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Abstract. Believable spatial behaviour is important for itiggnt virtual agents
acting in human-like environments, such as buildingcities. Existing models
of spatial cognition and memory for these agenespaedominantly aimed at
issues of navigation and learning of topology & #mvironment. The issue of
representing information about possible objectstatmns in a familiar
environment, information that can evolve over lopgriods, has not been
sufficiently studied. Here, we present a novel espntation for “what-where”
information: memory for locations of objects. Onsianplified model of a
virtual character living in a virtual house, we @stigate how this representation
is formed and how it evolves based on how objects mmoved within the
environment. The behaviour of the model is also gamed with behaviour of
real humans conducting an analogical task. Theltseallow us to conclude
that this model can be incorporated to other memuoglels for virtual agents.

1 Introduction

Humans act in space. They furnish the space thveyifi with objects. Be it a van
Gogh’s painting or a pen, it pays to remember whmres’ belongings are located.
This makes life much simpler. Intelligent virtugjeats (IVAs) usually act in space as
well. This demands them to have similar “what-whénéormation as humans do. In
many present-day applications, IVAs read this imfation directly from the world
map, which corresponds to complete environmentaivkedge. While this approach
may suffice for static words or dynamic but fullypservable words, it results in
unbelievable behaviour in dynamic words that are fally observable. The latter
kind of environments is increasingly employed bgayp applications. For instance,
think of non-player characters (NPC) from a rolaywhg game (RPG), or
virtual/robotic companions required to orient thehass in humans houses. Here, a
better approach is needed.

Why not to memorise all objects that an agent enmyad? Assume we have a
large, partially observable environment with olgethat are passive but whose
locations can be changed by external forces beybadagent’s capabilities. For
instance, a pen can be moved by a fellow agenthig situation, we can expect
multiple memory records of a position of each objeased on the history of the



2 C. Brom et al.

object's moves. Where is the pen: at the workirgetar next to the TV? A simple
list of memory records can not answer this.

How can we improve the performance? Consider objibett humans use. Humans
have some organisation of the placement of thdongings; things are not placed
randomly within their surroundings, instead, they dustered purposefully according
to their needs and cultural norms. Some objecte@ppegularly at some places
(newspapers inside a mailbox). Other objects ar®stl never being relocated (a van
Gogh’s painting). Yet others are being relocatedbfien that it is not practical to
remember their exact position. Consequently, whémraan searches for an object,
often, a sort of stimulus-response mechanism isl@yad. For a different object,
several places are inspected in a specific ordemetimes, the whole house is
scrutinised but starting at a specific place.

This brings us to the notion skarching ruleswhich are basically a sequence of
places that should be inspected when searchingrfoobject of a particular kind.
Importantly, we mean by place any logically cohérspace abstraction. These
abstractions can differ in size and can be hiereatly nested; e.g. a bedside table, a
place between this table and the bed, a corneneofiting room, a living room, a
house, etc. This corresponds to the way humansug@osed to cluster space [e.g. 8].
A “what-where” memory for IVAs acting in large, piatly observable environments
with movable objects should have the ability toelep searching rules.

In this paper, we present a model with this abilifp its advantage, it is quite
simple. The model has been integrated with our tageith general memory
capabilities [3] and investigated in scenarios roking a situation of a person
moving into a new house. Specifically, we focusadie questions of how the initial
representation is formed, how (and whether) seagchilles emerge, and how the
model relearn, measuring effectiveness of the mdadlaviour. We also investigated
behaviour of the model with different parametergniag to find a point of
“optimality.” Additionally, we conducted a simplexgeriment with human subjects
that mimicked the agent’s task using a simple Flagplication, and evaluated the
model qualitatively against the acquired human.data

The results allow us to conclude that the searchites emerge easily and quickly
and that they are qualitatively similar to searghinles developed by humans in their
version of the task. The model also relearns wallitionally, humans’ data helped
us to isolate one feature of human behaviour thahet be explained by the notion of
searching rules straightforwardly, but it can beextionto a top of the model easily.
In overall, our opinion is that the model is nowadg to use in real-world applications
requiring plausible “what-where” memory.

The structure of the paper is as follows. Sec.vieres related work. Sec. 3 details
the memory model. Sec. 4 details the experimemts. Bdiscusses the results.

2 Related work

From the psychological perspective, the abilityoate objects is a faculty of spatial
cognition, which is tightly connected to spatialmm@y. Spatial memory is conceived
as a set of multiple interconnected systems rattzar a monolithic block [4].
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Recently, several general memory frameworks for $\ikere presented [3, 9, 10,
16, 18]; however, the degree to which they addegssissue of spatial cognition is
minimal. Fortunately, several works directly fodagson some aspects of spatial
cognition for IVAs have emerged to increase belidity of their spatial behaviour,
including mapping, localisation, and navigation.ssoet al. developed IVAs learning
topological structure of the environment and natigpusing this structure [15]. In a
psychologically more plausible manner, Thomas andiKlan [23] addressed similar
issue. A mechanism for anticipating position ofdadmject that can move itself, e.g. a
sheep, was presented by Isla and Blumberg [11]oftrfately, neither of these
works addressed sufficiently the issue of “what-sefiememory for passive, but
movable objects. Unlike these models, the mechamisesented in [20] directly
aimed at representing both topological as wellaisdt-where” information and this
information could gradually deteriorated when nefreshed. However, neither this
model was designed to cope with objects that camdnged several times, lacking the
ability to develop searching rules.

The field of gaming Al predominantly addresses éd&lble and efficient path-
finding and automatic construction of space repregmn [e.g. 7, 21]. To our
knowledge, the issue of “what-where” memory is adtressed. Finally, we are not
aware of any work either from computational psyolggl or robotics that could suit
our purpose directly. Robotics tend to focus onifiseies of localisation and terrain
mapping [e.g. 13], which are “low-level” from thenspective of IVAs, pointing to
the significant difference between application doreaEven designers of robots with
episodic memory systems [e.g. 6] do not seem tgidenthe “what-where” issue as a
crucial one for their discipline. Psychological exments investigating spatial
abilities of humans are of considerable interesthi field of IVAs [see 4, 22 for
reviews of some], but computational psychology téadproduce special-purpose
models replicating data gained during laboratoskdde.g. 1]. It is hard to imagine a
meaningful application in which an IVA could be eggd in such a task.
Additionally, regarding “what-where” information,spchology tends to investigate
what would be called in our context short-term esentations of positions of static
objects and their mental rotations, e.g. for therppses of elucidating the
allocentric—egocentric tension [reviewed in 4].

3  Model

The purpose of this section is to introduce our ehothe “what-where” memory,
starting in an informal tone and proceeding to thedel's formalisation. The
integration of the model with the rest of an IVAmind” will be described in Sec. 4.

The model is a simple associative network. It imposed of two kinds of nodes:
objects and places (Fig. 1). Place nodes represent places with diffedevels of
complexity and they are hierarchically nested. ©bj®des have weighted links with
place nodes; these stand for “what-where” infororatia possible occurrence of a
particular object at a particular place. Now, if alpject is found by the agent, or
comes to the agent’s attention, the linksaliothe locations where it has been found
are strengthened (e.g. the links from the glasses) tthe bedside table, b) to the
bedroom, and c) to the whole house — see Fig. 1).
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How could searching rules possibly emerge from thegwork? Note several
things. (1) Links from an object node to nodes @spnting places at a similar level of
complexity approximates the probability distributiof finding the object at given
places. (2) Links to nodes representing more atispiaces are strengthened more
often than links to nodes of concrete places (‘ggasare always in the house, but only
sometimes at the bedside table”). Now, if querigdain object position, we can find
the appropriate object node and past locationshefdbject's occurrence via the
object—place links. Assuming that the pattern ef dbject’'s movement will be same
in the future as it was in the past, we can arrahgeplace nodes in order of the
strengths of the links leading to them (Point (BHpwever, because of Point (2),
before we do this, we need to scale the links'ngftles by an inverse function of the
complexity of places; otherwise, the abstract dagil be always first in the list.

The fundamental assumption is that with an appat@iscaling function, the result
will be a list with balanced ordering of concretedlabstract places where the object
can be looked for, a searching rule. Concrete plat®uld be first on the list
provided that there are only a few concrete plagbere the object can be found.
Otherwise, an abstract place should be first oy e@wse to the beginning of the list.
Particular places can be searched directly (eegb#uside table) while abstract places
should be inspected (e.g. scrutinise the kitch€hg fact that this mechanism really
produces believable searching rules is demonstmati next section.

An important question is how to deal with distancése present version of the
model ignores distances, conceiving the searchitgsras verbal answers on the
question: “Where do you think is an object X?” Gearching rules amdisembodied
Our opinion is that in a middle-sized environmeag. in the ground-floor house
employed by our experiments, we can ignore distatetting the agent search for at
most probable places, but distances become impontdarger environments, such as
in multi-floor buildings or cities. How to take d#sces into account? One can
basically take disembodied rules as inputs for agine solving thetravelling
salesman problenfTSP) penalising the improbable places. Idealtg, penalisation
should reflect how people solve the same problampr&ingly enough, it seems the
TSP with uncertainties has not been investigatedsychology until recently [24],
and this work is not conclusive from the standpa@hiVAs. There are only many
works revealing heuristics human use to tackle dlassical TSP [24]. Thus, we
assign the question of plausible penalisation stiagices as future work.

Definition. Formally, the network is a triple’& O, E>.

P is the set of alplace nodeseach of which is a quintuplep<up, down level,
size>, wherep is the nodeup its super-locationdown its sub-locationssizeis a
number of its sub-locationgnd level is the level of abstraction. Abstractions are
numbered from the bottontevel for a specific place is 1, and then the levels are
enumerated by one towards the root of the hierarchy

O is the set of albbject nodesi.e. the object records.

E is a set of weighteddges each of which is %, found missed>, wherex [0 PxO
is the edge, anfbund N is the number of times the object was found (aken) or
seen at the particular place, amissedd N is the number of times the object was
being searched for at the place but not found there
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In the present version of the model, we assumeRhstspecified in advance by a
designer and fixed during the simulation (but dee &ec. 5).

Fig. 1. Spatial
memory. Some nodes

from the

experimental scenario
are schematically
depicted; the glasses’
links are highlighted.
The width of the links
denotes the size of
thefoundvariable.

Objects

Links

Places

Living room } Bedroom }

Learning mechanism.When the model is requested to store positionarmétion
about an object, it first checks whether the cqoesing object node exists and
creates a new one if needed. Then fthmdvariable of links between the object node
and place nodes @il the places where the object was found are incdelgd (e.g.
the house, the bedroom, the bedside table). Wheeadhnt is looking for an object at
a specific place and this object is not there,rfigsedvariable is increased by 1. If
the agent is searching in a location and the ohgeabt in any of its sublocations,
missedvariables for this location and all the sublocasi@re increased by 1.

Rules formation. This is perhaps the trickiest part. When the maslglueried for an
object position, so-calledize-normalised trustfulnegSNT) is computed for every
place the object has an edge with as:

SNT=f (found missefl/ complexity(level sizg (1)

The functionf determines influence of théund and missed variables on the
estimation of likelihood of finding the object &ietgiven place andomplexityis the
scaling function. There are more options how toosled and complexity In our
experiments (Sec. 4), we will investigate how thedel behaves with the following
functions, where, b, andc are parameters to be found:

f = b.found—missed (2)
complexity= levef 3)
complexity= siz& (4)

The places are arranged in order of SNT. More fipeplaces after their super-
location are dropped from the rule. The sortedplissents a searching rule.

Notice that (3) completely disregards sizes of @adeading to assigning the same
SNT to two rooms: one with six containers and aaothith only one container.
Clearly, a human would prefer to inspect the latb&m first. This motivates Eq. (4).
Further discussion on hofican look like follows in Sec. 5.
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4 Implementation and Experiments

Motivation and Synopsis.The most important questions relate to whetherchixay
rules emerge an how quickly. In particular, we a@orinvestigate: A. Do searching
rules emerge? B. Does the time to emergence depenttte frequency of usage of an
object? C. Is searching effective? To this enddes&igned the first set of experiments
investigating the model with the SNT defined by &tipns (1) — (3) and with fixed
parametersa= 2,b = 1.3).

Assuming positive answers, we ask further: withchiparameter settings does the
model behave optimally? The “optimality” has twarg@onents. On the one hand, we
can ask: D. How quickly the rules emerge with atipalar setting? E. How quickly
the network relearns with a particular settingsithere one setting optimal for all
situations? To this end, we designed the secondfseikperiments in which we
investigated how the behaviour of the model chatgsgd on varying parametexs
andb, and also varying after replacing Eq. (3) by (4). On the other hamd,should
ask: G. Are the rules similar to those used by msnare they believable? As
discussed above, we are not aware of any psyclwallogkperiment that has produced
data against which we can validate our model. TThezewe designed a simple Flash-
based application in which we investigated behavimfuhuman subjects in a task
similar to the task used in experiments with thelato

Implementation. The “what-where” model has been integrated withim generic
agent with episodic memory capabilities [3] (seg. 81 — note that all figures from
Supplementary materials ha8grefix). From the perspective of this agent, tredei
presents the long-term memory for positions of cisigLTSM). The agent also
possesses aattention filter through which only some percepts can pass, a simpl
short term memory an intermediate stage for object records thatabe later stored
in the LTSM —, and amutobiographic memorwith forgetting. For the purposes of
forgetting, the agent features a simple valencedbasmotion model A simple
linguistic moduleallows the agent to tell short stories about Ite.” The action
selection mechanism is a derivation of the BDI [2]. Presgntive have five
independent implementations, four of them employangD grid world, the last one
using a 3D world of the action game Unreal Tournain®2904 [12]. Here, we use a
2D world for simplicity. Given the abstract natwkthe “what-where” map, we find
a 2D world appropriate for our purpose and do eetthe scaling to the 3D world as
a problematic issue.

To investigate the experimental questions, we rmedecologically” plausible
scenario, which would be, on one hand, sufficieatynplex to model the desired
phenomena, and on the other hand, simple enoughaw for interpretation of the
results. We adopt a “new house” scenario, wheresiwilate the agent living for
several weeks in a house to which it move at tlggniméng of the scenario. The house
comprises 6 rooms, each having 4 containers, agnfic” places (24 in sum; Fig.
S2). In a container, an unlimited number of objex@a be located. The objects are
state-less (for the sake of trialling). The envimamt is abstract; the containers are
named (e.g. “a bedside table”), but these are méabkls. Movement of the agent:
the agent “jumps” from a room to a room — it is matlking “continuously” (again,
for the sake of simplifying the experiments). Ongea room, it can inspect each
container instantly, without any effort, which makihe exact position of a container
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in the room unimportant. The agent never leavehthese. Movement of the objects:
First, the positions of objects can be changedHey @&gent. Second, they can be
changed beyond its capabilities and unbeknown ,t@ imechanism for imitating
presence of another agent moving the objects.

The LTSM mirrors the topology of the environmenhtning 31 place nodes; one
for the house, 6 for the rooms, 24 for the contain€here can be up to 24 different
objects in the world. The time flow differs in eaahthe experiment — see below.

Object classesThe model will behave differently for objects witlifferent patterns
of movement (compare glasses with a PC). Henceajefiaed five classes modelling
prototypical behaviour of five distinct kinds ofjebts:
“90%" : There is 90% chance that the object is located particular container,
and 10% chance that it is located randomly (unifatistribution) in another
container (e.g. a can opener).

— “3x30%": There are 3 containers in a same room, in eatheof the object can
be located (3 x 30%). 10% that it is located ranigdumiform distrib.) in another
container (e.g. glasses).

— "1/2x30%": The same as 2, but two containers are in the saom and the last
one elsewhere.

— "1/1/21x30%": The same as 2, all containers in distinct rooms.

— ‘“uniform”: The object can be located in any container (ramgo uniform
distribution) (this is a “control” case, objects dot behave like this, though a pen
approaches this pattern).

Experiment 1. This experiment was designed to investigate Quesio— C.

Method.How to investigate emergence of searching rulessidally, we can ask the
agent “where an object is” and observe how the tgsuggestions evolve in time.
Assume we ask the agent repeatedly about a pantiobject. If the agent lives in the
house shortly, two consecutive answers will likdiffer, specifically for an object
changing its position often, e.g. glasses, becthsanemory does not hold enough
records about possible positions of this objec&é themory does not reflect the
statistical nature of the pattern of movement &f t¢ibject yet. After a time, two or
more consecutive answers will likely be the samethis situation, we can say that
the rule for this particular object has stabiliséte defined operationally that a rule is
stableiff both of these conditions hold: a) the rule wasluastdeast 10 times, b) it was
used in more than 80% of conducted searches (i€ there more than 50 searches
from the beginning, we looked only at the last 8@rshes).

We conducted two variants of the experiment. Inhewariant, there were 24
objects in the environment and the agent's task twasearch for some of them,
developing its LTSM. The first variant investigat€iiestion A. We let the agent
repeatedly, randomly (uniform distrib.), withoutyamotive, to choose which object
to pick up, measuring time in number of searcheshé second variant, investigating
B and C, we needed to examine the frequency thubréak the uniformity of
assigning objects to be searched for. We simuledisdal life of the agent, defining 4
daily plans from which we chose one every day (Tab). Individual tasks were
represented by a BDI-like formalism. In each table agent used several objects.
Thus the plans brought different and plausible deagies of searches for objects
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needed during each day. One time-step lasted 3ndsc@ccording to [19]. On
average, the agent searched for an object 96 titagsin the 2 variant. For
comparison, we can image that one day in theatiant also lasted 96 searches, i.e. 4
searches for an object a day on average. Eachnvarad three alternatives. The
alternatives differed in classes of objects’ dyramnall objects belonged to classes
“90%,” “3x30%,” or “uniform,” respectively. The SNWas defined by Egs. (1) — (3)
with a = 2, b = 1.3. Initial positions of objects were randordis&he results were
averaged over 20 trials for each alternative.

Quantitative resultsThe F' variant indeed showed that rules were stabilisedery
short time (Fig. 2/Left), for the “90%" class jurt12 searches on average and for the
other classes in 24 to 40 searches on averageeisp of the stabilization time, that
was quite big (4 to 8 searches based on an objass)c was caused by initial
positions of objects. The"®variant demonstrated that time to stability deebdith

on the object’s class as well as the frequencyeafrching (Fig. 2/Right, Fig. 3).
Notice that the overall pattern of ordering of thasses (“90%” is the first, “3x30%”"
is the last) is still recognisable (Fig. 2/Right).sum, the answers on Questions A and
B are positive. Additionally, all searching rulesr fthe three classes reached the
optimum in less than 6 searches (Fig. 4), i.e. eseoner than the rules were
stabilised, giving the positive answer on Ques@on

Qualitative results An important question is how do the searchingsubok like?
The rule developed for “90%" class always consigietboking at the place having
the 90% probability, then exploring the room wittistplace and then exploring the
whole house. This rule typically emerged (and ditl change from that time ofyst

in 3 searches. The emerged rule for “3x30%" classisted of exploring the room

"90%" "uniform” "3x30%" "90%" | "uniform” "3x30%"

[searches]

Stabilization time
swn uonezj|iqels

Fig. 2. Stabilization time. For brevity, only 7 ebjs from each class are depicted; other data
are similar. Left: T variant. Right: ¥ variant. Note the different y-axes and their ssa@n

the left, the stabilisation time is given in nr. ggarches, on the right, in days. On the left, 4
searches per object can be considered as one day.

"90%" "uniform"

NS

Stabilization time
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Stabilization time
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10
L s
2 J g 6
i : G
1 1 i h
2 &1 2 .

z % 5
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Fig. 3. Dependence of the stabilisation time onftéguency of usage; classes “90%” and
“uniform.” The frequency is given as the averagebar of searches for a particular object
during one week; the average is over all weeks ®0nrials of the 2 variant. The numbers

next to the points denote the number of objectssame coordinate.

"909%" "uniform” "3x30%"

Optimal

------ Single

= Average

Searches

PN T

el .. S H H H N 7
4]

1 6 11 16 21 26 31 36 41 46 1 6 11 16 21 26 31 36 41 1 6 11 16 21 26 31 36 41 46 51 56 61 66
Experiment round

Fig. 4. The number of visited places during seaiglior 3 classes. One example strategy is
compared with the optimal strategy and an average all 20 trials of the respective
alternatives of 2 variant of Exp. 1. The abrupt jumps were causeenabjects were not in
the most probable places. The vertical lines desiatgilisation time. The optimal rules were
chosen as follows: “90%": inspect the “90% contdinthen the whole house; “uniform”:
inspect the house; “3x30": inspect the 3 most potdbaontainers in a random order, then the
house. The number of searches for the optimal mége averaged over 10 000 simulations.

with the most probable places and then exploriegvthole house. This rule emerged
typically in 6 searches. Why the optimal rule “tespect the three containers” is not
preferred? Indeed, the network preferred it whHesB (instead of 1.3), which,
however, slowed down the learning of “3x30%" ruiecie times. Apparently, we have
stumbled on a trade-off which we will comment latdihe searching rule for
“uniform” class was: to explore the whole house.

Summary Given the results, we conclude that searchingsr@émerge easily in the
setting of a middle-sized environment, that theetitn emergence of a rule depends
on the frequency of objects’ usage, and that therged rules present near-optimal
searching heuristics. What needs to be investigatedis whether the model is able
to relearn after an object changes its class (glgsses should be in the case from
now on”) and how does this depend on the modeFarpaters, whether the model is
robust with regard to different environments (éwhat will happen when having 6
containers instead of 4?"), and whether the rutesanilar to those used by humans.

Experiment 2. This experiment was designed to answer Questiors@® The main

idea is to investigate how quickly the model leaangl how quickly it relearns when
the class suddenly changes unbeknown to the agmying the model’'s parameters.
This is actually an unnatural “guessing game.”dal world, people typically knows
that the movement pattern of an object is abouth@nge (“I will move the PC to
another room”, “l will use the case for my glasfesn that time on.”). However, this
awareness of change can be implemented by inceeéesainning speed temporarily,
which can only improve the performance. For theppae of trialling, this temporal
increase would make a sense only when the resitlisut the increase are negative.
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Method.We investigated all 25 possible variants of raleay (5 x 5: each class can
be switched to each other). When switching a clashe same one, the containers
and rooms with the highest probabilities were cleanfpr the “90%” class and all
“30%”" classes. The switch from “uniform” to “unifiof’ had no effect. For each of
the 25 variants, the model started with no previofiermation. It was requested to
search for the same object (from the given classP6-30 times depending on the
variant. About in the middle, the class was switthe

How to vary the parameters’ values? We first foutedatively a near-optimal
value ofa for each variant for the SNT function given by E€, (2), (3) withb=2
fixed (Exp. X1). This gave us an idea about meduninmtervals fora. Then, we
iteratively found near-optimal values of baghand b for each variant (Exp. X2).
Then, we investigated for each variant the cas8NF being given by Egs. (1), (2),
(4); i.e. the parametelsandc (Exp. X3). Finally, we searched for the best patars
across all the variants (Exp. X4). For each param&ttting, we run the experiment
10 times, averaging the results. For each run, bibleaviour of the object was
randomised (with respect to its class).

To help us to answer Question G, human subjectaldats of our university,
N=20, 20-23 years old, 16 males) were engagedsimplified version of this task in
a Flash application. The application depicted #mes house in which the model had
to search for objects (Fig. S2, Suppl. video 1ar8leing was mimicked by clicking a
mouse button. Initially, all rooms were semi-trasgmt. When a subject wanted to
search in a room, he or she had to open it firatlisking at it, making it transparent.
Then, the subject could inspect individual conteng@gain, by clicking at them).
Thus, we penalised passage between rooms; it cosixéa click. Objects were
invisible, but when the right container was foutitg subject was noticed. Before the
start, each subject was trained in how to use pipdication. Each subject was then
instructed to find the object in “as low numberstéps as possible”. Each subject was
tested in all the 25 variants; the switches betwelasses occurred with the same
timing as for the model. The order of variants wasdomised across the subjects.
After each variant, a subject was interviewed camiog his/her searching rule.

Two rules are considered as saiffieequal except of permutation of places with
equal probabilities. According to this criterionggrouped human rules and picked a
candidate from the largest cluster. This candidass then compared with the
model’s rule Effectivenesss defined for each of the 25 variantssaarchegequests
Searcheds the number of inspected containers during thelevvariant plus 1 for
each passage from a room to another room (i.entimeber of clicks for humans).
Requestss the number of requests for searching for arathyithin the variant.

Quantitative resultsWe were able to find distinct parameter valuesnfear-optimal
behaviour for each of Experiments X1 — X3 and facheof their variants (see Fig. S3
for an example). For these values, the searchilegapproached the optimum within
3-6 searches for all classes, giving positive angmeQuestion D. In terms of overall
effectiveness (which includes also the searchemgluvhich the model relearns) the
model’s behaviour was in all variants of Exps. XX3-comparable to effectiveness
of humans (Fig. 5). Actually, in most cases, thalels behaviour was more effective
than humans’ behaviour, giving positive answer are$dion E.

Despite expectations, it was not possible to fimé common parameter setting
(Exp. X4) that would suit well for all the 25 vanis of relearning (Fig. 5). The best
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values found, that i@ = 9.6, b = <1, 15>, produced behaviour that was worse
(summing over all 25 variants) than average hunerabiour by 56% and worse than
the best distinct settings for SNT given by Eq3$, (2), (4) by 89%. For example, in
Exp. X4, in the relearning variant “90%, contaih®r - “90%, container J2,” where
the optimal strategy switches from [I1, House] d&,[House], the model adopted the
rule [I11, J2, House] after the switch and only fatelearned [J2, House]. It took a
while to forget 11 because of how the learning riltg. (2)) is constructed (see also
Supplementary video 1 and Tab. S2). We will commantthis point in Sec. 5. In
sum, the answer on Question F is negative.

Qualitative resultslt was not possible to find parameters that woagghroximate
well emergence of humans’ searching rules: humaateed differently than the
model. However, we identified a simple cause: husnased an additional heuristic to
search at a place where the object was foundiftast Only after the object was not
found there, the subjects turned to their searchifes. When we added this heuristic
to the model, the model's searching rules were ittizely similar to those of
humans (see Tab. S2). Thus, we conclude the amsw@uestion G is positive.

To investigate the robustness, we also comparedduome of the optimal models
from Exp. X2 and X3 behave when number of containbianges (e.g. to 1, 4, 4, 3, 4,
6 for each respective room). These tests suggésiethe SNT given by Egs. (1), (2),
(4) (i.e. X3) was more immune to this environmemfahnge than that given by (1),
(2), (3), presumably because the change is refldnyethesizeparameter included in
Eq. (4). More thorough trialling on this issue wbble needed in future.

SummaryThe experiments revealed several important pokitst, it is possible to
parameterise the model so that its behaviour igasite human behaviour, but only if
the heuristic of looking at the place of the lasjeat’s occurrence is added. Second,
the effectiveness of the model is similar to ortdrethan humans’ effectiveness.
Third, the model as well as human are able to dyicddearn when the pattern of
dynamic of the object changes. Finally, we wereais¢ to find common parameters
for all kinds of relearning, pointing to the nedgs®f extending the model with a
mechanism estimating classes of objects’ dynamics.
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Fig. 5. The effectiveness for all cases of Expeninz A: “90%,” B: “3x30%,” C: “1/2x30%,”
D: “1/1/1x30%,” E: “uniform.”
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5 General discussion

The experiments showed that, in a middle-sizedrenmient, searching rules emerge
easily and the searching for objects is effectind @omparable to the searching
conducted by a human. However, there is a rooninfiprovement. The subsequent
discussion will be organised around following psinhodulations and extensions of
the basic network, the issue of automatic construaif abstract places, the question
of plausibility of experimental scenarios, and lihgtations of the network.

1) According with the current view held in psychgyo which conceives spatial
memory as a set of multiple interconnected systemes,suggest perceiving our
network as a basic mechanism for “what-where” mgmgon which other models
can be layered modulating the basic mechanism. We lalready seen one such
modulation, quite important in fact: the heuristitlooking at the place of the last
occurrence of an object. But there are also otbesiple modulations. We know that
while the network behaves best when searching adecomputed using SNT with
distinct parameters based on objects’ classes, hwhalls for a module for an
automatic estimation of objects’ classes. AnotHeeaaly suggested module could
help with intentional relearning; its function wdube to increase the speed of
learning temporarily due to “conscious” awarendsa change (“I moved the PC to a
new room, | should remember it!"). Learning rateaifommon parameter of neural
networks, missing in our model. A module for makinéerences based on general
episodic (or semantic) knowledge could also imprthes performance (“I have put
my keys somewhere, but together with my wallet,ceefinding the wallet will help
me to find the keys.”). Our module can also servaminput for other modules of an
IVA's mind, e.g. the emotion module. For instandsappointment can be generated
after an object has not been found at a highly gibébplace. The first mechanism —
the heuristic — seems to be quite necessary. Ttisiole whether to implement some
of the other modules depends on the needs of mylartapplication.

2) Could the very structure of the environment, tige place-nodes and the
connectionsip anddownbetween higher-order and less abstract locatierledrned?
There are many works on automatic, hierarchicasteling of space; the issue is
whether the resulted clustering appears human{i&kg. we need that several
meaningful place-concepts develop for a workingealsuch as “in front of the
monitor,” or “next to the mouse,” while none foretimiddle of a deserted corridor).
We have actually already made a considerable psegye this issue, capitalising on
the metaphor of place-cells, a neurobiological ephd17; see Suppl. video 2]. This
work will be reported elsewhere in detail.

3) The experiment conducted with human subjectedator about 30 minutes.
Thus, it tested short-term memory, while the models engaged in long-term
memory tasks. The heuristic revealed by the exparirwith humans is valuable, but
other human data should not be accepted as coweludi larger study would be
needed; we would need more subjects acting in aesaowel environment, e.g.
employees after their company has moved or playeas on-line multiplayer game.
A different possibility of validating the model wioube to let human subjects to judge
believability of behaviour of the artificial agent.

4) Will the memory work well in larger worlds? Herthe model has to be
augmented with a module solving the travelling salan problem with uncertainties.
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Presently, we test the model in an environment shall city, the description of
which employs seven levels of abstraction.

5) There are several innate limitations of the nhoBgst, it does not work with
containers that can move including the objectstitan them (a wallet with a credit
card), with object that are semantically same beitbeeing replaced very often (a new
newspapers in the post box every day), with objénatscan cease to exist (food), can
be created, or otherwise can change their statewéh objects of the same kind with
different dynamics (PC at home vs. PCs at a warsdjoWhile simple extensions of
our model can be imagined for these situationadécal extension would be need for
another type of objects; those that can move thesga dog) (fortunately, this
issue was already addressed in [11]). Second,rnétepof some rules is relatively
slow as demonstrated in Exp. 2. In terms of nenealvorks, Eq. (2) can be regarded
as a link’s weight. In this terminology, weightsogr and decrease linearly and
without any bounds, implicating slow forgetting @fwell learned weight. Humans
claimed in our experiments that they consideredy @¥ last searches for the
purposes of relearning, not the whole history, betall that they conducted
intermediate-term memory task. We already said dhatway to forget more quickly
is to increase the speed of learning temporarityotAer possibility is to change the
learning rule. In fact, our present learning meé$rars a kind of Hebbian rule. Could
a bounded Hebbian rule (see e.qg. [5]) work beftdi8 is our work in progress.

6 Conclusion

We have described an associative network addressegssue of representation of
“what-where” information that can evolve over lotige periods. The mechanism is
complementary to other models of spatial memory aoghition for IVAs, which
tend to represent only topology of the environmanimemorise locations of objects
that never or only rarely change their positions.

The experiments showed that searching rules eneagidy and the searching for
objects is effective and comparable to the seagckionducted by a human. This
means that the model can be integrated with othmtefs, e.g. for the purposes of
virtual companions or RPG agents. We do not exaegtproblem regarding the 3D
scaling. The “take-home message” for researchatgeactitioners willing to use this
network is: a) the network works best in middlessizenvironments when the
heuristic of looking first at the place of last ao@nce of an object is added, b) it
would help if the parameters are adjusted for tinpgses of a particular application;
there is no miraculous setting that would work well each and every case, ¢) it is
better to scale the weights of the links to abstpdaces based on sizes of places not
their level of abstraction, d) scaling the modelae environments, such as a city,
would demand augmentation with a mechanism soltragelling salesman problem
with uncertainties. This is our work in progressh€&@ work in progress includes
learning the space abstractions automatically dad@ing the learning rule.
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Supplementary materials:

ENV . STM e —
objects | tasks Task | 023 C
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Attention Filter 1on
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a subgoal> - I
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<remember : mechanism P
location of : = ;
an object: <remember \ [ i
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________________________

Fig. S1. The overall architecture of our agent.eNtbe perception—action cycle. ENV — the
environment. PF — objects of the visual short-teremory (STM). MF — objects retrieved
from the LTSM. TF — tasks field: tasks the agersgdsomplishing at the moment. LTEM — the
autobiographic memory. LTSM — the memory being stigated in the main paper.
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Fig. S2. The house in which the experiments wenelgoted: both on the agent as well as on
the human subjects.

Process Objects and quantity | Timemin) Time of execution
Snacking 8xGrapes, 2xBowl 15| o -
Watering 4xCannikin, 12xRose, 3xWater 10 i
Woodcutting 2xAxe, 12xWood 120 |
Cooking & 6xMeat, 2xPot, 6xDinner Set, 180
eating 3xKnife —
Conjuring 4xAmulet 30 -
Lightening 2xTorch 10 a
Reading 3xBook, 1xGlasses 60 — —
Repairing 4xPipe, 8xScrewdriver, 120

8xWrench
Drinking 1xGlass, 2xMilk 5 .
Sewing 3xLinen, 10xThread 120
Smoking 1xTobacco Pipe 10 i g —
Combing 1xComb 1|

Tab. S1. Example of one daily plan. Tasks, theirses, duration, and time of execution are

depicted (the x-axis denotes time).
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searches

-5 0 5 10 15
a

Fig. S3. (colour figure) The effectiveness for tdase “1/1/1x30%™ “90%.” Left: Exp. X1
(b=2). Right: Heat map for Exp. X2 (parametarandb).

Human 1 | Human 2 | Human 3 Human 4 | X3(a=3.2,b=8) X3(3.2,8)+ Rule
L1 |F F F F F F
L1 L1, F L1, F L1, F L1, F L1, F L1, F
L1 [LL,F L1, F L1, F L1, F L1, F L1, F
L1 L1, F L1, F L1, F L1, F L1, F L1, F
L1 [LL,F L1, F L1, F L1, F L1, F L1, F
12 L1, F L1, F L1, F L1, F L1, F L1, F
L1 12, L1, F 12, L1, F 12,L1, F L1, F L1, 12, F 12,1, F
L1 [LL,F L1, F L1, F L1, F L1, 12, F L1, 12, F
L1 L1, F L1, F L1, F L1, F L1, 12, F L1, 12, F
L1 [L1,F L1, F L1, F L1, F L1, 12, F L1, 12, F
J2 L1, F L1, F L1, F L1, F L1, 12, F L1, 12, F
K1 [J2,L1,F J2,L1, F L1, F L1, F L1,J2,12, F J21.1, 12, F
J3 | K1,J32,L1F| K1,L1,J2H K1,LL F L1, F L1,K1,J2, 12, F K1L1,J2, 12, F
J2 J3,J2, L1, F J3,J2,L1, F J3, L1, F J3,L1, F|L1,J3,J2 K1, F J3,1,J2, K1, F
J2 |J2,L1,F J2,J3,L1,B J2,L1,F J2,L1,F[L1,J2,J3, KL F J2,1,J3, KL, F
J3 J2, L1, F J2, L1, F J2,L1, F J2,L1,F | L1 J2, 33, K1, F J2,1, 33, K1, F
J2 33,32, F J3,J2,L1,F J3,J2,LL F J3,J2,L11A,J2,J3, K1, F J3,1,J2, KL, F
N1 J2,J3, F J2,J3, F J2,J3, F J2,J3, L1,1R, J2,J3, K1, F J2,1,J3, K1, F
J2 N1,J2,J3,F N1,J2,J3, f N1,J2,J3,F N1, J2, J3, [F1, J2, J3, N1, K1,F| N1,L1,J2, J3, K1, F
K1 [J2,J3F J2,J3,F J2,J3,F J2,33,F| L1,J2,33, N1, KL,F[ J2,1,J3,N1,K1, F
J3 K1,J2,J3,  K1,J2,J3, F| K1,J2,J3, F K1, J2, J3} E1, K1, J2, J3, N1,F| KI.1,J2,J3,N1, F
J2 33,32, F J2,J3,F J3,J2, F J2,33, F| L1, J2,J3, K1, N1,F[ J3,L1, J2, K1, N1, F
J2 J2,J3, F J2,J3, F J2,J3, F J2,J3, F[ L1, J2,J3, K1, N1,F J21,J2, J3, K1, N1,F
J3  |J2,33,F J2,J3,F J2,J3,F J2,J3,F| L1,J2,J3, K1, F J3,1,J2,J3,KL, F
J3 |J3,32,F J3,J2, F J3,J2, F J3,J2,F| L1,J2,J3, KL, F J3,1,J2, KL, F
K1 J3,J2, F J3,J2, F J3,J2, F J3,J2, F[ L1, J2,J3, K1, F J3,1,J2, K1, F
J4 | K1,33,J2,HK1,J3J2,F| K1,J2,J3,F K1,J3J2,|R1,J2,J3, KL, F K1,1,J2,J3, F
J3 J4,J33,J2,F| J3,J2, F J2,J3,J4, KL, F J42)8,J L1,J2,J3,K1, F J4,1,J2, J3, K1, F
J2 33,32, F J3,J2, F J3,J2,K1, F J3,J2, F J20%1, F J3,J201, KL, F
K1 J3,J2, K1, H J3,J2, F J2,J3, K1, F J2,J3, F J2LI3K1, F J2,J3L1, K1, F

Tab. S2. Example of the model’s searching rulespaoed to those of humans for the case

“90% [L1]" - “1/2x30% [J2, J3, K1].” The step of switch is hiiginted. Notice, how long

does it take to the model to abandon the L1 coetdinthe 29 part of the experiment (bold
italic). The course of this experiment is also dethin Supplementary video 1.



