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Abstract: Many contemporary computer games can be described as dynamic real-time simulations inhabited by 
autonomous intelligent virtual agents (IVAs) where most of the environmental structure is immutable and 
navigating through the environment is one of the most common activities. Though controlling the behaviour 
of such agents seems perfectly suited for action planning techniques, planning is not widely adopted in 
existing games. This paper contributes to discussion whether the current academic planning technology is 
ready for integration to existing games and under which conditions. The paper compares reactive techniques 
to classical planning in handling the action selection problem for IVAs in game-like environments. Several 
existing classical planners that occupied top positions in the International Planning Competition were 
connected to the virtual environment of Unreal Development Kit via the Pogamut platform. Performance of 
IVAs employing those planners and IVAs with reactive architecture was measured on a class of game-
inspired maze-like test environments under different levels of external interference. It was shown that agents 
employing classical planning techniques outperform reactive agents if the size of the planning problem is 
small or if the environment changes are either hostile to the agent or not very frequent. 

1 INTRODUCTION 

Dynamic, real-time and continuous environments 
pose a big challenge for the design of intelligent 
virtual agents (IVAs). First person role-playing 
(RPG) and shooter (FPS) games are canonical 
examples of a subclass of such environments that are 
motion-intensive while offering the agent only 
limited options to interact with the environment and 
with other agents. Many serious games also fit this 
description. 

One of the fundamental problems faced by an 
IVA in such an environment is the action selection 
problem – what to do next? In computer games, the 
prevalent approach is using reactive techniques, the 
most common being behaviour trees (Champandard, 
2007) and finite state machines (FSMs) (Fu and 
Houlette-Stottler, 2004). Although the reactive 
techniques handle the dynamic aspects of the world 
well, they have some limitations: their plans are 
fixed and cannot be altered during runtime and they 
require a large amount of authoring work as the 
world gets more complex. There is however a 
complementary approach to solve the action 
selection problem – AI planning, which has a history 

of over 40 years of academic research. Planning 
could theoretically allow IVAs to act smarter while 
easing the design burden. In this paper we focus on 
the longest studied approach – classical planning as 
solved by STRIPS (Fikes and Nilsson, 1971). 

Unfortunately, the gap between game AI and 
planning communities is still huge and only a few 
attempts were made to employ classical planning for 
controlling IVAs in dynamic environments. There 
are also numerous issues to be addressed for 
successful application of planning in complex 
domains (Pollack and Horty, 1999). While planning 
implementations in FPS-like domains do exist, we 
are not aware of any rigorous comparison of 
classical planning to reactive techniques in such 
environments.  

The goal of this paper is to determine the 
conditions that allow AI planning to outperform 
reactive techniques in controlling IVAs in game-like 
environments. This is done by designing a class of 
agent centric game-like motion-intensive test 
environments that allow a smooth adjustment of 
their dynamicity. Performance of agents (measured 
by the solution time and the number of solved 
problems) with reactive approach and agents 



 

controlled by planners is then compared under 
different levels of external interference.  

The rest of the paper starts with discussion of 
related research. Afterwards the actual experimental 
setup is introduced. Then the experimental results 
are presented and the final part discusses the results 
and points out possible future research. 

2 RELATED WORKS 

To our knowledge, the only published papers on 
planning implementation in a commercial game 
describe the work of Orkin on F.E.A.R. and the 
GOAP system (Orkin, 2006) that dates back to 
2004-2006. GOAP is a planning system derived 
from STRIPS, but enhanced to better suite game 
needs. GOAP was reportedly used in other games 
(Orkin, 2012) and other planning systems for games 
have likely been created. However, no research 
papers have been published yet. 

Vassos and Papakonstantinou (2011) tested the 
BlackBox (Kautz and Selman, 1998) and Fast 
Forward (Hoffmann and Nebel, 2001) planners on a 
domain representing an FPS game. They show that 
the planners are able to plan in sub-second time for 
reasonably sized problems. However, the planning 
component is not connected to any real simulation.   

Thompson and Levine (2009) compared a 
performance of an agent employing a classical 
planner on several runs in static and dynamic 
versions of the same environment. The paper is 
however focused on the agent architecture and the 
performance comparison is very brief. 

Long (2007) run a set of matches in Unreal 
Tournament between bots controlled by FSMs and 
bots controlled with GOAP. Bots controlled with 
GOAP win the matches more often, but no fine-
grained statistical analysis has been done. 

We know no other performance comparison of 
classical planning techniques in game-like domains. 
There are however other related papers where 
different planning approaches are included.  

Two of the alternative approaches to classical 
planning are the hierarchical task networks (HTN) 
formalism and Markov decision processes (MDP). 
The reader is referred to works by Hawes (2004) and 
by Hoang, Lee-Urban, and Muñoz-Avila (2005) for 
evaluations of HTN in game-like environments and 
to works by Balla all Fern (2009) and Nguyen et al. 
(2011) for MDP evaluations.  

Overall, the aforementioned papers show that 
planning in dynamic real-time environments is 
feasible and performs well against various baselines, 

but the papers either do not provide a rigorous 
comparison or do not compare planners directly to 
reactive techniques. This paper addresses this gap by 
deep comparison of classical and reactive planners. 

3 EXPERIMENTAL DESIGN 

Comparing reactive techniques to planning is a 
multi-faceted problem and there are many possible 
design options. Since the area of planning in 
dynamic game-like domains is not well studied, it is 
important to focus on a well-defined problem with a 
limited number of parameters first. The dynamicity 
of environment was chosen as the most important 
factor for this paper, while all the other factors were 
either left out completely or kept as simple as 
possible. Still there are many ways how dynamicity 
may be achieved. Thus it may be useful to 
investigate the nature of dynamicity present in 
games first. 

In most game-like environments, the changes are 
continuous while planning, as other symbolic AI 
approaches, is discrete by nature. A natural way to 
discretize the dynamics is to consider only 
“important” changes, i.e., the changes that would 
affect a chosen discrete representation of the world. 
On a very abstract level, discrete dynamics may be 
considered as interference to the initially static state 
of the (symbolic) world. Interference may be 
broadly categorized with three general parameters: 
• delay – mean delay between two successive 

changes; 
• impact – the scope of the impact of a single 

change to the state of the environment; and 
• attitude – whether hostile or friendly changes 

are dominant. The hostile changes interfere with 
agent’s goals, while the friendly changes open 
new possibilities for the agent to reach its goals.  

Table 1: Comparison of game situations by their 
interference profile. 

Situation Delay Impact Attitude 

FPS shootout 0.5 - 2s Small Hostile 

Quest in a RPG, no combat > 5s Medium Balanced 

Getting food in The Sims 1 – 5s Small Friendly 

Navigating through 
a spaceship falling apart 

1 – 3s  Large Hostile 

Table 1 summarizes a few game situations with 
respect to the above parameters. However the reader 
should keep in mind that such summary necessarily 
involves a large amount of subjective interpretation 
and therefore is by no way definitive. 



 

It is beneficial if the test environment covers the 
complete spectrum of interference parameters, 
because such an environment may be considered as 
an abstract model of a whole class of games. While 
most of the previous work in this area focused on 
performing matches between two classes of agents, 
we let the agents in our work to solve a common 
problem individually. This should mitigate the 
influence of implementation details of the agents on 
overall result trends. It is also important that the 
problem is not overly complex, so that there is not 
much room for improvement of reactive techniques 
by fine-tuning of the reactive plans by hand.  

To keep the focus area small, we expect the 
world to be fully observable and the actions 
available to the agent to be deterministic.  

3.1 Test Environment 

The proposed game environment consists of rooms 
on a grid that are connected by corridors. There is a 
door in the middle of each corridor. On both ends of 
the corridor, there is a button. A button may open 
one or more doors and/or close one or more doors all 
over the map. Initially, all doors are closed. The 
agent starts at a predefined room and has a goal 
room to reach. The agent is aware of all effects of all 
buttons. See Figure 1 for an example scenario in 
such an environment. The shortest solution to go 
from A1 to C2 is to: 1) Push the east button at A1. 2) 
Go to B1. 3) Push the west button at B1. 4) Go to A2 
(through A1). 5) Push the north button at A2. 6) Go 
to C1 (through A1 and B1). 7) Push the west button 
at C1. 8) Go to C2 (through B1 and B2), which is 
the goal, 

 

Figure 1: Example of a map. 

Note that while this map is very small, it 
demonstrates that the problem at hand cannot be 
solved in the most straightforward way – the 
solution requires the agent to move away from the 
goal room twice. Also there is a dead end: if the 

agent performs Steps 1 – 4 and then pushes the east 
button at A2 to get to B2, he traps himself and is no 
longer able to reach the goal. 

An easy and efficient way for introducing 
interference into the environment is to repeatedly 
choose a subset of doors at random and alter their 
state. The interference parameters are then 
implemented in a straightforward way: the impact is 
the fraction of the total door count that is affected 
(on average) by a single interference. The attitude is 
represented by the friendliness parameter, which is 
the probability that a single door is set to open state 
when it was chosen for interference.  

3.2 Agent action selection 

The agents have only two classes of actions to 
choose: move to an adjacent room and push a button 
in the current room. The details of execution of the 
actions are delegated to an abstract interface to the 
virtual world, which is the same for all agents. 

Apart from the main action selection mechanism, 
there are two kinds of planning heuristics available 
to the agents: 

(H1) If there is a clear path to the goal location, then 
follow that path. 

(H2) If there is a button in the same room as the 
agent that will open an unopened door and will 
not close any open door, then push the button. 

Heuristic actions have a higher priority than the 
agent logic – if the conditions are met, they are 
always triggered. 

Preliminary experiments have shown that 
heuristic H1 is beneficial for all agents, while H2 is 
beneficial for most tested reactive agents but its 
effect on the planning agent performance is 
questionable and the planning agents were not 
employed with it in the consecutive tests. To 
implement heuristics and reactive behaviour, agents 
have a pathfinding module. From the experiment 
point of view the total time spent in pathfinding was 
negligible. 

3.3 Agent types 

Initially, three reactive agent types were examined 
with different heuristics. After a set of preliminary 
experiments one instance of each type was chosen 
for the final comparison. Two were chosen for their 
high performance and one was chosen as a baseline: 
• Inactive – the agent performs only actions 

triggered by heuristic H1 (baseline agent). 
• Random – in every round, the agent chooses a 

reachable button at random moves to its 



 

location and pushes it. The agent uses both 
heuristics H1 and H2. 

• Greedy – if it is possible to move to a place 
closer to the goal, the agent moves there. The 
agent does not push any buttons, unless it is a 
heuristic action; both heuristics are used. 

Note that if there is interference and it is not 
extremely unfriendly, the Greedy agent is likely to 
eventually succeed in solving a map if the agent is 
given enough time. However it is also likely that this 
agent will produce “plans” far away from the 
theoretical optimum.  

The planning agent translates the actual state of 
the world into the PDDL modelling language (Fox 
and Long, 2003) and sends it to the planner. Until 
the planner responds, the agent initiates no action. 
When the plan is received, it is executed sequentially 
and it is continuously checked for validity. If the 
check fails or a heuristic action is triggered or if an 
action fails to execute, the current plan is discarded 
and the planner is called to yield a new one. All 
planning agents used H1 as their only heuristic. 

3.4 Chosen Planners 

Out of the four fastest planners at the International 
Planning Competition (IPC) 2011 three were based 
on the Fast Downward platform (Helmert, 2006), 
including the winner. The winning planner – LAMA 
2011 (Richter et al., 2011) was chosen to represent 
this platform. The second fastest planner at IPC 
2011 was the Probe (Lipovetzky and Geffner, 2011) 
and so it was chosen too. Apart from the two very 
recent planners, three older planners, which have 
earned reasonable respect in the past years, were 
chosen. The first is SGPlan 6 (Hsu and Wah, 2008), 
which won IPC 2006. The Fast Forward (FF) 
planner (Hoffmann and Nebel, 2001), a top 
performer at IPC 2002, was also chosen. All four 
aforementioned planners are based on forward state 
space search. The last included planner is the 
BlackBox (BB) (Kautz and Selman, 1998) that 
constructs a planning graph for the problem and 
converts it into a SAT problem. 

3.5 Technical Details 

The experiments were carried out in the virtual 
environment of Unreal Development Kit (UDK) 
(Epic, 2012). The agents were written in Java using 
the Pogamut platform (Gemrot et al., 2009). Moving 
from one room to an adjacent one takes 
approximately one second, while approaching and 
pushing a button takes about 200ms. 

All the final experiments were run on a dedicated 
computing server with two AMD Opteron 2431 
processors (6 cores each, 2.4GHz, 64bit) and 32GB 
RAM, running CentOS (Linux core version 2.6). 
Five experiments at a time were run. This setup did 
allow each planner instance and each environment 
simulation to have its own core to run on and left a 
big margin of free RAM so that the experiments did 
not compete for resources. 

3.6 Experiment Scale 

Since the simulations run in real-time, the 
experiments are very time consuming, especially for 
large maps (up to 15 minutes per run). Therefore the 
number of maps was limited. Table 2 summarizes 
the four map types used. The number of actions 
refers to the number of grounded “push button” and 
“move to adjacent room” actions. The actual maps 
were generated at random. 

The interference parameters were set based on 
the estimates from Table 1 and observations from 
the preliminary experiments. The delay values were 
chosen as 0.5, 1.5 and 3 seconds. The impact 
(fraction of the doors changed at once) values were 
0.05, 0.1 and 0.2 and the friendliness (probability a 
door opens) values were 0, 0.15, 0.3, 0.5 and 0.7. 
More focus was kept on hostile environments since 
reactive agents clearly dominated with friendliness 
0.3 and higher. For each combination of map, agent, 
and interference parameters three experiments were 
run with different random seeds for interferences. 
This led to a total of 29 295 experimental runs 
taking over 50 days of computing time. 

Table 2: Map classes and domain sizes (grounded actions) 

Map class/size Number of 
maps 

Domain size 
(atoms/actions) 

Small (5××××5) 9 65 / 90 - 160 

Medium (7××××7) 9 133 / 190 - 336 

Large (10××××10) 9 280 / 390 - 720 

13××××13 4 481 / 650 - 1248 

4 RESULTS 

The primary metric is the success rate. It measures 
whether the agent managed to reach the goal before 
a specified timeout elapsed. The timeout was set 
(separately for each map size) to 5 times the time 
needed by all planning agents on average to reach 
the goal without interference. Statistical results for 
the success rates are assessed using multiple 



 

comparisons of means with Tukey contrasts 
(Hothorn et al., 2008) over an ANOVA fit with a 
first order generalized linear model. 

In the preliminary runs, the LAMA 2011 planner 
performed very poorly (worse than Random and 
only slightly better than Inactive). The main reason 
is that the Fast Downward platform carries out a 
quite costly translation of the PDDL input to 
different formalism before starting the actual 
planning. The pre-processing of our domains took 
from several hundred milliseconds to several 
seconds, which is a big performance hit, considering 
the interference delays. To save computing time, 
LAMA 2011 was removed from further 
experiments. 

4.1 Overall performance 

In total results (see Table 3) FF, BB, SGPlan 6 (SG) 
and Greedy are indistinguishable (all p > 0.88), 
while all the other differences are significant (all 
p < 10-3). On small maps, differences among 
planners are not significant, while all other 
differences are (all p < 10-3). Although the actual 
results differ, similar p-values hold for medium and 
large maps except that Probe–BB difference 
becomes significant (p < 10-3). On 13x13 maps, 
Greedy is significantly better than the rest (all 
p < 10-3) and SG with FF are better than Inactive 
(p < 10-3 and p = 0.01 respectively). Other 
differences are not significant. The Inactive baseline 
bot showed that in many cases no smart acting is 
required to complete a map. 

While the success rate of planning agents 
decreases with the growing map size, the success 
rate of Greedy and Inactive behaves differently. This 
is due to the different timeout values – in small, 
medium and large maps Inactive and Greedy agent 
reached the goal shortly before the respective 
timeout in many runs, indicating that the success rate 
is likely to grow if they were given more time. For 
13×13 maps, most of the runs finished long before 
the timeout. 

An important metric is also the time the agent 
spent solving the problem – the solution time. The 
solution time is considered only for the runs where 
the agent actually reached the goal. To analyse the 
solution time, a linear model is fitted to the data with 
solution time log transformed to be closer to normal 
distribution, and Tukey’s HSD test (McKillup, 
2006) is performed to reveal significant differences 
between agent pairs. 

Greedy performed clearly the best among the 
reactive agents. The results of Greedy and planning 

bots are presented in Table 4. On small maps, all 
differences are significant (all p < 10-3) except for 
SG-BB (p = 0.2) and Probe–FF (p = 0.99). On both 
the large and the medium maps, all planners beat 
Greedy (all p < 10-5), while the only significant 
difference between the planners is Probe–BB 
(p < 0.01, other p > 0.14). On 13×13 maps, all 
differences except for FF–SG and BB–Greedy are 
significant (all p < 2·10-5). 

Table 3: Average success rates over all experiment runs. 
Best results in each row are highlighted. 

Map BB FF Probe SG Greedy Rand Inactive 

Small 0.80 0.80 0.76 0.80 0.61 0.64 0.25 
Medium 0.69 0.66 0.63 0.67 0.57 0.52 0.30 
Large 0.51 0.48 0.46 0.48 0.56 0.40 0.32 
13××××13 0.40 0.43 0.42 0.44 0.68 0.42 0.38 

Total 0.60 0.59 0.57 0.60 0.61 0.50 0.31 

Table 4: Average solution times [s] with std. deviation (in 
brackets). Best results in each row are highlighted. 

Map  BB FF Probe SG Greedy 

Small 23.3 (13) 28.2 (19) 28.1 (15) 24.7 (14) 32.4 (19) 

Medium 42.7 (27) 46.0 (30) 50.2 (31) 46.2 (30) 58.6 (38) 

Large 72.1 (46) 75.7 (49) 85.6 (51) 78.5 (49) 96.5 (58) 

13××××13 214 (188) 167 (144) 206 (167) 181 (172) 253 (218) 

While the results for solution time are favourable 
to the planners, they should be interpreted with 
caution, since the number of successful runs is very 
different among the agents (see Table 3). Thus the 
longest times – the ones where the agent failed to 
reach the goal – are effectively not included.  

For reactive agents, the time spent deliberating is 
almost negligible – less than 0.2% of the solution 
time, the planning agents however spent on average 
from 25% to 33% of solution time deliberating. SG 
showed the least growth of time for single planning 
execution with the growing map size.  

4.2 Performance and Dynamicity 

While all the dynamicity parameters have 
statistically significant impact on the agent 
performance (for both metrics), the interference 
impact has smaller effect than the interference delay. 
This is most likely due to the fact, that the effect of a 
change in interference impact is much more 
dependent on the friendliness setting. There is 
indeed a high interaction factor between the two. 
Interestingly, the effect of the interference impact is 
least visible on the reactive agents.  

It was already noted that concerning the success 
rate, the Greedy bot performed the best on average. 



 

                        

Figure 2: Success rates of SGPlan and Greedy bots in different dynamic conditions. The dotted lines show a plane 
fitted to the results of the Inactive bot. Planes are fitted to the averaged results and they are intended only as a visual 
cue. Gray circles mark points where the respective agent is significantly better than the other (all p < 0.01). 

However, in hostile environments (friendliness = 0) 
and in less dynamic environments (delay = 3s), the 
planners prevailed. 

Figure 2 shows a plane fitted through the average 
success rates of SG and Greedy bots, depending on 
the environment friendliness and the interference 
delay. It shows the principal difference between the 
reactive and planning approaches in handling 
dynamicity. While the success rate of the Greedy 
agent grows with shorter interference delays, the 
success rate of SG decreases quite steadily. There is 
a minor exception to this rule at the friendliness 
level 0, because in such a setting the environment 
dynamics cannot bring the reactive agent any new 
opportunity. Note that the Inactive agent has similar 
properties to Greedy, while Rand is similar to 
planning agents. 

5 CONCLUSIONS  

The most important conclusion is that in small or 
hostile or less dynamic domains, the contemporary 
planning algorithms are fast enough to provide 
advantage over the reactive approaches. The 
perceived limits of real-time applicability (planning 
faster than 1s) of contemporary planners are 
somewhere above one hundred atoms and two 
hundred ground actions. 

While it is still improbable that AI in a 
commercial game would be allowed to consume a 
whole processor core, it is likely that given today’s 
gaming devices, solving problems with tens of 
predicates and actions in real-time will be easily 
manageable. Performance could be improved by a 
tighter integration of the planning component. 

Moreover, all tested planners return only optimal 
(shortest) plans. In most game scenarios, suboptimal 
plans would be sufficient which could greatly speed 
the search process up.  

On the other hand, the results also explain why 
planning is not the first choice in IVA design. 
Unless the environment is either changing slowly or 
in an extremely hostile way, even a simple reactive 
approach might prove reasonably efficient. While 
planning is most effective for smaller domains, it is 
also easier to write specialized reactive agents for 
such domains. This reduces the possible gain from 
implementing a planning algorithm. It is also useful 
to know that the planner performance depends more 
on the interference delay than on the interference 
impact. 

There are nevertheless some limitations to the 
applicability of results of this paper to the general 
case. Despite all measures taken to the contrary, the 
environment is still quite specific. The design of 
interferences made waiting in front of a door until it 
opens by chance – which is an important part of 
Greedy agent operation – a viable choice. But this is 
not a typical feature of a game scenario. It is also 
possible that the simplicity of the environment (only 
two kinds of actions, simple goals) affected the 
results in some major way.  

An important side part of work on this paper was 
to connect classical planners to Java and the 
Pogamut platform with one universal API through 
the development of an open source library 
Planning4J (Černý, 2012b). We hope that this tool 
will help other researchers cross the gap between 
planning and IVAs. 

Multiple possibilities for future research are 
available. It would be interesting to see if the given 



 

results scale to more extreme parameter values, 
larger maps and more complex domains.  

Another research direction is to tightly integrate 
the planner with the agent. Interleaving planning and 
execution as well as meta-reasoning about the 
planning process and explicit handling of 
uncertainty in the world might bring a significant 
performance boost. 

A more detailed discussion of the experiment 
design and complete results are described in author`s 
thesis (Černý, 2012). 
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