 
scenario, which would be, on one hand, sufficiently complex to model the desired 
phenomena, and on the other hand, simple enough to allow for interpretation of the 
results. We adopt a “new house” scenario, where we simulate the agent living for 
several weeks in a house to which it move at the beginning of the scenario. The house 
comprises 6 rooms, each having 4 containers, i.e. “atomic” places (24 in sum; Fig. 
S2). In a container, an unlimited number of objects can be located. The objects are 
state-less (for the sake of trialling). The environment is abstract; the containers are 
named (e.g. “a bedside table”), but these are merely labels. Movement of the agent: 
the agent “jumps” from a room to a room – it is not walking “continuously” (again, 
for the sake of simplifying the experiments). Once in a room, it can inspect each 
container instantly, without any effort, which makes the exact position of a container 
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in the room unimportant. The agent never leaves the house. Movement of the objects: 
First, the positions of objects can be changed by the agent. Second, they can be 
changed beyond its capabilities and unbeknown to it, a mechanism for imitating 
presence of another agent moving the objects.  

The LTSM mirrors the topology of the environment containing 31 place nodes; one 
for the house, 6 for the rooms, 24 for the containers. There can be up to 24 different 
objects in the world. The time flow differs in each of the experiment – see below.  

 
Object classes. The model will behave differently for objects with different patterns 
of movement (compare glasses with a PC). Hence, we defined five classes modelling 
prototypical behaviour of five distinct kinds of objects: 
– “90%” : There is 90% chance that the object is located in a particular container, 

and 10% chance that it is located randomly (uniform distribution) in another 
container (e.g. a can opener). 

– “3x30%” : There are 3 containers in a same room, in each of them the object can 
be located (3 x 30%). 10% that it is located randomly (uniform distrib.) in another 
container (e.g. glasses). 

– “1/2x30%” : The same as 2, but two containers are in the same room and the last 
one elsewhere. 

– “1/1/1x30%”: The same as 2, all containers in distinct rooms.  
– “uniform” : The object can be located in any container (randomly, uniform 

distribution) (this is a “control” case, objects do not behave like this, though a pen 
approaches this pattern).  

            
Experiment 1. This experiment was designed to investigate Questions A – C. 

Method. How to investigate emergence of searching rules? Basically, we can ask the 
agent “where an object is” and observe how the agent’s suggestions evolve in time. 
Assume we ask the agent repeatedly about a particular object. If the agent lives in the 
house shortly, two consecutive answers will likely differ, specifically for an object 
changing its position often, e.g. glasses, because the memory does not hold enough 
records about possible positions of this object: the memory does not reflect the 
statistical nature of the pattern of movement of the object yet. After a time, two or 
more consecutive answers will likely be the same. In this situation, we can say that 
the rule for this particular object has stabilised. We defined operationally that a rule is 
stable iff both of these conditions hold: a) the rule was used at least 10 times, b) it was 
used in more than 80% of conducted searches (if there were more than 50 searches 
from the beginning, we looked only at the last 50 searches).  

We conducted two variants of the experiment. In each variant, there were 24 
objects in the environment and the agent’s task was to search for some of them, 
developing its LTSM. The first variant investigated Question A. We let the agent 
repeatedly, randomly (uniform distrib.), without any motive, to choose which object 
to pick up, measuring time in number of searches. In the second variant, investigating 
B and C, we needed to examine the frequency thus to break the uniformity of 
assigning objects to be searched for. We simulated casual life of the agent, defining 4 
daily plans from which we chose one every day (Tab. S1). Individual tasks were 
represented by a BDI-like formalism. In each task, the agent used several objects. 
Thus the plans brought different and plausible frequencies of searches for objects 
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needed during each day. One time-step lasted 3 seconds, according to [19]. On 
average, the agent searched for an object 96 times day in the 2nd variant. For 
comparison, we can image that one day in the 1st variant also lasted 96 searches, i.e. 4 
searches for an object a day on average. Each variant had three alternatives. The 
alternatives differed in classes of objects’ dynamics: all objects belonged to classes 
“90%,” “3x30%,” or “uniform,” respectively. The SNT was defined by Eqs. (1) – (3) 
with a = 2, b = 1.3. Initial positions of objects were randomised. The results were 
averaged over 20 trials for each alternative. 

Quantitative results. The 1st variant indeed showed that rules were stabilised in very 
short time (Fig. 2/Left), for the “90%” class just in 12 searches on average and for the 
other classes in 24 to 40 searches on average. Dispersion of the stabilization time, that 
was quite big (4 to 8 searches based on an object class), was caused by initial 
positions of objects. The 2nd variant demonstrated that time to stability depends both 
on the object’s class as well as the frequency of searching (Fig. 2/Right, Fig. 3). 
Notice that the overall pattern of ordering of the classes (“90%” is the first, “3x30%” 

is the last) is still recognisable (Fig. 2/Right). In sum, the answers on Questions A and 
B are positive. Additionally, all searching rules for the three classes reached the 
optimum in less than 6 searches (Fig. 4), i.e. even sooner than the rules were 
stabilised, giving the positive answer on Question C.  

Qualitative results. An important question is how do the searching rules look like? 
The rule developed for “90%” class always consisted of looking at the place having 
the 90% probability, then exploring the room with this place and then exploring the 
whole house. This rule typically emerged (and did not change from that time on) just 
in 3 searches. The emerged rule for “3x30%” class consisted of exploring the room  
 

 
Fig. 2. Stabilization time. For brevity, only 7 objects from each class are depicted; other data 
are similar. Left: 1st variant. Right: 2nd variant. Note the different y-axes and their scales. On 
the left, the stabilisation time is given in nr. of searches, on the right, in days. On the left, 4 
searches per object can be considered as one day. 
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Fig. 3. Dependence of the stabilisation time on the frequency of usage; classes “90%” and 
“uniform.” The frequency is given as the average number of searches for a particular object 
during one week; the average is over all weeks from 20 trials of the 2nd variant. The numbers 

next to the points denote the number of objects at a same coordinate.   

 
Fig. 4. The number of visited places during searching for 3 classes. One example strategy is 

compared with the optimal strategy and an average over all 20 trials of the respective 
alternatives of 2nd variant of Exp. 1. The abrupt jumps were caused when objects were not in 
the most probable places. The vertical lines denote stabilisation time. The optimal rules were 
chosen as follows: “90%”: inspect the “90% container”, then the whole house; “uniform”: 

inspect the house; “3x30”: inspect the 3 most probable containers in a random order, then the 
house. The number of searches for the optimal rules were averaged over 10 000 simulations. 

with the most probable places and then exploring the whole house. This rule emerged 
typically in 6 searches. Why the optimal rule “to inspect the three containers” is not 
preferred? Indeed, the network preferred it when b=3 (instead of 1.3), which, 
however, slowed down the learning of “3x30%” rule three times. Apparently, we have 
stumbled on a trade-off which we will comment later. The searching rule for 
“uniform” class was: to explore the whole house.  

Summary. Given the results, we conclude that searching rules emerge easily in the 
setting of a middle-sized environment, that the time to emergence of a rule depends 
on the frequency of objects’ usage, and that the emerged rules present near-optimal 
searching heuristics. What needs to be investigated now is whether the model is able 
to relearn after an object changes its class (e.g. “glasses should be in the case from 
now on”) and how does this depend on the model’s parameters, whether the model is 
robust with regard to different environments (e.g. “what will happen when having 6 
containers instead of 4?”), and whether the rules are similar to those used by humans. 

 
Experiment 2. This experiment was designed to answer Questions D – G. The main 
idea is to investigate how quickly the model learns and how quickly it relearns when 
the class suddenly changes unbeknown to the agent, varying the model’s parameters. 
This is actually an unnatural “guessing game.” In real world, people typically knows 
that the movement pattern of an object is about to change (“I will move the PC to 
another room”, “I will use the case for my glasses from that time on.”). However, this 
awareness of change can be implemented by increasing learning speed temporarily, 
which can only improve the performance. For the purpose of trialling, this temporal 
increase would make a sense only when the results without the increase are negative.  
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Method. We investigated all 25 possible variants of relearning (5 x 5: each class can 
be switched to each other). When switching a class to the same one, the containers 
and rooms with the highest probabilities were changed for the “90%” class and all 
“30%” classes. The switch from “uniform” to “uniform” had no effect. For each of 
the 25 variants, the model started with no previous information. It was requested to 
search for the same object (from the given class) for 20-30 times depending on the 
variant. About in the middle, the class was switched.   

How to vary the parameters’ values? We first found iteratively a near-optimal 
value of a for each variant for the SNT function given by Eqs. (1), (2), (3) with b=2 
fixed (Exp. X1). This gave us an idea about meaningful intervals for a. Then, we 
iteratively found near-optimal values of both a and b for each variant (Exp. X2). 
Then, we investigated for each variant the case of SNT being given by Eqs. (1), (2), 
(4); i.e. the parameters b and c (Exp. X3). Finally, we searched for the best parameters 
across all the variants (Exp. X4). For each parameter setting, we run the experiment 
10 times, averaging the results. For each run, the behaviour of the object was 
randomised (with respect to its class). 

To help us to answer Question G, human subjects (students of our university, 
N=20, 20-23 years old, 16 males) were engaged in a simplified version of this task in 
a Flash application. The application depicted the same house in which the model had 
to search for objects (Fig. S2, Suppl. video 1). Searching was mimicked by clicking a 
mouse button. Initially, all rooms were semi-transparent. When a subject wanted to 
search in a room, he or she had to open it first by clicking at it, making it transparent. 
Then, the subject could inspect individual containers (again, by clicking at them). 
Thus, we penalised passage between rooms; it cost an extra click. Objects were 
invisible, but when the right container was found, the subject was noticed. Before the 
start, each subject was trained in how to use the application. Each subject was then 
instructed to find the object in “as low number of steps as possible”. Each subject was 
tested in all the 25 variants; the switches between classes occurred with the same 
timing as for the model. The order of variants was randomised across the subjects. 
After each variant, a subject was interviewed concerning his/her searching rule. 

Two rules are considered as same iff equal except of permutation of places with 
equal probabilities. According to this criterion, we grouped human rules and picked a 
candidate from the largest cluster. This candidate was then compared with the 
model’s rule. Effectiveness is defined for each of the 25 variants as searches/requests. 
Searches is the number of inspected containers during the whole variant plus 1 for 
each passage from a room to another room (i.e. the number of clicks for humans). 
Requests is the number of requests for searching for an object within the variant.  

Quantitative results. We were able to find distinct parameter values for near-optimal 
behaviour for each of Experiments X1 – X3 and for each of their variants (see Fig. S3 
for an example). For these values, the searching rule approached the optimum within 
3-6 searches for all classes, giving positive answer on Question D. In terms of overall 
effectiveness (which includes also the searches during which the model relearns) the 
model’s behaviour was in all variants of Exps. X1 – X3 comparable to effectiveness 
of humans (Fig. 5). Actually, in most cases, the model’s behaviour was more effective 
than humans’ behaviour, giving positive answer on Question E. 

Despite expectations, it was not possible to find one common parameter setting 
(Exp. X4) that would suit well for all the 25 variants of relearning (Fig. 5). The best 
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values found, that is a = 9.6, b = <1, 15>, produced behaviour that was worse 
(summing over all 25 variants) than average human behaviour by 56% and worse than 
the best distinct settings for SNT given by Eqs. (1), (2), (4) by 89%. For example, in 
Exp. X4, in the relearning variant “90%, container I1”→ “90%, container J2,” where 
the optimal strategy switches from [I1, House] to [J2, House], the model adopted the 
rule [I1, J2, House] after the switch and only later it learned [J2, House]. It took a 
while to forget I1 because of how the learning rule (Eq. (2)) is constructed (see also 
Supplementary video 1 and Tab. S2). We will comment on this point in Sec. 5. In 
sum, the answer on Question F is negative.  

Qualitative results. It was not possible to find parameters that would approximate 
well emergence of humans’ searching rules: humans behaved differently than the 
model. However, we identified a simple cause: humans used an additional heuristic to 
search at a place where the object was found last time. Only after the object was not 
found there, the subjects turned to their searching rules. When we added this heuristic 
to the model, the model’s searching rules were qualitatively similar to those of 
humans (see Tab. S2). Thus, we conclude the answer on Question G is positive.  

To investigate the robustness, we also compared how some of the optimal models 
from Exp. X2 and X3 behave when number of containers changes (e.g. to 1, 4, 4, 3, 4, 
6 for each respective room). These tests suggested that the SNT given by Eqs. (1), (2), 
(4) (i.e. X3) was more immune to this environmental change than that given by (1), 
(2), (3), presumably because the change is reflected by the size parameter included in 
Eq. (4). More thorough trialling on this issue would be needed in future. 

Summary. The experiments revealed several important points: First, it is possible to 
parameterise the model so that its behaviour is similar to human behaviour, but only if 
the heuristic of looking at the place of the last object’s occurrence is added. Second, 
the effectiveness of the model is similar to or better than humans’ effectiveness. 
Third, the model as well as human are able to quickly relearn when the pattern of 
dynamic of the object changes. Finally, we were not able to find common parameters 
for all kinds of relearning, pointing to the necessity of extending the model with a 
mechanism estimating classes of objects’ dynamics.   
 

 

Fig. 5. The effectiveness for all cases of Experiment 2. A: “90%,” B: “3x30%,” C: “1/2x30%,” 
D: “1/1/1x30%,” E: “uniform.” 
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5 General discussion 

The experiments showed that, in a middle-sized environment, searching rules emerge 
easily and the searching for objects is effective and comparable to the searching 
conducted by a human. However, there is a room for improvement. The subsequent 
discussion will be organised around following points: modulations and extensions of 
the basic network, the issue of automatic construction of abstract places, the question 
of plausibility of experimental scenarios, and the limitations of the network. 

1) According with the current view held in psychology, which conceives spatial 
memory as a set of multiple interconnected systems, we suggest perceiving our 
network as a basic mechanism for “what-where” memory upon which other models 
can be layered modulating the basic mechanism. We have already seen one such 
modulation, quite important in fact: the heuristic of looking at the place of the last 
occurrence of an object. But there are also other possible modulations. We know that 
while the network behaves best when searching rules are computed using SNT with 
distinct parameters based on objects’ classes, which calls for a module for an 
automatic estimation of objects’ classes. Another already suggested module could 
help with intentional relearning; its function would be to increase the speed of 
learning temporarily due to “conscious” awareness of a change (“I moved the PC to a 
new room, I should remember it!”). Learning rate is a common parameter of neural 
networks, missing in our model. A module for making inferences based on general 
episodic (or semantic) knowledge could also improve the performance (“I have put 
my keys somewhere, but together with my wallet, hence finding the wallet will help 
me to find the keys.”). Our module can also serve as an input for other modules of an 
IVA’s mind, e.g. the emotion module. For instance, disappointment can be generated 
after an object has not been found at a highly probable place. The first mechanism – 
the heuristic – seems to be quite necessary. The decision whether to implement some 
of the other modules depends on the needs of a particular application. 

2) Could the very structure of the environment, i.e. the place-nodes and the 
connections up and down between higher-order and less abstract locations be learned? 
There are many works on automatic, hierarchical clustering of space; the issue is 
whether the resulted clustering appears human-like (e.g. we need that several 
meaningful place-concepts develop for a working table, such as “in front of the 
monitor,” or “next to the mouse,” while none for the middle of a deserted corridor). 
We have actually already made a considerable progress on this issue, capitalising on 
the metaphor of place-cells, a neurobiological concept [17; see Suppl. video 2]. This 
work will be reported elsewhere in detail.  

3) The experiment conducted with human subjects lasted for about 30 minutes.  
Thus, it tested short-term memory, while the model was engaged in long-term 
memory tasks. The heuristic revealed by the experiment with humans is valuable, but 
other human data should not be accepted as conclusive. A larger study would be 
needed; we would need more subjects acting in a same novel environment, e.g. 
employees after their company has moved or players of an on-line multiplayer game. 
A different possibility of validating the model would be to let human subjects to judge 
believability of behaviour of the artificial agent. 

4) Will the memory work well in larger worlds? Here, the model has to be 
augmented with a module solving the travelling salesman problem with uncertainties. 
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Presently, we test the model in an environment of a small city, the description of 
which employs seven levels of abstraction.  

5) There are several innate limitations of the model: First, it does not work with 
containers that can move including the objects located in them (a wallet with a credit 
card), with object that are semantically same but are being replaced very often (a new 
newspapers in the post box every day), with objects that can cease to exist (food), can 
be created, or otherwise can change their state, and with objects of the same kind with 
different dynamics (PC at home vs. PCs at a warehouse). While simple extensions of 
our model can be imagined for these situations, a radical extension would be need for 
another type of objects; those that can move themselves (a dog) (fortunately, this 
issue was already addressed in [11]). Second, relearning of some rules is relatively 
slow as demonstrated in Exp. 2. In terms of neural networks, Eq. (2) can be regarded 
as a link’s weight. In this terminology, weights grow and decrease linearly and 
without any bounds, implicating slow forgetting of a well learned weight. Humans 
claimed in our experiments that they considered only 3-4 last searches for the 
purposes of relearning, not the whole history, but recall that they conducted 
intermediate-term memory task. We already said that one way to forget more quickly 
is to increase the speed of learning temporarily. Another possibility is to change the 
learning rule. In fact, our present learning mechanism is a kind of Hebbian rule. Could 
a bounded Hebbian rule (see e.g. [5]) work better? This is our work in progress.  

6 Conclusion 

We have described an associative network addressing the issue of representation of 
“what-where” information that can evolve over long time periods. The mechanism is 
complementary to other models of spatial memory and cognition for IVAs, which 
tend to represent only topology of the environment or memorise locations of objects 
that never or only rarely change their positions. 

The experiments showed that searching rules emerge easily and the searching for 
objects is effective and comparable to the searching conducted by a human. This 
means that the model can be integrated with other models, e.g. for the purposes of 
virtual companions or RPG agents. We do not expect any problem regarding the 3D 
scaling. The “take-home message” for researchers and practitioners willing to use this 
network is: a) the network works best in middle-sized environments when the 
heuristic of looking first at the place of last occurrence of an object is added, b) it 
would help if the parameters are adjusted for the purposes of a particular application; 
there is no miraculous setting that would work well for each and every case, c) it is 
better to scale the weights of the links to abstract places based on sizes of places not 
their level of abstraction, d) scaling the model to large environments, such as a city, 
would demand augmentation with a mechanism solving travelling salesman problem 
with uncertainties. This is our work in progress. Other work in progress includes 
learning the space abstractions automatically and changing the learning rule.  
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Supplementary materials: 

 
 

      
 
Fig. S1. The overall architecture of our agent. Note the perception—action cycle. ENV – the 
environment. PF – objects of the visual short-term memory (STM). MF – objects retrieved 
from the LTSM. TF – tasks field: tasks the agent is accomplishing at the moment. LTEM – the 
autobiographic memory. LTSM – the memory being investigated in the main paper. 
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Fig. S2. The house in which the experiments were conducted: both on the agent as well as on 
the human subjects. 

 

 
Process Objects and quantity Time (min) Time of execution 

Snacking 8xGrapes, 2xBowl 15  
Watering 4xCannikin, 12xRose, 3xWater 10  
Woodcutting 2xAxe, 12xWood 120  
Cooking & 
eating 

6xMeat, 2xPot, 6xDinner Set, 
3xKnife 

180  
Conjuring 4xAmulet 30  
Lightening 2xTorch 10  
Reading 3xBook,  1xGlasses 60  
Repairing 4xPipe, 8xScrewdriver, 

8xWrench 
120  

Drinking 1xGlass, 2xMilk 5  
Sewing 3xLinen, 10xThread 120  
Smoking 1xTobacco Pipe 10  
Combing 1xComb 1  

Tab. S1. Example of one daily plan. Tasks, their sources, duration, and time of execution are 
depicted (the x-axis denotes time).   
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Fig. S3. (colour figure) The effectiveness for the case “1/1/1x30%” → “90%.” Left: Exp. X1 

(b=2). Right: Heat map for Exp. X2 (parameters a and b). 

 
  Human 1 Human 2 Human 3 Human 4 X3(a=3.2, b=8) X3(3.2,8) + Rule 
L1 F F F F F F 
L1 L1, F L1, F L1, F L1, F L1, F L1, F 
L1 L1, F L1, F L1, F L1, F L1, F L1, F 
L1 L1, F L1, F L1, F L1, F L1, F L1, F 
L1 L1, F L1, F L1, F L1, F L1, F L1, F 
I2 L1, F L1, F L1, F L1, F L1, F L1, F 
L1 I2, L1, F I2, L1, F I2, L1, F L1, F L1, I2, F I2, L1, F 
L1 L1, F L1, F L1, F L1, F L1, I2, F L1, I2, F 
L1 L1, F L1, F L1, F L1, F L1, I2, F L1, I2, F 
L1 L1, F L1, F L1, F L1, F L1, I2, F L1, I2, F 
J2 L1, F L1, F L1, F L1, F L1, I2, F L1, I2, F 
K1 J2, L1, F J2, L1, F L1, F L1, F L1, J2, I2, F J2, L1, I2, F 
J3 K1, J2, L1,F K1, L1, J2,F K1, L1, F L1, F L1, K1, J2, I2, F K1, L1, J2, I2, F 
J2 J3, J2, L1, F J3, J2, L1, F J3, L1, F J3, L1, F L1, J3, J2, K1, F J3, L1, J2, K1, F 
J2 J2, L1, F J2, J3, L1, F J2, L1, F J2, L1, F L1, J2, J3, K1, F J2, L1, J3, K1, F 
J3 J2, L1, F J2, L1, F J2, L1, F J2, L1, F L1, J2, J3, K1, F J2, L1, J3, K1, F 
J2 J3, J2, F J3, J2, L1, F J3, J2, L1, F J3, J2, L1, F L1, J2, J3, K1, F J3, L1, J2, K1, F 
N1 J2, J3, F J2, J3, F J2, J3, F J2, J3, L1, F L1, J2, J3, K1, F J2, L1, J3, K1, F 
J2 N1, J2, J3, F N1, J2, J3, F N1, J2, J3, F N1, J2, J3, F L1, J2, J3, N1, K1,F N1, L1, J2, J3, K1, F 
K1 J2, J3, F J2, J3, F J2, J3, F J2, J3, F L1, J2, J3, N1, K1,F J2, L1, J3, N1, K1, F 
J3 K1, J2, J3, F K1, J2, J3, F K1, J2, J3, F K1, J2, J3, F L1, K1, J2, J3, N1,F K1, L1, J2, J3, N1, F 
J2 J3, J2, F J2, J3, F J3, J2, F J2, J3, F L1, J2, J3, K1, N1,F J3, L1, J2, K1, N1, F 
J2 J2, J3, F J2, J3, F J2, J3, F J2, J3, F L1, J2, J3, K1, N1,F J2, L1, J2, J3, K1, N1,F 
J3 J2, J3, F J2, J3, F J2, J3, F J2, J3, F L1, J2, J3, K1, F J3, L1, J2, J3, K1, F 
J3 J3, J2, F J3, J2, F J3, J2, F J3, J2, F L1, J2, J3, K1, F J3, L1, J2, K1, F 
K1 J3, J2, F J3, J2, F J3, J2, F J3, J2, F L1, J2, J3, K1, F J3, L1, J2, K1, F 
J4 K1, J3, J2, F K1, J3 J2, F K1, J2, J3, F K1, J3 J2, F L1, J2, J3, K1, F K1,L1, J2, J3,  F 
J3 J4, J3, J2, F J3, J2, F J2, J3, J4, K1, F J4, J3, J2, F L1, J2, J3, K1, F J4, L1, J2, J3, K1, F 
J2 J3, J2, F J3, J2, F J3, J2, K1, F J3, J2, F J2, J3, L1, K1, F J3, J2, L1, K1, F 
K1 J3, J2, K1, F J3, J2, F J2, J3, K1, F J2, J3, F J2, J3, L1, K1, F J2, J3, L1, K1, F 

Tab. S2. Example of the model’s searching rules compared to those of humans for the case 
“90% [L1]” → “1/2x30% [J2, J3, K1].” The step of switch is highlighted. Notice, how long 
does it take to the model to abandon the L1 container in the 2nd part of the experiment (bold 

italic). The course of this experiment is also detailed in Supplementary video 1.  
 
 


