
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Rudolf Kadlec

Evoluce chováńı inteligentńıch agent̊u v
poč́ıtačových hrách

Evolution of intelligent agent behaviour in
computer games

Department of Software Engineering

Supervisor: RNDr. Petra Vidnerová, PhD.
Institute of Computer Science,
Academy of Sciences of the Czech Republic

Study program: Computer Science, Theoretical Computer Science

2008

Acknowledgment

I would like to thank to my family, supervisor Petra, Pogamut team, all people
behind Java, R, Graphviz, Inkscape and Latex. This work was supported by the
grant GA UK 1053/2007/A-INF/MFF.

I declare that I have written this thesis by myself and that I have used only the
cited resources. I agree with making this thesis public.

In Prague Rudolf Kadlec

2

On various places in this thesis there are cited web pages and blog entries.
The Internet is a living place, millions of new pages are being published every
day and others are disappearing. Fortunately there are services that are trying to
preserve this wealth of information for future generations. Hence if some of the
referenced pages will be unavailable by the time you are reading this thesis, try
using services like the Internet Archive1 or the Google Archive2 or some similar
service available.

1http://www.archive.org
2Available through the ”Archive” link in the search results at www.google.com

3

Contents

1 Introduction 7

1.1 Artificial Intelligence and Computer Games 7

1.2 Possible use of genetic algorithms in games 9

1.3 Structure of the Thesis . 11

2 First Person Shooters 12

3 Related work - use of GA in FPS 15

4 Methods Used 17

4.1 Evolutionary Algorithms . 17

4.1.1 Selection . 19

4.1.2 Crossover . 20

4.1.3 Mutation . 21

4.1.4 Extensions . 21

4.2 Genetic Programming . 21

4.2.1 Crossover and mutation 22

4.2.2 Random function generation 22

4.3 Artificial Neural Networks . 24

4.3.1 Evolution of Neural Networks and NEAT algorithm 25

5 Bot Architectures 27

5.1 Finite State Machines . 29

5.2 Behaviour trees . 30

4

6 Proposed Evolutionary Bot’s Architectures 32

6.1 Functional architecture - high level ASM 32

6.1.1 Example . 33

6.2 Neural networks - dodging behaviour 34

7 Implementation 36

7.1 Interfacing UT with Pogamut . 36

7.2 Evolutionary frameworks . 37

7.3 Functional architecture . 37

8 Experiments 39

8.1 Potential Pitfalls . 39

8.2 Deathmatch . 41

8.3 Capture The Flag . 43

8.3.1 Coevolution . 44

8.4 Dodging . 47

8.4.1 Experiment Setup . 47

8.4.2 First Model . 48

8.4.3 Second Model . 51

8.5 Discussion . 55

9 Future Work 62

10 Conclusion 64

Bibliography . 67

A List of functions 71

A.1 Behaviour Functions . 71

A.2 Sensory Functions - general . 72

A.3 Functions for CTF . 73

A.4 Mathematical Functions . 74

B CD-ROM 75

5

Název práce: Evoluce chováńı inteligentńıch agent̊u v poč́ıtačových hrách
Autor: Bc. Rudolf Kadlec
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı bakalářské práce: RNDr. Petra Vidnerová, PhD.
E-mail vedoućıho: petra@cs.cas.cz

Abstrakt: V této práci je studována evoluce vysoko i ńızkoúrovňového chováńı
agent̊u v prostřed́ı komerčńı hry Unreal Tournament 2004. Pro optimalizaci
vysokoúrovňového chováńı v herńıch módech Deathmatch a Capture the Flag byla
navrhnuta a implementována nová funkcionálńı architektura umožňuj́ıćı popis
hráčova chováńı. Metody genetického programováńı byly použity pro optima-
lizaci této architektury. Práce představuje experimenty se standartńı evolućı i
s koevolućı. V druhé sérii experiment̊u byl použit algoritms NEAT pro evoluci
ńızkoúrovňového chováńı pro vyhýbáńı se střelám (takzvaný “dodging”).

Kĺıčová slova: poč́ıtačové hry, evolučńı algoritmy, genetické programováńı, first
person shooter, NEAT

Title: Evolution of intelligent agent behaviour in computer games
Author: Bc. Rudolf Kadlec
Author’s e-mail address: rudolf.kadlec@gmail.com
Department: Department of Software and Computer Science Education
Supervisor: RNDr. Petra Vidnerová, PhD.
Supervisor’s e-mail address: petra@cs.cas.cz

Abstract: In the present work we study evolution of both high-level and low-level
behaviour of agents in the environment of the commercial game Unreal Tourna-
ment 2004. For optimization of high-level behaviour in Deathmatch and Capture
the Flag game modes a new functional architecture for description of player’s be-
haviour was designed and implemented. Then a genetic programming technique
was used to optimise it. Experiments with both standard evolution schema and
with coevolution are presented. In second series of experiments the NEAT algo-
rithm was used to evolve low-level missile avoidance behaviour (so called “dodg-
ing”).

Keywords: computer games, evolutionary algorithms, genetic programming, first
person shooter, NEAT

6

Chapter 1

Introduction

The goal of this thesis is to propose, implement and test models of bot’s behaviour
suitable for evolutionary optimization that would eventualy simplify the process
of bot’s creation. Models of both high-level and low-level behaviour were imple-
mented and tested in the environment of commercial game Unreal Tournament
2004.

This chapter introduces current mainstream computer games and discusses the
possible use of artificial intelligence methods in these games. Finally the structure
of the rest of this work is outlined.

1.1 Artificial Intelligence and Computer Games

The connection between community of academic AI researchers and computer
game developers has become strong in the recent years. Cooperation between
these two groups is beneficial for both. The game developers are aware of raising
demand for improved AI in their games. On the other hand researchers need en-
vironments where they can test their models. These environments has to provide
rich set of maps with different types of items, they also should be easily customis-
able and extensible. Mature game engines are usually extensible by scripting
languages and they are shipped with variety of content creation tools (map ed-
itors, data conversion tools etc.) thus they are a good choice for AI researchers
interested in team strategies and embodied agents.

Different types of games are suitable for inspecting different problems. The
following list covers most of the current main stream games and suggests which
aspects of these games can be interesting for AI researchers.

7

• First person shooters (FPS) — Main objective is to kill as many opponents
as possible. In addition, there are game modes oriented on team cooperation
e.g. Team Deathmatch or Capture The Flag (CTF). In FPS games the player
sees the world through the eyes of his avatar. In a single level there can be up
to tens of virtual characters. The computer controlled characters are usually
called bots or non player characters (NPCs). These games are suitable for
simulation of highly reactive decision making of an individual and also for
strategies of small teams (e.g. coordinated attack of squad of bots [5]). The
models proposed in this thesis were tested in a game of this genre called
Unreal Tournament 2004 1. Other FPS games are e.g. Unreal Tournament
3 2, Quake 4 3 or Doom 3 4

• Role playing games (RPG) — RPGs have strong narrative component thus
they are ideal for experiments with Virtual Storytelling. Popular game of
this genre is Neverwinter Nights 2 5.

• Strategy games — In strategies there are up to thousands of units simu-
lated. The decision making of individuals is not as sophisticated as in the
previous types of games. The emphasis is on high-level coordination of enor-
mous number of units, long term planning, resource management or spatial
reasoning [18].

– Real time strategies (RTS) — The simulation is running in a pseudo
real-time. Since the AI must be highly reactive there is a field for use
of anytime planning algorithms that can offer an approximation of the
solution at any given time of the computation. Well known games of
this genre come form the Command & Conquer 6 series.

– Turn based strategies (TBS) — Between the rounds of simulation of
TBSs there is a variable length delay usually of several seconds. Stan-
dard planning algorithm can be used during this time. Representative
of this genre is for example Civilization 4 7.

1URL: www.unrealtournament.com [11.6.2008]
2URL: www.unrealtournament3.com [11.6.2008]
3URL: http://www.quake4game.com/ [11.6.2008]
4URL: http://www.doom3.com/ [11.6.2008]
5URL: http://www.atari.com/nwn2/UK/index.php [11.6.2008]
6URL: http://www.commandandconquer.com/ [11.6.2008]
7URL: http://www.2kgames.com/civ4/ [11.6.2008]

8

• Sport simulators — The most popular games of this genre are team sports
simulations (e.g. NHL, FIFA, NBA series 8). The game engines can be used
for gameplay analysis and sweet spot detection [30].

• Race car and Flight simulators — the common property of these simulators
is complicated physic model driving the movement of vehicles. Neural net-
works and similar machine learning techniques can be used as the underling
model for controlling these vehicles [23, 20].

There is a strong contrast between techniques used in the gaming industry
and by researchers. Most popular techniques used in the industry are finite state
machines, behaviour trees and in last years planning algorithms. On the other
hand researchers are mostly concerned with neural networks, genetic algorithms
or machine learning methods, but these methods are still marginal in commercial
games 9.

1.2 Possible use of genetic algorithms in games

One can identify at least two domains, where using genetic optimization of bot’s
behaviour might be beneficial for game development. Firstly, the whole behaviour
or just its part (e.g. obstacle avoidance) may be evolved and shipped with the
game. Secondly, evolved bots may help to improve the game design during the
testing.

The former scenario corresponds to the ideal genetic optimization use case:
“specify the goal in a fitness function and let the evolution find the best solu-
tion for you”. However, there can be found only a few examples of this ap-
proach in current commercial computer games (for example computer drivers in
the IndyCarTMSeries10).

Games must be in the first place entertaining for the player. This implies that
the opponents must be believable, and their abilities must be balanced compared
to the human player. Players do not like to play against undefeatable opponents
as well as against opponents that they always defeat. In this case the criterion of

8Official homepages of these series can be found on http://www.easports.com/ [11.6.2008]
9Rigor data are lacking but you can read this informal survey

(http://aigamedev.com/discussion/little-used-tools) for list of techniques most commonly
used.

10Codemasters press release,
http://www.codemasters.co.uk/press/index.php?showarticle=3149

9

optimality is a “fun factor”, i.e. how much attractive the bot is for human players
to play with. Capturing this criterion in a fitness function is not a trivial task,
therefore this effort is not always successful.

In the latter scenario, genetically optimized bots are used in the phase of game
design testing. There are many aspects of the game design that influence the way
in which players will play the game. The task of a game designer is to keep the
possible ways of achieving success in balance.

In FPS games the optimal behaviour of both the computer controlled bot and
the human player is determined mainly by:

• game rules

– properties of weapons and items in the map

– mode of the game (e.g. Deathmatch, Capture the Flag as the most
common)

– physics

• map of the level — maze, open space, etc.

• opponents — their skills and abilities

All these components must be chosen carefully with respect to each other. For
each combination of these properties there might be different optimal behaviour.
The question is whether this is the behaviour that the game designers intended.
In the current work flow this property is tested by human players. We think that
at least part of their job can be automatized and genetically optimized bots can be
utilized for this purpose. The advantage of solutions found by genetic algorithms
is that they are constrained only by the game rules and the fitness function, not
by “common sense” that shapes humans’ reasoning. Therefore genetic algorithms
are able to exploit unintended features of the environment. If such characteristics
of the environment would be unrevealed during the testing phase, then they can
be fixed and will not appear in the final product. Here, the fitness function
is optimizing the “performance” (how many opponents were killed, etc.). This
category can be formalized by the fitness function much more precisely than the
“fun factor” in the former case.

Time for which the game design is tested by rented testers is negligible com-
pared to the summed time for which is the game played in first weeks after the
release. Thus it is more likely that possible problems will be revealed after the

10

release, which is not desired. Automated testing with evolved bots similar to Unit
Testing from Extreme Programming [3] conduces to a proposal of new work flow,
where the evolved bots are doing a part of the testers’ job:

1. Designers prepare the set of game rules and properties of the environment.

2. Bots are evolved in this environment.

3. Behaviour of the best bots is inspected by human testers. If the bots are
not behaving as the designers expected, it is recommended to reconsider the
game setup and repeat the process.

This approach may reduce the time needed for the testing phase and so designers
will be able to build more complex and better tested worlds in shorter time. How-
ever, there is a long way to achieve this goal. First, methods for bots’ evolution
have to be designed. Second, feasibility of these methods has to be verified by
extensive tests. Work presented in this thesis focuses on the first stage of the
process.

1.3 Structure of the Thesis

The thesis is divided into four main parts. First part (Chapters 1. to 3.) is
an introduction. Chapter 2 describes aspects of the FPS games needed for the
purpose of this thesis. Chapter 3 presents previous research concerning the use of
evolutionary methods in the FPS games.

Second part is theoretical (Chapters 4. to 6.). Chapter 4 overviews the well
known methods from the AI used to control the game bots. Chapter 5 shows how
bots for these games are usually implemented and Chapter 6 sketches the models
of bot’s behaviour proposed and implemented in this thesis.

Third part is practical (Chapters 7. and 8.), Chapter 7 discusses the imple-
mentation issues, Chapter 8 describes the task bots were evolved for, specifies the
architecture of bots in more depth and analyzes their performance.

Fourth part concludes the thesis. Chapter 9 writes about possible future di-
rection of the research in this field. Chapter

Appendix A contains list of functions used in one of the models presented
in Chapter 6. Appendix B is a CD-ROM medium with source code of software
implemented for this thesis and electronic version of this text.

11

Chapter 2

First Person Shooters

In section 1.1 a short overview of popular game types has been given. This section
concentrates on the domain of FPS games, it describes typical environments found
in these games and possible representations of these environments for the game
bots.

In FPS games a human player controls a virtual character situated in hostile
environment and his main objective is to kill as much opponents as possible. Each
character has these properties:

1. Health — Ranges from 0 to 100. When it decreases to 0, then the character
dies.

2. Armor — Ranges from 0 to 100. It acts as extra health. When the character
has armor and is damaged, then first the amount of armor is decreased, the
health level is decreased only after the armor is used up.

3. Weapons — List of weapons that the character has picked up.

4. Ammunition — Weapons need ammunition (ammo) to fire. Different weapons
usually need different type of ammunition.

Amount of health, armor and ammo can be raised by picking appropriate items
in the map (health, armor and ammo packs).

From programmers point of view the 3D representation of the game locations
constructed from triangles is not proper for needs of bot’s decision making and
navigation. Game engines usually provide special data structures for this purpose.

12

1. Navigation graph — all paths in the level are represented by an oriented
graph. The bot is guaranteed to move safely along the edges of this graph.
Navigation through the level can be then transformed to searching a path
in this graph, this can be done by an A* algorithm [2] or its hierarchical
variant. The disadvantage of navigation graph is that it does not provide
any information when the bot is not following the edges. Then a raycasting
sensors has to be used to detect obstacles, dangerous cliffs, etc.

2. Navigation mesh — all walkable surfaces in the map are covered by a mesh
of polygons [25]. Movement inside the polygon is safe. For higher-level path
planning the navigation mesh can be transformed into navigation graph
(polygons are transformed to nodes and edges connect nodes representing
adjacent polygons). This representation removes the main disadvantage of
simple navigation graphs — bots can move freely in the mesh of polygons
instead of only following the edges. There are more variants of this approach,
e.g. circles can be placed on a important junctions and joint tangents of
these circles define safe paths.

Game Unreal Tournament 2004 (UT), which is used as a simulator for exper-
iments in this thesis, uses the navigation graph. Figure 2.1 shows an example of
typical environment in UT.

13

Figure 2.1: Unreal Tournament 2004 screenshot showing a bot firing from a rocket
launcher

14

Chapter 3

Related work - use of GA in FPS

Vast majority of current bots with evolved behaviour fall into one of these cate-
gories according to the freedom in changing their controling program often called
action selection mechanism (ASM):

Models where the whole ASM is evolved. These models are usually
based on neural networks [8] or other offline machine learning algorithms, e.g.
1-NN [21]. They use low level actions (e.g. move forward, look up) and sensory
primitives. For example, both models mentioned above are using raycasting for
sensing the environment. The bot has only a limited notion about the structure
of the environment thus he is unable to navigate over larger distances. Approach
used in these models is inspired by the evolutionary robotics, where sub-symbolic
sensors are the only available sensors.

However, besides this subsymbolic information, computer games also offer high
level symbolic information (e.g. location of all health packs). This allows for
higher level of decision making and thus better performance.

Models where evolution is used only on subproblem of ASM. In these
models the majority of ASM is hardcoded and the evolution is used for optimiza-
tion of selected subproblems, e.g. weapon selection [9, 27, 7, 12]. Models of this
type are more human competitive because the hardcoded ASM mechanism can
take advantage of symbolic information provided by the game engine, including
navigation graph, annotation of navigation points (e.g. angle where to expect the
enemy) or AI scripts prepared by the designers. Evolution is used as a tuning
mechanism for parameterisation of limited aspects of bot’s behaviour.

The first type of models has complete freedom of choice and can produce
new innovative behaviours, however low level actions and navigation based on

15

raycasting handicaps these models compared to the second type. The second
type has already some preprogrammed skeleton of ASM and evolution optimizes
only the subbehaviours.

This work presents models from both categories, first a genetic programming
is used for whole ASM evolution, second a neural network is used to optimize
bot’s movement.

16

Chapter 4

Methods Used

This section describes the algorithms and methods used in construction of our
models of bot’s behaviour. Readers familiar with evolutionary algorithms, genetic
programming, artificial neural networks and the NEAT algorithm could skip this
chapter.

4.1 Evolutionary Algorithms

Evolutionary algorithms fall into the category of stochastic optimization algo-
rithms. They are inspired by the seminal work by Charles Darwin ”On the evo-
lution of species” [10]. Ideas presented by Darwin were later utilized by John
Holland as optimization method in computer science [11], in this context they
are known as evolutionary and genetic algorithms (EAs and GAs).

Evolutionary theory supposes that each individual inherits it’s traits from his
parents. Inherent properties are coded in a structure called genotype. Genotype
is a collection of genes, each gene corresponds to some trait of the individual (e.g.
hair colour). But the sole knowledge of genotype is not sufficient to exactly deter-
mine the perceivable properties of the individual — a phenotype. The phenotype
is influenced by both the genotype and the environment. Some properties (e.g.
height 1) are influenced by the extragenous factors.

1Since the World War 2 the average height of European population is rising due to better
nutrition (the influence of environment) but the genetical predispositions remained probably the
same as centuries ago.

17

Evolution theory describes how the phenotype, through changes to the geno-
type, adapts to the environment. The theory supposes existence of three mecha-
nisms that makes this possible:

• Selection — all species (individuals with similar genotype) are competing in
a race for resources. Individuals better adapted have more offsprings than
the worse adapted. The measure of how well the individual is adapted to
the environment is called its fitness.

• Crossover — offsprings genotype is a mixture of genes of its parents. Crossover
takes place only in sexual reproduction. However some species use asexual
reproduction.

• Mutation — genes can be randomly changed by the external effects (e.g.
by radiation). Mutation has often destructive nature, but sometimes it can
create individuals with advantage over the rest of the population.

Evolutionary algorithms follow the same scheme, only a semantics of some
terms is overridden. The environment specifies the problem to be solved and an
individual is one possible solution to this problem. The fitness is a measure of
how well the solution solves the problem.

Algorithm 1 Evolutionary Algorithm

1: population← createInitialPopulation()
2: while stop-criterion is not met do

3: population← selection(population)
4: population← crossover(population)
5: population← mutation(population)
6: end while

Simple skeleton of EA is shown in Algorithm 4.1. In the first step the initial
population is created. The most common way to achieve this is to create a random
population. Then starts the main loop where the evolution takes the place. The
loop runs until the stop-criterion is met. Common stop-criteria are: required
fitness value of the best individual, computational time elapsed or convergence
of the fitness to assumed bound. In the 3rd step a fitness is computed for all
individuals in the population and the frequency of individuals is altered according
to these values. In the 4th step the individuals are cross-bred. This step takes
place only when a sexual reproduction is used, which is the most common scenario.

18

However when asexual reproduction is used, then this step is skipped. In the last
step the individual are mutated. The crossover and mutation operators are applied
only with some given probability. These probabilities are referred to as mutation
and crossover rates.

The genes can be encoded as either fixed length structures (e.g. n-tuples of
bits, double precision numbers or literals) or as variable length structures (e.g. a
graph topology, programs). Fixed length structures constrain the search space of
all solutions thus making it more likely to find some local optimum, on the other
hand the global optimum can be outside of this prematurely restricted search
space. This is where variable length genes can take an advantage.

In the later sections possible implementations of the genetic operators will be
described and discussed. Together with extensions to the basic evolution algo-
rithm.

4.1.1 Selection

Selection determines how many offspring will the individual have in the next
generation. In general, selection should favour the more fit individuals on the
expense of the least fit as this is one of the basic assumptions of the evolutionary
theory. Possible strategies to selection are:

• Proportional (deterministic) — number of offsprings is proportional to in-
dividual’s fitness fi. There are different strategies how to deal with the
rounding.

• Roulette (stochastic) — let fi be fitness of the i-th individual and N number
of individuals in the generation then the probability pi of the i-th individual
being selected to the next generation is fi/

∑N
i=1 fi. The next generation is

chosen by playing the roulette with probabilities pi N times.

• Tournament — the individuals are drawn into random pairs (or n-tuples).
After the match is played the winner advances to the next generation. This
has to be repeated N times.

The fitness function f can be computed:

• Directly through the objective function — the performance of each individ-
ual is measured by the objective function h, hence f = h.

19

• Rank fitness — if we have total ordering on performances of the individuals
and if we sort them in an ascending order, then the fitness fi of the i-th
individual whose index in the ordered sequence is k is k/

∑N
j=1 j(j + 1),

where N is number of all individuals. The total ordering of individuals
can be obtained through ordering by values of objective function for these
individuals. Alternatively a play-off tournament (e.g. used in tenis) is played
between the individuals. At the begining the individuals are drawn into
random pairs. After the match is played the winner advances to the next
round. The disadvantage of this method is that the individuals are only
partially ordered, the ordering can be augmented to total ordering although
it will not be as accurate as the first alternative (the defeated finalist is
ranked as second but the second best individual is one of those that lost
with the tournament winner and this could happen in the very first round).
The advantage is that only N ∗ log(N) matches has to be played to find the
winner.

4.1.2 Crossover

In sexual reproduction the genes of newborn individuals are combination of their
parents’ genes. Supposed that the genetic information is coded as a linear sequence
of features, then the most simple (and most often used) method of crossover is
one point crossover. One point crossover chooses random point in the gene and
swaps the two parts determined by this point (see Figure 4.1).

One point crossover is a special case of n point crossover where n crossing
points are randomly selected and the regions between these point are swapped
between the individuals.

(a) Before crossover (b) After crossover

Figure 4.1: One point crossover in linear coding

20

4.1.3 Mutation

Mutation introduces into the population new features (that may have not been
introduced only with selection and crossover). This is desired mainly when the
whole population has converged to some local optimum. Without mutation it will
not be possible to jump off this optimum and explore another areas of the search
space.

In linear coding the most common implementation of mutation is: iterate over
all features in the chromosome, change each feature with probability pmut, if the
feature is to be mutated then alter its value.

4.1.4 Extensions

Basic scheme of GA as presented in Algorithm 4.1 is often extended by elitism. In
elitism n best individuals advance to the next generation without being crossovered
and mutated. Elitism eliminates the destructive fallout of these operators on the
best individuals, whose fitness would be probably only decreased.

In vast majority of use cases the most time consuming operation in GAs is
the computation of fitness values. Parallel implementations of GAs can reduce
time required for this part of computation and they scale linearly to number of
provided computational units. Overview of different parallelization schemas is
in [6].

Speciation is a technique that tries to minimize the destructive effect of the
crossover operator. In some scenarios the solutions coded in the genes become so
diversed after a few generations that there is no meaningful way how to crossover
those genes. In such cases it is convenient to define metrics on the genomes that
defines how compatible they are. Two individuals can be crossovered only if theirs
compatibility measure is above certain threshold, they are said to belong to the
same species.

4.2 Genetic Programming

Genetic Programming (GP) is a subclass of Evolutionary Algorithms where the
individuals being optimized are computer programs. GP was popularized mainly
by John Koza [16] and it has proved to be successful in many domains.

21

Programs can be coded in various ways. Linear coding [4] stores programs as
sequences of instructions, tree coding [16] stores the program as a tree describing
the functional representation of the program. Since all Touring complete programs
can be expressed through functions, both approaches are equivalent with respect
to their expressive power.

*

+ 3

2 x

Figure 4.2: Tree for
expression (x+2)∗3

The search space of all possible solutions is determined
by the language L. The choice of L is important and should
be considered with great care. L must be powerful enough
that a solution of desired quality could be expressed in it, on
the other hand it should restrict the search space as much as
possible. These two requirements are usually contradictory.
Instead of common programming languages like C or Java
the language of L is usually a domain specific language
designed with the problem in mind. These languages are
often build on top of functional languages like Lisp.

In the further text the case of tree coding of programs
will be described more in depth. Tree coding assumes that
all elements of L are functions. In that case all valid ex-
pressions constructed from L can be directly coded as trees.
Figure 4.2 show one such example. The original concept of
GP as presented by Koza assumes that all functions have

the same return type (e.g. double). But the model can be extended to functions
with various return types.

4.2.1 Crossover and mutation

Crossing over two trees is implemented as switching random subtrees as shown
on figure 4.3. In typed genetic programming only subtrees of the matching type
can be switched in order to produce valid offsprings.

Mutation replaces random subtree with new randomly generated tree of match-
ing type. Figure 4.4 shows one example of mutation.

4.2.2 Random function generation

Procedure for generation of random functions (listed in Algorithm 2) is used for
creation of initial population and in the mutation. It generates random tree of

22

*

3 +

x 2

xto be switched

+

1

(a) Before crossover

*

3 x +already switched

x 2

+

1

(b) After crossover

Figure 4.3: Example of crossover of expressions 3 ∗ (x + 2) and x + 1

*

3 +

Subtree to be mutated

x 2

(a) Before mutation

*

* +

New subtree

x x x 2

(b) After mutation

Figure 4.4: Example of mutation of expressions 3 ∗ (x + 2) into (x ∗ x) ∗ (x + 2)

23

functions with matching type and desired maximal depth or ends with ⊥ if such
tree is not constructible from the provided set of functions F .

Algorithm 2 generateRandomFunction

Require: d — max depth of the generated function
Require: Φ — type of value generated by the function
1: if d = 0 then

2: return ⊥ Fail, no such tree can be constructed
3: else

4: candidates← sequence of all f ∈ F whose return type is Φ
5: Permutate(candidates)
6: for all f ∈ candidates do

7: params← sequence of all parameters of f
8: i← 0
9: for all p ∈ params do

10: Ψ← type of parameter p
11: gi++ ← generateRandomFunction(d− 1, Ψ)
12: end for

13: if ¬∃i : gi = ⊥ then

14: return f(g0, g1, ...gn) all subfunctions were constructed
15: end if

16: end for

17: return ⊥ failed
18: end if

4.3 Artificial Neural Networks

Artificial neural networks (ANNs, or just NNs) are biologically inspired compu-
tational model capable of interpolating arbitrary function F : R

n → R
m. Basic

computational unit of NN is one neuron. Each neuron has at least one real input
and exactly one output. The output y of a neuron is computed by equation:

y = f(

N∑

i=1

xiwi); wi, xi ∈ R

Where f is an activation function, xi is a value of i-th input, wi is a weight of
i-th input and N is a number of neuron’s inputs. Activation function is usually

24

chosen among bounded nonlinear functions (e.g. sigmoidal functions, radial basis
function, etc.) Outputs of neurons connect to inputs of other neurons and thus
the network is formed.

There are many types of NNs that differ in topology and exact evaluation
algorithm. Common are layered NNs, in this topology there are three distinct
groups of neurons called layers — input layer, hidden layer(s) and output layer.
The pattern from R

n is presented to the n neurons in the input layer and the
response from R

m for this pattern is output of m neurons in the output layer.
Between the input and output layer lies hidden layers.

To sum up findings from the previous paragraphs, each neural network is
specified by its:

• Topology

• Weights

• Activation functions

In the process of learning values of these parameters are searched in order
to compute optimal responses for the given patterns. In supervised learning the
desired responses are known and the optimality measure is based on distance
between these responses and responses of the network. In unsupervised learning
the task is to minimize specified utility function describing expected model of the
data. Similar learning paradigm is reinforcement learning. Outputs of the network
are mapped onto actions that change agent’s state. Each state has associated
reward value and the overall goal is to maximize the summed reward.

4.3.1 Evolution of Neural Networks and NEAT algorithm

In cases where no analytical methods (e.g. backpropagation) are applicable, the
evolutionary algorithms can be used as a learning method for NN.

The most basic approach to evolution of NN is to evolve weights of a network
with fixed topology. The drawback of this approach is that the chosen topol-
ogy can be too complex thus making the search space unnecessarily huge or the
topology is too simple for given problem. Both cases result in network’s poor
performance.

This basic scheme can be enhanced by including the topology of network into
the genotype. Then the question how to crossover two networks with different
topologies arises.

25

The NEAT algorithm [22] specifies how to explore the space of different topolo-
gies and how to meaningfully crossover them.

Main features of the NEAT algorithm are:

• Incremental complexification — in the first generation network starts with
the minimal topology (fully connected input and output layer, no hidden
neurons). New neurons and inter neuron connections are incrementally
added by mutation operators through the course of the evolution.

• Genome with history tracking — the network’s topology is encoded in lin-
ear genome. Genes representing neurons and connections have associated
so called innovation numbers. When a new neuron or connection gene is
introduced, it receives a global innovation number by one higher than the
last added gene. Genes with the same innovation number origin from the
same common ancestor thus they will likely serve a similar function in both
parents. NEAT’s crossover operator exploits this observation, genes with
matching innovation numbers are randomly chosen from both parents for
the new offsprings, the rest of genes is taken from the more fit parent.

• Speciation and fitness sharing — based on the topology individuals are ar-
ranged into non-overlapping species. Individuals mate only within the same
species — this raises a chance that the crossover will produce meaningful
offspring. Number of offsprings is proportional to the summed fitness of
the species — this protects more complex networks that have usually lower
fitness at the beginning.

26

Chapter 5

Bot Architectures

In the context of the FPS games the computer controlled opponents are called
bots. Bots are implemented as an embodied agents as defined by Wooldridge and
Jennings [28]. Bots perceive the game environment through provided senses and
they can influence the environment by provided set of actions. The data flow
between the bot and the environment is depicted on the Figure 5.1.

Environment BotSense
Act

Figure 5.1: The Act-Sense loop

Bots are designed to accomplish large variety of tasks (e.g. patrolling, at-
tacking). The objective for which the bot was designed influences structure of
its action selection mechanism (ASM). However there are some common building
blocks that can be found in majority of FPS bots. It is convenient to think about
the architecture of bot’s ASM in the terms of layered design [26]. Common layers
of this design are shown on Figure 5.2.

Each layer works on different level of abstraction and each module is respon-
sible for different aspect of bot’s behaviour or reasoning:

• 1st layer is responsible for planning bot’s actions. It chooses from behaviours
implemented on the lower level of abstraction. This layer can be for example
responsible for team tactics, long term planning, knowledge representation
etc.

27

Figure 5.2: Conceptual layers of bot’s behaviour

• 2nd layer implements functionally homogeneous behaviours, these are for
example:

– Combat behaviour — combat situations are integral part of the game-
play of the FPS games

– Movement — movement is typically the most frequently used behaviour
that is responsible for planning of the path and also for fluent movement
along this path.

• 3rd layer implements the smallest conceptual blocks of bot’s behaviour, these
can be:

– Weapon selection — which weapon is the most appropriate one given
the distance to the enemy and enemy’s characteristics (e.g. some ene-
mies can be resistant to certain type of damage).

– Dodging — how to best avoid the incoming projectile.

– Aiming — at which location should the bot shoot in order to hit moving
enemy

– Navigation — planning of path from bot’s location to any other place
in the map (e.g. to the nearest health pack that will raise bot’s health
level).

– Steering — how to avoid obstacles (players or any other movable ob-
jects in the level) laying in the preplanned path.

This list is not exhaustive and it enumerates only the most common modules.

There are many possibilities how to implement these individual modules. In
the next sections a finite state machines and behaviour trees will be discussed.

28

Both these techniques are popular in game development community. They are
easy to grasp and hence can be utilized even by game designers without computer
science degree.

5.1 Finite State Machines

Finite state machines (FSMs) [13] are commonly used model for describing the
bot’s behaviour. In most cases the FSMs used in computer games are extension of
standard FSMs from the automata theory. For each state of the automaton there
is an associated script that is being executed as long as the automaton remains
in this state. Transitions between states occurs when the associated formula is
evaluated to be true.

Attack

Guard

no enemy at sight enemy at sight

Healhealth < 50

enemy at sight

health > 80

Figure 5.3: Example of FSM controlling a guard bot. States Guard, Heal and
Attack have associated scripts. For example the script for the Heal state could
find the nearest health pack and pick it.

One of the disadvantages 1 of FSMs is that there can be up to n(n + 1)/2
transitions where n is number of the states. This can be overcome by Hierarchical
FSMs, where states are grouped to higher level states and there are transitions
between states on this level. FSM were for example used in the game Halo 2 [14].

1Other disadvantages of FSMs are discussed on http://aigamedev.com/questions/fsm-age-is-
over

29

5.2 Behaviour trees

Behaviour trees are another popular model for description of bots’ behaviour.
Leaves of the tree represent atomic behaviors that can be executed straightaway.
Internal nodes represent behaviours that can be decomposed into smaller subbe-
haviours. They act as arbiters that decide, which of their children will be executed.
Hierarchical nature of behaviour trees reduces number of transitions compared to
the FSMs.

ROOT

Non attacking Attack

Guard Heal

Figure 5.4: Example of behaviour tree controlling a guard bot. The same algo-
rithm coded in FSM is shown in figure 5.3. Octagonal nodes are internal nodes
— arbiters.

The tree can be evaluated:

1. Top - down — computation starts at the root node. The root selects only
one of its children for execution. This repeats for each selected internal node
until a leaf is selected. Then an action proposed by the leaf is executed in
the environment. The advantage of this approach is well defined behaviour
and computational speed, only one path from the root to a leaf is evaluated.

2. Bottom - up — computation starts at leaves. In this scenario each leave
computes the proposed action and passes it to the parent, parent node
chooses among all proposed actions and passes the winning action up. This
repeats until the root is reached. The action passed to the root is then
executed. In this approach the whole tree has to be evaluated.

30

Bottom-up evaluated behaviour trees can be modified to allow for compromise
solutions which, at least in certain scenarios, enhances their performance [24].

31

Chapter 6

Proposed Evolutionary Bot’s

Architectures

Previous chapter defined possible bot architectures, this chapter shows two mod-
els proposed in this thesis in order to allow genetic optimization. The first model
is suitable for high-level behaviour optimization through evolution of behaviour
trees. The second optimizes low-level dodging behaviour with use of neural net-
works. Behaviour trees are better suited for evolution of high-level decision making
than the neural networks. Whole behaviours can be exchanged between individ-
uals by a mutation operator as they are represented by single subtrees. This
property does not apply for NNs. On the other hand NNs are supposed to be bet-
ter when it comes to approximation of real functions, which is the case of dodging
behaviour.

6.1 Functional architecture - high level ASM

The behaviour trees as presented in Section 5.2 were used as the framework for
the functional architecture.

Behaviour trees can be directly translated into functional representation and
hence genetic programming methods can be used for their optimization. In con-
trast to neural networks and other “black box” models, genetic programming leads
to solutions in a form of a program that is even human readable if the initial set
of functions is chosen appropriately.

Architecture similar to our functional model has already been tested in the

32

Robocode simulator [29] where the robots were trained for simple combat tasks.

Our ASM architecture has a form of a tree containing possibly three types of
functions:

• Behaviour functions — these functions compute the action to be performed
in the environment. Their return type is always a tuple 〈action, its suitability〉,
we call this type BehResult. There are two types of behaviour functions:

– Primary behaviour functions — primary functions represent atomic
behaviours, e.g. attackPlayer(Enemy) function returns the best action
that can be issued in order to attack the given enemy (this can be
changing the weapon, firing, etc.).

– Secondary behaviour functions — these take two BehResults as param-
eters and their return type is also BehResult. More complex behaviours
can be constructed with use of secondary behaviour functions.

• Sensory functions — their return value is typically a floating-point number
normalized to 〈0, 1〉 (distance to a player, bot’s health, etc.) or a game spe-
cific data type (e.g. function nearestEnemy returns handle to the nearest
player from the opposite team). Sensory functions are used to parame-
terize the actions returned by primary behaviour functions (e.g. attack-
Player(nearestEnemy())). Together with mathematical functions they can
also influence the suitability of actions.

• Math functions — +, ∗, 1 − x, sin, min, max, constant. These functions are
used to combine floating-point encoded senses.

The functions used in our experiments are listed in Appendix A.

6.1.1 Example

Figure 6.1 shows example behaviour tree that can be constructed from the pre-
sented set of functions. Bot controlled by this behaviour tree will be picking
health or ammo if the enemy is not present. If the bot sees the enemy, then he
will attack him and when his health decreases under 19%, he will try to escape
from the combat.

33

HighestActivation

HighestActivation HighestActivation

PickAmmo

NearestAmmo 0.43

PickHealth

NearestHealth *

RunAwayFromPlayer AttackPlayer

NearestEnemy Inverse NearestEnemy 0.81

Inverse 0.53

health

health

Figure 6.1: Example behaviour tree constructed from the provided set of functions

6.2 Neural networks - dodging behaviour

As mentioned in Chapter 5, dodging is one of bot’s basic skills. Most of the
weapons in UT have infinite projectile speed but there are also some weapons
with high damage whose projectiles have finite speed (e.g. Rocket Launcher).
When a player is under fire from such weapon, he has a chance to avoid the
projectile even if it is initially headed in his direction. This behaviour is called
dodging.

When a fired projectile is likely to hit a bot, the UT notifies him about this
situation by special event. The event carries this information:

1. Estimated time till the projectile’s impact

2. Angle relative to the bot’s direction under which the projectile is coming

3. Radius where the bot will be damaged after the projectile explodes

4. Location from where the projectile was fired

5. Vector specifying velocity of the projectile

34

For optimization of dodging behaviour a feed-forward NN was used. Although
different sets of inputs were chosen for neural networks from the two presented
experiments the network’s output x ∈ 〈0, 1〉 was always transformed to α =
(2x− 1)π which was used as an angle of bot’s movement in the next time step.

Inputs of the NN were: information about bot’s location (raycasting, distance
to the shortest path) and information about the incoming projectile. The de-
tails about the chosen inputs are in Section 8.4 which describes the experiments
performed.

35

Chapter 7

Implementation

7.1 Interfacing UT with Pogamut

The experiments presented in Chapter 8 were conducted in the environment of
the commercial game Unreal Tournament 2004 (UT). Even though UT provides
its own scripting language UnrealScript, the infrastructure was coded in Java
and connected to the UT through the Pogamut platform [15]. The Pogamut
platform was developed at the Charles University in recent years in order to
simplify connection of new bots to the game engine. The Pogamut platform
features library of sensoric and motoric primitives, log management and a plugin
for the NetbeansTMIDE. This features simplify the bot development and reduce
the time needed for debugging bot’s behaviour. The platform is based on the
well known GameBots [1] interface and adds to it a Java library build on top of
the GameBots protocol. The Pogamut platform is free for non-commercial and
non-military use and can be downloaded from the Pogamut Homepage 1.

UT is a realtime environment hence it is not suitable for genetic algorithms as
it stands. Flow of the time can be adjusted but there is no option “run as fast as
possible”.

To bypass this disadvantage the so called “Pogamut GRID” was implemented
as a part of this thesis. Pogamut GRID enables experimenter to run more exper-
iments in parallel. Experiment is a small program that defines which bots should
connect to the game, which features of the gameplay will be observed (e.g. health
of bots, bot’s distance to defined target etc.) and conditions terminating the ex-

1Pogamut Homepage, URL: http://artemis.ms.mff.cuni.cz/pogamut [2.7.2008]

36

periment (e.g. elapsed time). Definitions of the experiment are send from a client
computer to a driver computer that is a gateway to the grid. Driver resends the
definitions to the connected nodes where the experiments are executed. Results
of the experiment (the observed features of the gameplay) are then send back to
the client computer. Pogamut GRID is build on top of the Java Parallel Process-
ing Framework 2. JPPF is a general framework for building GRID applications in
Java, it takes care of the network communication, fail recovery, node management
and other features common to all GRID applications.

7.2 Evolutionary frameworks

For experiments with the NEAT algorithm an already existing implementation
called Another Neat Java Implementation 3 was used. ANJI is build on top of
a Java Genetic Algorithms Package [17] a general framework for genetic com-
putations in Java, hence ANJI sources and architecture are more readable for
programmer already familiar with JGAP, than sources of other Java NEAT im-
plementations like JNEAT 4 or NEAT4J 5 which implement their own evolution-
ary framework. This was a main reason why the ANJI implementation has been
chosen.

For genetic programming experiments a custom framework exploiting ad-
vanced features of the Java programming language like generics, introspection and
annotations was implemented. JGAP has also support for genetic programming
but the code is written in Java 1.4 which lacks the features mentioned above.

7.3 Functional architecture

The functional architecture was implemented in the Java programming language.
Java is not a functional programming language 6, this means that functions are not
first class objects, thus they can not be passed by reference. In object oriented
approach this can be overcome by common ancestor of all functions called for

2URL: http://www.jppf.org [12.6.2008]
3ANJI, URL: http://anji.sourceforge.net [2.7.2008]
4JNEAT, URL: http://nn.cs.utexas.edu/soft-view.php?SoftID=5 [2.7.2008]
5NEAT4J, URL http://neat4j.sourceforge.net/ [2.7.2008]
6However there is a functional languages Scala that runs on top of the Java Platform, see

http://www.scala-lang.org/ [24.7.2008]

37

example Function < T >. The Function class has a method T call() where T
is the type parameter of the function class (i.e. BehResult in the case behaviour
functions). All parameters of the function must also be of the type Function,
parameters of the function are distinguished from the ordinary class fields by a
custom annotation. The annotation also contains information about the desired
return type of the function since it can not be inferred from the compiled class
files 7. The implementation of Algorithm 2 uses this annotations to infer the
return types of function classes at the runtime.

7Up to Java 1.6 (the current release of Java) the language uses reification of generic types,
this means that all type variables are erased after the compilation and they are not avail-
able to the Java Reflection API. However this may change in the 1.7 release of Java, see
http://tech.puredanger.com/java7/ [23.7.2008]

38

Chapter 8

Experiments

This chapter describes the evolutionary experiments with Deathmatch and Cap-
ture the Flag game types and also with the evolution of the dodging behaviour.
The models being optimized are also described in greater depth.

First section speaks about fragility of results obtained in the experiments,
second and third section presents a set of genetic programming experiments op-
timizing a high level bot’s behaviour and the last section shows an application of
neural networks on optimization of bot’s movement.

8.1 Potential Pitfalls

Up to this time the game engines were only single threaded (including the Unreal
Engine 2.5 which is a base of UT2004). As processor architecture shifts towards
multicore designs the need for proper software architectures arises. To my best
knowledge the first multithreaded commercial engine is Unreal Engine 3 1 released
in late 2007. With the dawn of multithreaded programming in the computer games
the game engines will no longer be discrete simulations. This implies that outcome
of the simulation will be dependent on the external factors like system load and
synchronization. Since the Pogamut platform uses multiple threads for logic of
each bot the same applies for the experiments presented later in this thesis.

It has also implications towards flow of the time. Game engines are running
in “pseudo real-time”, thus different game speed may result in slightly different

1See interview at URL: http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2377&p=3
[12.6.2008]

39

outcome of the simulation. To measure this influence the same experiment was
conducted with two different game speeds. The experiment setup was purposely
chosen to highlight this issue. Pogamut based bot was playing a CTF game
against a native UT bot. Each bot received one point for killing the enemy and 5
points for bringing the flag back home. The outcomes were significantly different
(see Figure 8.1). The main difference perceived during game play in double and
single speed mode was that the Pogamut bot was more often killed when he was
only a few meters away from the base where he was bringing the flag compared
to the single speed mode, where the bot usually managed to bring the flag and
died shortly after this.

The result from this observation is that the evaluation of individual’s perfor-
mance for fitness computation must be executed at a single speed. Otherwise the
results will not be applicable to single speed mode.

Histogram of preprogrammed bots

Fitness

F
re

qu
en

cy

−100 −50 0 50

0
2

4
6

8
10

12

(a) Single speed

Preprogrammed bots on Linux with 2x game speed

Fitness

F
re

qu
en

cy

−40 −20 0 20 40

0
5

10
15

20
25

(b) Double speed

Figure 8.1: Influence of the game speed on the results of experiment. Fitness of
the individual is measured as myScore− enemysScore. In the single speed mode
the fitness fits a normal distribution but in double speed there is a peek of bad
performing individuals with fitness around −40.

40

8.2 Deathmatch

In the Deathmatch game mode several bots are fighting against each other and
their goal is to get as much frags as possible. Bot receives one frag when he kills
an opponent.

In this experiment, the evolved bot was playing a Deathmatch game against
bot preprogrammed by a human. Details of the experiment setup are in Table 8.1.

Map dm-TrainingDay
Generations 80
Individuals in each genera-
tion

150

Initial generation random functions with maximal depth
of 5

Elite 16
Crossover probability 0.2
Mutation probability 0.2
Selection method weighted proportional deterministic

distribution
Fitness dc + 50pk − (5d + ds

10
)

Aiming accuracy 0.5
Fitness details Each bot fought against the Hunter bot

(standard example bot included in the
Pogamut installation) for 90 seconds of
the game time

Table 8.1: Setup of the experiment. In the fitness equation dc is damage caused
by the evaluated bot, pk is number of players killed by the bot, d is number of
bot’s deaths and ds is damage suffered by the bot.

The dm-Trainingday map is the smallest one from the maps officially dis-
tributed with the UT. The fitness function favours attacking behaviour over flee-
ing from the battle because this is the deserved behaviour in Deathmatch type of
ame. The reward for damaging the enemy is ten times higher than penalization
for being damaged. Aiming accuracy is internal property of the game engine ex-
pressing how good will the bots be in using the weapons. Accuracy value 1 means
that the bot is absolutely accurate in the shooting no matter what the distance

41

is, accuracy value 0.5 gives the enemy a chance to escape. The accuracy was the
same for both the Hunter and an evaluated bot.

In the first 20 generations the evolution was trying random strategies, then
between generations 20 and 40 the population began to improve its performance
and a local optimum was reached. In the following generations no significant
improvement was achieved. Figure 8.2 shows how the fitness changed during the
course of the evolution.

0 20 40 60 80

0
50

0
10

00
15

00

Generation

F
itn

es
s

max
mean

Figure 8.2: Mean and maximum fitness in each generation. Even though the elite
was used the nondeterministic fitness computation sometimes causes decrease of
the fitness of the fittest individual compared to the previous generation

Figure 8.3 shows the behaviour tree of the best individual from the last gen-
eration. The bot was collecting health packs when he has not seen an enemy and
he attacked the nearest enemy when he encountered some.

The following table shows outcome of this behaviour tree depending on the
external stimulus SeeAnyEnemy.

The resulting behaviour is simple but it is sufficient for the deatmatch type of
game. Even human players are using the same high level strategy on small maps

42

Figure 8.3: Behaviour tree of the best individual from generation 80

Condition SeeAnyEnemy
value

PickHealth acti-
vation

Attack acti-
vation

Winning
behaviour

Bot sees an enemy 1 0 0.65 Attack
Bot does not see an enemy 0 1 0 PickHealth

Table 8.2: How external senses influence bot’s decision

like dm-Trainingday.

8.3 Capture The Flag

Compared to Deathmatch the Capture the Flag (CTF) is a more complex game
mode with greater space for strategical decisions making. First rules of the CTF
game mode will be explained then the experiment will be presented.

In CTF the bots are divided into two teams. In UT2004 these are a Red and
a Blue team. Each team has its team base, where is the team’s flag. Flag can
be in three distinct states: HOME - flag is in team’s base, HELD - flag is being
held by an enemy, DROPPED - flag is not in team base and it is not held by
an enemy. Flags can be carried (flag in HELD state) only by players from the
opposing team. When the player touches his team’s flag that is DROPPED then

43

it is immediately returned to the team base. All possible transitions between flag
states are depicted on a Figure 8.4. When the player brings opponent’s flag to his
team’s base, he scores 15 points. Killing an enemy is rewarded only by one point.

As the game rules suggest there are more ways how a bot can be successful.
The bot can specialize himself on stealing opponent’s flag or he can just defend
his own flag and gain points by killing an enemy or he can combine both these
strategies.

HOME

HELD

Enemy took the flag
 from team base.

Enemy brought the flag
 to his team base.

DROPPED

Player holding the flag
 was killed.

After some time dropped
 flag is returned home.

Friendly player
 touched the flag.

Enemy took the flag.

Figure 8.4: All possible states of the flag together with the transitions between
them

To provide a GP algorithm with complete set of functions needed for emer-
gence of behaviours capable of playing a CTF game a simple hand-coded bot was
implemented. Algorithm 3 shows a decision making system of a bot that can
steal enemy’s and secure his own flag. The set of functions used in a Deathmatch
experiment was augmented by new functions needed to code this algorithm in a
behaviour tree notation. The list of added functions is in Appendix A.3.

8.3.1 Coevolution

The previous experiment used a preprogrammed bot as an opponent. This sup-
poses that we already have some bot capable of playing the game or at least
that we can programme such bot. If we do not have preprogrammed bot, then
coevolution [19] might be useful.

44

Algorithm 3 Hardcoded bot for CTF

1: if see an enemy then

2: shoot at enemy
3: return

4: end if

5: if see mine flag and mine flag is dropped then

6: go to mine flag //touching the flag will return it to the base
7: return

8: end if

9: if have enemy’s flag then

10: go to the team base // try to score points by bringing the flag home
11: return

12: end if

13: if see enemy’s flag then

14: go to enemy’s flag // bot will pick up the flag when he touches it
15: return

16: end if

17: go to enemy’s base // bot is looking for a flag and enemy’s base is the most
probable place where he can find it

45

In coevolution the bots are evaluated in matches against each other instead of
comparison with preprogrammed bot. As soon as one bot finds partial solution
to the problem he gains advantage over the rest of the population. This increased
evolutionary pressure may cause improvement of the rest of the population in the
following generations.

The experiment setup is in Table 8.3. In coevolution the fitness value is only
a relative measure of performance compared to the rest of population. To get the
absolute measure the best bots from each generation have been evaluated in 40
minutes long match against the native UT bot (graph of fitness is on Figure 8.6)
and against hand coded bot controlled by the Algorithm 3 (see Figure 8.7). Both
graphs show rapid progress in first 30 generations. At the end the bots were
playing balanced games with preprogrammed bot but they were worse than the
native UT bot (note that fitness above 0 means that the bot was more successful
than his opponent). In game inspection of bot’s behaviour revealed that it lost
most of the games with native bot because it was lacking the low level behaviour
that helped the native bot to avoid missiles while moving in the level. This was
not the case when playing against the hand coded bot because it is using the same
low level routines for movement, thus it has not any advantage over the evolved
bot in this skill.

In short the strategy utilized by the best evolved bot was: wander around,
shoot the enemy if he is holding my flag. Whole behaviour tree of the best
bot is on Figure 8.8. Most of the time only two nodes of the tree get exe-
cuted, the first node attackP layer(enemy(), spike(...)) and the last but one node
wanderAround(hasLoadedWeapon()). The first node is executed when the en-
emy is holding the flag. The bot is close to scoring 15 point when he is holding a
flag, thus it is more dangerous than when it does not have a flag. The second node
is executed in most of the other cases since the hasLoadedWeapon() returns 1
most of the time (bot starts with loaded weapon). The behaviour tree does not use
the teamFlagBase() function, this means that the bot is not purposely going to
enemy’s or his team base, however it is able to steal the opponents flag and bring
it home. How is this possible? The key is implementation of the wanderAround()
function. When called for the first time, this functions plans a path around all
sort of items (weapons, healths, etc.) in the map. Bot then follows this path
by repeated calls to the wanderAround() function. Since the 1on1-Joust map is
fairly small and the items are placed near the team bases (see the map scheme
on Figure 8.5) this single behaviour server for both picking items and stealing the
flag.

46

Map ctf-1on1-Joust (see Figure 8.5)
Generations 200
Individuals in each genera-
tion

20

Initial generation random functions with maximal depth
of 6

Elite 2
Crossover probability 0.7
Mutation probability 0.3
Selection method weighted proportional deterministic

distribution
Fitness 15(fs− fl) + f − d
Aiming accuracy 0.5
Fitness details Bots fought against each other for two

minutes. The overall fitness was sum of
19 independent matches.

Table 8.3: Setup of the CTF coevolution experiment. In the fitness equation fs
is number of flags stolen, fl is number of flags lost (flags stolen by the enemy), f
is number of frags and d is number of deaths.

8.4 Dodging

The next section specifies the dodging experiment setup in more detail, later
sections present experiments with a neural network evolved by the NEAT [22]
algorithm used for controlling the bot’s dodging movement. First experiment
shows a bot with incomplete information about the missile’s position. Bots from
the second series of experiments were provided with whole information about the
position of the missile.

8.4.1 Experiment Setup

At the start the evaluated bot is standing on one end of the passage and its
destination is on the second end. Next to its destination is a sniper bot with
rocket launcher that is firing a rocket on the evaluated bot every two seconds. The
sniper bot does not move from the initial location and it has infinite ammunition.
Evaluated bot does not shoot, his goal is to sneak through the fire and get as

47

Figure 8.5: Schema of the 1on1-Joust map.

close as possible to its destination. The evaluation run ends when: 1. bot reached
95% of the distance to the target or 2. bot was killed or 3. timeout of 20 seconds
was reached. The schema of the level used for dodging experiments is shown in
figure 8.9.

8.4.2 First Model

Neural networks inputs used in the first experiment are listed in Table 8.4. To
start with the most simplistic model the only information the bot has about the
missile was estimated time till impact and relative angle of missile’s trajectory at
the time when it was fired. This models the situation when the bot can hear the
shot, he can estimate how far the missile is but he can not see it.

The fitness function used in this experiment was:

f =
3s + (1− 2arctan(h/5)

Π
) + d

5

Where s ∈ 〈0, 1〉 is percentage of distance covered on the way to the destina-
tion, d ∈ 〈0, 1〉 is damage suffered, h is number of hits to the walls, the 2arctan

Π

function is used to map possibly infinite number of hits to interval 〈0, 1〉.

Figure 8.11 shows how the evolution progressed. It can be seen that the
average individuals have quite low fitness, most of the bots from all generations
were unable to move any further from their starting position. Second interesting
trait is that immediately in the first random generation a quite good solution was
found, which is true also for the other experiments. Fitness of the best individuals

48

0 50 100 150 200

−
80

0
−

60
0

−
40

0
−

20
0

0

Generation

F
itn

es
s

Figure 8.6: Evaluation against the native UT bot

was rather random in the first 80 generations and it began to improve in the last 20
generations. The evolution started with fully connected input and output layers
and the best solution, found in the 92nd generation, added one hidden neuron
with two connections.

The strategy found by the best bot was following: keep next to the right wall,
when the missile approaches dodge left, then return to the right wall. By keeping
next to the right wall bot forces the enemy to shoot in that direction but when the
missile is coming he avoids the missile by shifting left. This strategy is successful
as long as the enemy’s shooting and bot’s movement are synchronized.

Figure 8.12 shows a little closer the movement decisions of the best bot. The
figure was created by connecting the neural network controlling this bot to a

49

0 50 100 150 200

−
30

0
−

20
0

−
10

0
0

10
0

Generation

F
itn

es
s

Figure 8.7: Evaluation against hand coded bot controlled by the algorithm 3.

generator producing inputs (raycasting data, time till impact, bot’s distance to
the shortest path etc.) that the bot would have received from the game engine if
he were in the same situation. The interesting features are:

1. All arrows near the right and nearly all arrows near the left wall are directed
inwards the passage, this prevent the bot from hitting the walls.

2. Arrows in the rectangular area near the lower right corner are heading
slightly left, this it the case when the bot is avoiding incoming missile.

3. There are a few arrows heading forward in the upper right corner, these
arrows determine the path the bot is following when a missile is far away.

50

SequentialArbiter

AttackPlayer HighestActivation

Enemy Spike

HasFlag

Enemy

HighestActivation HighestActivation

WanderAroud WanderAroud

Health HasFlag

Enemy

AttackPlayer HighestActivation

Enemy HasFlag

Enemy

WanderAroud WanderAroud

HasLoadedWeapon HasFlag

Enemy

Figure 8.8: Behaviour tree of the most successful bot in play against native UT
bot.

4. All other arrows are directed to the right, they lead the bot to the only
forward arrows.

The bot’s strategy seems reasonable supposing the bot does not have exact in-
formation about the position of the missile. Second series of dodging experiments
gives the bot ability to perceive the missile’s position.

8.4.3 Second Model

In the second series of experiments the “Projectile angle” input was replaced by
the shortest distance d between the bot and missile’s trajectory (see Figure 8.13).
This enables the bot to “see” the incoming missile. The fitness function was the
same as in the previous experiment. Graph 8.14 shows progress of the fitness in
two differently parameterized runs, see Table 8.6 for parameters of both runs.

51

Figure 8.9: Schema of the level used for the dodging experiments. The lengths
has modified ratio. Real length of the level was 6000 UT units (UTU), width 256
UTU and the bot’s collision volume has diameter of 50 UTU.

Figure 8.10: Inputs of the dodging bot. Black arrows are rays for detection of
obstacles, red arrow is direction of the incoming projectile.

Both runs found solutions that were able to avoid the missile, but their move-
ment was often a bit bumpy. As a result the experiment was rerun with new
fitness function designed to smoothen the bot’s movement.

New Fitness Function

The fitness function was changed to the form:

f =
s + v

vmax

+ (1− 2arctan(h/5s)
Π

) + d

4

Where v is average speed of the bot’s movement to the target (it is a fraction
of the distance the bot covered projected onto the shortest path to the target
and the time elapsed) , vmax is a maximal speed of the bot, d ∈ 〈0, 1〉 is damage
suffered, h is number of hits to the walls, the 2arctan

Π
function is used to map

possibly infinite number of hits to interval 〈0, 1〉.

52

Input name Range Semantics
Estimated time till impact < 0, 1 > Time in seconds until the projec-

tile hits the bot.
Projectile angle < 0, 1 > Angle under which the projectile

was coming in the time it was
fired, continuous scale from 0 rep-
resenting left most and 1 repre-
senting the right most point of the
bot’s view frustum.

Distance to the target < 0, 1 > Distance mapped by a arctan to
unit interval.

Distance to the shortest path < −1, 1 > Measure of perpendicular dis-
tance to the line between start
and destination mapped by a
arctan to unit interval. Negative
when the bot is to the left of this
line, positive otherwise.

Trace lines < 0, 1 > 3 rays for detecting walls.

Table 8.4: Inputs for the dodging bot

Two changes compared to the previous function are that the bonus for average
movement speed was added and the number of hits is normalized to the covered
distance.

First run was started with topology with zero hidden neurons. The fittest
individuals usually used two or more hidden neurons (the fittest one used four),
thus in the initial number of hidden neurons in the second run was set to 2. Both
hidden neurons were fully connected to the output and input layer.

The progression of fitness is shown in the Figure 8.15, evolution parameters
are in Table 8.7. In the first run the average and maximal fitness was gradually
improving. The second run performed significantly better in an average case,
this is probably because of the two initial hidden neurons. Also the maximal
performance was higher up to 80th generation, then the progression stopped and
the fitness even slightly decreased. The experiment continued for next 100 gen-
erations (not shown in the graph) and this decreasing tendency remained. One
possible explanation of this decrease could be that the complexity of networks
in the second run was raising faster than in the first run. The default mutation

53

Generations 100
Individuals in each generation 100
Elitism 1 individual from each specie
Add connection mutation rate 0.05
Add neuron mutation rate 0.01
Weight mutation rate 0.4
Std. dev. of weight mutation 1.5
Weight range 〈−20, 20〉
Hidden neurons at start 0
Rocket bot skill 7 - the highest skill level in UT
Fitness details Fitness is averaged over 10 trials

in order to decrease the variance.

Table 8.5: Parameters of the evolution

behaviour in ANJI implementation is that the connection (or neuron) is added in
every possible place — between two neurons without connection (or in the middle
of an existing connection) — with the specified probability 2. This means that
more complex network will receive more topology mutations which was the case
of the second run. Combined with nondeterministic fitness evaluation the smaller
networks and on average more fit networks could extinct and the more complex
networks gain the whole population. But the complex networks require more time
for optimization and the fitness can temporally decrease.

Despite this unfavorable behaviour the network of best individual lead to sat-
isfactory results. Figure 8.16 shows the field of vectors driving bots movement
in three configurations differing in the trajectory of the missile. The picture was
obtained in the same way as Figure 8.12. The vector fields 8.16(a) and 8.16(c)
are not symmetrical as could be supposed in an optimal solution, but we can see
that the arrows orient the bot in an opposite direction to the missile thus keeping
the bot as far from potential danger as possible. In case 8.16(b) the bot avoids
the missile by dodging left but still remains moving forward.

The smoothness of bot’s movement was improved and the bot’s performance
in this task was comparable to a human player.

2The original NEAT algorithm has different semantics of mutation, the mutation specifies
probability that the single individual is mutated (thus only one connection or neuron is added)

54

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

F
itn

es
s

max
mean

Figure 8.11: Maximal and average fitness in the first dodging experiment.

8.5 Discussion

The GP experiments showed that this technique can be used for acquisition of
simple gameplay rules. Both the Deathmatch and CTF experiments succeeded
in finding at least suboptimal high-level behaviour. The coevolution experiment
in the CTF game mode also showed that the evolution can work even without
preprogrammed reference bot used for fitness computation. On the other hand
the behaviour trees found were not as complex as algorithm of human competitive
hand coded bots. The bots used the sensory inputs only in limited way, for
example they did not use the internal health level for making decision whether to
attack or not (even though the presented set of functions makes this possible, see
Section 6.1.1).

The dodging experiments has shown that the NEAT algorithm can be suc-
cessfully used for optimization of bot’s movement. However it has also revealed

55

Run 1st 2nd
Generations 100
Individuals in each generation 100
Elitism 1 individual from each specie
Add connection mutation rate 0.01 0.005
Add neuron mutation rate 0.005 0.0025
Weight mutation rate 0.8 0.6
Std. dev. of weight mutation 1.5
Weight range 〈−20, 20〉
Hidden neurons at start 0
Rocket bot skill 7 - the highest skill level in UT
Fitness details Fitness is average of 10 trials

Table 8.6: Parameters of the second series of dodging experiments

problems in the complexification phase of the algorithm that were probably caused
by nondeterministic fitness evaluation. We think that this approach can be easily
used for creation of different parameterizations of bot’s movement. The game de-
signer can specify bot’s personality in terms of the fitness function (if the weight
of damage component of the fitness function is raised, then the bot will be more
cautious, on the other hand when the speed component is accented then the bot
will be more aggressive).

The experiments were run over night on cluster of 25 computers (Pentium
Dual Core 2.4GHz, 1GB RAM) that are used for education during the day. 100
generation of dodging evolution took on average 8 hours, the CTF coevolution
experiment was run for approximately 64 hours. On each computer there were
from 6 to 8 simultaneous games. With this setup the average system load was
below 40% but the peeks sometimes reached 100%. If there were more simulta-
neous games on one computer, the peeks would be more often and the results of
the simulation could be affected.

Due to high time demands of the experiments the runs were not repeated with
different random seeds, which would be necessary in production use.

56

Run 1st 2nd
Generations 120
Individuals in each generation 100
Elitism 1 individual from each specie
Add connection mutation rate 0.005
Add neuron mutation rate 0.0025
Weight mutation rate 0.4 0.6
Std. dev. of weight mutation 1.5 1
Weight range 〈−20, 20〉 〈−15, 15〉
Hidden neurons at start 0 2
Rocket bot skill 7 - the highest skill level in UT
Fitness details Fitness is average of 10 trials

Table 8.7: Parameters of the third series of dodging experiments

57

Position in the passage

T
im

e
til

l m
is

si
le

 r
ea

ch
es

 th
e

bo
t i

n
se

co
nd

s

Left Center Righ

0
0.

5
1

1.
5

2

Figure 8.12: Vector field of the best individual from the second run. On the Y
axis is time till the missile reaches bot’s level. The X axis shows bot’s position in
the passage. Each arrow represents movement direction computed by the neural
network at that particular time.

58

Figure 8.13: Nearest distance to the missile’s trajectory.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

F
itn

es
s

max
mean
1st run
2nd run

Figure 8.14: Maximal and average fitness in the second dodging experiment.

59

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

F
itn

es
s

max
mean
1st run
2nd run

Figure 8.15: Maximal and average fitness in the third dodging experiment.

60

Position in the passage

T
im

e
til

l m
is

si
le

 r
ea

ch
es

 th
e

bo
t i

n
se

co
nd

s

Left Center Righ

0
0.

5
1

1.
5

2

(a) Missile on the left

Position in the passage
T

im
e

til
l m

is
si

le
 r

ea
ch

es
 th

e
bo

t i
n

se
co

nd
s

Left Center Righ

0
0.

5
1

1.
5

2

(b) Missile on the right

Position in the passage

T
im

e
til

l m
is

si
le

 r
ea

ch
es

 th
e

bo
t i

n
se

co
nd

s

Left Center Righ

0
0.

5
1

1.
5

2

(c) Missile in the center

Figure 8.16: Force field of the best bot from the first run. The dashed line
represents trajectory of the missile.

61

Chapter 9

Future Work

This chapter discusses possible future directions of research in the field of genetic
optimization of bot’s behaviour.

There are still some limitations that has to be overcome before the genetic
algorithms can become aid in designing the whole ASM for bots in FPS games:

• Testing in bigger levels — current experiments were performed in relatively
simple levels that are suitable for two or three players. The bigger levels pro-
vide significantly more possible strategies of winning thus the time needed
for exploring this search space also increases.

• Better notion of the map — the functional language could be augmented
by set of constants denoting unique instances of game objects. In cur-
rent setting the bot can pick the nearest health pack by calling function
pickHealth(nearestHealth()) but it is impossible to pick the second near-
est health pack that is on a safer place, constants like health14() would make
this possible.

• Problem aware genetic operators — the genetic operators used in GP ex-
periments were general purpose implementation without any domain specific
information. E.g. the mutation can replace subtrees by new functionally
similar subtrees (i.e. pick ammo instead of pick weapon), or the crossover
operator can exchange the subtrees computing activation of behaviour only
between the same primary behaviours.

• Enhancements to the GP algorithm — speciation technique used in the
NEAT algorithm can be implemented in the GP algorithm.

62

As for the dodging model the next natural step would be simultaneous evo-
lution of the high-level behaviour together with the low-level subbehaviours (like
dodging). The mutual influence of high and low-level behaviour layers could bring
new surprising solutions to the whole problem of ASM.

63

Chapter 10

Conclusion

This work has proposed, implemented and tested two possible models of genetic
optimization of bot’s behaviour thus the main objectives of this thesis were ful-
filled. The first model uses custom functional language and genetic programming
to evolve the high-level ASM from scratch. The second model uses neural networks
for optimization of dodging movement (avoiding the missiles while still moving
forward).

In a future the first method could be used for automatic creation of bot’s
logic. One day the game designers could test their levels by evolving population
of bots and then observing their gameplay strategies. This work has made one
step towards this high level goal, however there has to be made many more steps
before this technique becomes designer’s aid instead of researcher’s toy.

The second model presented in this work is more matured and it is in pro-
duction ready state. Neural networks has proved to be successful in the dodging
task and a similar approach could be probably applied to other low-level, hard to
parameterize tasks the bot has to deal with.

64

List of Figures

2.1 Unreal Tournament 2004 screenshot showing a bot firing from a
rocket launcher . 14

4.1 One point crossover in linear coding 20

4.2 Tree for expression (x + 2) ∗ 3 . 22

4.3 Example of crossover of expressions 3 ∗ (x + 2) and x + 1 23

4.4 Example of mutation of expressions 3 ∗ (x + 2) into (x ∗ x) ∗ (x + 2) 23

5.1 The Act-Sense loop . 27

5.2 Conceptual layers of bot’s behaviour 28

5.3 Example of FSM controlling a guard bot. States Guard, Heal and
Attack have associated scripts. For example the script for the Heal
state could find the nearest health pack and pick it. 29

5.4 Example of behaviour tree controlling a guard bot. The same al-
gorithm coded in FSM is shown in figure 5.3. Octagonal nodes are
internal nodes — arbiters. 30

6.1 Example behaviour tree constructed from the provided set of func-
tions . 34

8.1 Influence of the game speed on the results of experiment. Fitness
of the individual is measured as myScore− enemysScore. In the
single speed mode the fitness fits a normal distribution but in dou-
ble speed there is a peek of bad performing individuals with fitness
around −40. 40

65

8.2 Mean and maximum fitness in each generation. Even though the
elite was used the nondeterministic fitness computation sometimes
causes decrease of the fitness of the fittest individual compared to
the previous generation . 42

8.3 Behaviour tree of the best individual from generation 80 43

8.4 All possible states of the flag together with the transitions between
them . 44

8.5 Schema of the 1on1-Joust map. 48

8.6 Evaluation against the native UT bot 49

8.7 Evaluation against hand coded bot controlled by the algorithm 3. 50

8.8 Behaviour tree of the most successful bot in play against native UT
bot. 51

8.9 Schema of the level used for the dodging experiments. The lengths
has modified ratio. Real length of the level was 6000 UT units
(UTU), width 256 UTU and the bot’s collision volume has diameter
of 50 UTU. 52

8.10 Inputs of the dodging bot. Black arrows are rays for detection of
obstacles, red arrow is direction of the incoming projectile. 52

8.11 Maximal and average fitness in the first dodging experiment. . . . 55

8.12 Vector field of the best individual from the second run. On the Y
axis is time till the missile reaches bot’s level. The X axis shows
bot’s position in the passage. Each arrow represents movement
direction computed by the neural network at that particular time. 58

8.13 Nearest distance to the missile’s trajectory. 59

8.14 Maximal and average fitness in the second dodging experiment. . 59

8.15 Maximal and average fitness in the third dodging experiment. . . 60

8.16 Force field of the best bot from the first run. The dashed line
represents trajectory of the missile. 61

66

List of Tables

8.1 Setup of the experiment. In the fitness equation dc is damage
caused by the evaluated bot, pk is number of players killed by the
bot, d is number of bot’s deaths and ds is damage suffered by the
bot. 41

8.2 How external senses influence bot’s decision 43

8.3 Setup of the CTF coevolution experiment. In the fitness equation
fs is number of flags stolen, fl is number of flags lost (flags stolen
by the enemy), f is number of frags and d is number of deaths. . . 47

8.4 Inputs for the dodging bot . 53

8.5 Parameters of the evolution . 54

8.6 Parameters of the second series of dodging experiments 56

8.7 Parameters of the third series of dodging experiments 57

67

Bibliography

[1] R. Adobbati, A. N. Marshall, A. Scholer, and S. Tejada. Gamebots: A 3d
virtual world test-bed for multi-agent research. In Proceedings of the 2nd Int.
Workshop on Infrastructure for Agents, MAS, and Scalable MAS. Montreal,
Canada, 2001.

[2] A. Barr and E. A. Feigenbaum, editors. The Handbook of AI, Vol. 1. Heuris-
Tech Press, Stanford, California, 1981.

[3] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, October 1999.

[4] M. Brameier. On linear genetic programming. PhD thesis, Universität Dort-
mund, 2004.

[5] 0. Burkert. Unreal tournament twins. Bachelor’s thesis, Charles University
in Prague, 2006. (in Czech).

[6] E. Cantú-Paz. A survey of parallel genetic algorithms. URL:
tracer.lcc.uma.es/tws/cEA/documents/cant98.pdf [2.7.2008].

[7] A. J. Champandard. AI Game Development: Synthetic Creatures with Learn-
ing and Reactive Behaviors. New Riders, Indianapolis, IN, USA, 2003.

[8] N. Chapman. Neuralbot, 1999. URL:
http://homepages.paradise.net.nz/nickamy/neuralbot/nb about.htm.

[9] N. Cole, S.J. Louis, and C. Miles. Using a genetic algorithm
to tune first-person shooter bots. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages 139–145, 2004. URL:
www.cse.unr.edu/ sushil/pubs/newpapers/2004/cec/cole/
paper.ps.

68

[10] Ch. Darwin. On the Origin of Species by Means of Natural Selection. John
Murray, UK, 1859.

[11] J. H. Holland. Adaptation in natural and artificial systems. MIT Press,
Cambridge, MA, USA, 1992.

[12] J. Holm and J. D. Nielsen. Genetic programming - applied to a real time
game domain. Master’s thesis, Aalborg University, 2002.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation (2nd Edition). Addison Wesley, November
2000.

[14] D. Isla. Handling complexity in the Halo 2 AI, 2005. URL:
http://www.gamasutra.com/gdc2005/features/20050311/isla pfv.htm
[2.7.2008].

[15] R. Kadlec, J. Gemrot, O. Burkert, M. B́ıda, J. Havĺıček, and C. Brom. Poga-
mut 2 - A platform for fast development of virtual agents’ behaviour. In
Proceedings of CGAMES 07, La Rochelle, France, 2007.

[16] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[17] K. Meffert. JGAP - Java Genetic Algorithms and Genetic Programming
Package.

[18] Ch. Miles and J. L. Sushil. Co-evolving real-time strategy game playing
influence map trees with genetic algorithms. In Proceedings of the Congress
on Evolutionary Computation, pages 171–185. IEEE, Vancouver, Canada,
2006.

[19] J. Paredis. Coevolutionary computation. volume 2, pages 355–375, Cam-
bridge, MA, USA, 1995. MIT Press.

[20] M. Parker and G. B. Parker. The evolution of multi-layer neural networks
for the control of xpilot agents. In Proceedings of the IEEE Symposium on
Computational Intelligence and Games, 2007.

[21] S. Priesterjahn, O. Kramer, A. Weimer, and A. Goebels. Evolution of
human-competitive agents in modern computer games. In Proceedings of the
IEEE World Congress on Computational Intelligence (WCCI’06) Vancouver,
Canada, pages 777–784, 2006.

69

[22] K. O. Stanley and R. Miikkulainen. Evolving neural networks through aug-
menting topologies. volume 10, pages 99–127, Cambridge, MA, USA, 2002.
MIT Press.

[23] J. Togelius, S. M. Lucas, and R. De Nardi. Computational intelligence in
racing games. In Advanced Intelligent Paradigms in Computer Games, 2007.

[24] T. Tyrrell. Computational Mechanisms for Action Selection. PhD thesis,
Centre for Cognitive Science, University of Edinburgh, 1993.

[25] P. Tzour. Building a near-optimal navigation mesh. In AI Game Program-
ming Wisdom, pages 171–185. Charles River Media, 2002.

[26] J. P. van Waveren. The Quake III Arena Bot. Master’s thesis, Delft University
of Technology, 2001.

[27] J. Westra. Evolutionary neural networks applied in first person shooters.
Master’s thesis, University Utrecht, 2007.

[28] N. R. Wooldridge, M. Jennings. Intelligent agents - theories, architectures
and languages. In Volume 890 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 1995.

[29] B. G. Woolley and G. L. Peterson. Genetic evolution of hierarchical behav-
ior structures. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation. London, England, pages 1731–1738, 2007.

[30] G. Xiao, F. Southey, R. C. Holte, and D. F. Wilkinson. Software testing by
active learning for commercial games. In AAAI, pages 898–903, 2005.

70

Appendix A

List of functions

A.1 Behaviour Functions

Primary behaviour functions. Primary behaviour functions represent atomic
behaviours. Atomic behaviours are the source of actions that can be performed
in the environment.

• stay(double) — No action is performed, bot stays still.

• wanderAround(double) — Randomly walk around the items in the map.

• goTo(Location, double) — Go to the given place.

• pickHealth(Health, double), pickAmmo(Ammo, double), pickWeapon(Weapon,
double), pickArmor(Armor, double) — Pick the given type of item.

• runAwayFromPlayer(Player, double) — Bot runs in the opposite direc-
tion to the specified player.

• turnLeft(double) — Turn left.

• attackPlayer(Player, double) — Shoots at given player. Stop shooting if
is already shooting and the player is null. This behaviour is also responsible
for weapon selection. The exact algorithm is:

– Rearm if better weapon is available.

– Rearm if out of ammo.

71

– Shoot at player.

All primary behaviour functions have at least one double parameter, this pa-
rameter represents suitability of the action computed by the behaviour function.
Some functions do not pass the suitability value directly to the BehResult tuple
but they can change the suitability depending on the context. For example, if the
bot is out of ammo, then the attackPlayer function always returns zero suitability
Additional parameters represent the entities the behaviours are operating with.

Secondary behaviour functions. Raise of composite behaviours is possible
due to secondary behaviour functions.

• highestActivation(BehResult, BehResult) — Compares suitability of two
behaviour results, returns the one with higher suitability.

• suitabilityWeighter(BehResult, double) — Multiplies suitability of given
behaviour result by the double value.

Since the suitability of the behaviour may change in time it is possible that the
highestActivation function switches from the first behaviour to the second and
vice versa.

A.2 Sensory Functions - general

Sensory functions are used as parameters for the behaviour functions. They cor-
respond to internal and external senses, internal senses are originating from the
agent’s body, external from the environment.

Internal senses. Internal senses provide information about bot’s inner
state.

• health() — health normalized to 〈0, 1〉

• ammo() — ammo of active weapon normalized to 〈0, 1〉

• ammoForWeapon(WeaponType) — amount of ammo the bot has for
given weapon type normalized to 〈0, 1〉

• hasWeapon(WeaponType) — 1 if bot has weapon of given type, 0 other-
wise.

72

• pain() — change of the health since last iteration / 30

External senses. External senses provide information from the environment.

• time() — game time in seconds

• nearestAmmo(), nearestArmor(), nearestHealth(), nearestWeapon()
— nearest item of corresponding type.

• nearestEnemy() — nearest player from the opposing team.

• see(Viewable) — 1 if bot sees given viewable object (viewable objects are
players, places etc.), 0 otherwise.

• seeAnyEnemy() — shortcut for see(nearestEnemy()).

• distanceTo(Location) — computes distance to given location, the distance
is mapped to the 〈0, 1〉 interval by the arctan function. Returns -1 if no
location is provided.

A.3 Functions for CTF

These sensory functions were added for the CTF experiment (see Section 8.3).

• teamType() — function that is randomized by mutation and then returns
constant value MINE or ENEMY.

• flagState() — function that is randomized by mutation and then returns
constantly one of these possible values: HELD, DROPPED, HOME.

• flag(TeamType) — returns object representing flag of given team.

• doIhaveAflag() — returns 1 if the bot is holding enemy’s flag, 0 otherwise.

• hasFlag(Player) — returns 1 if the given player is holding a flag, 0 other-
wise.

• teamFlagBase(TeamType) — location of the base, can be used as an input
to goTo function.

One new arbiter function was also added:

73

• sequentialArbiter(BehResult, BehResult) — returns the first behaviour
result if its activation is higher than 0.1 or when the activation of second
behaviour is lower than 0.1, otherwise return the second behaviour result.
It is useful for creation of sequential behaviours.

A.4 Mathematical Functions

Most of the mathematical functions are self explanatory. max, min and 1 - x
functions can be viewed in some cases as logic functions and, or and not since
boolean sensors are coded by numbers {0, 1}. Sine function together with the
time() sense function can be source of periodical activation.

• spike(double) — if the input is greater than 0.5, then the spike function
returns value 1. When the input value decreases under the 0.5, then the
return value also decreases linearly with time, after 5 seconds the return
value decreases to 0. It can serve as short term memory, e.g. spike(pain())
function can inform the bot about the damage suffered in a few seconds
after if actually happened.

74

Appendix B

CD-ROM

The enclosed CD contains source codes of the Pogamut Platform, Pogamut GRID,
both models presented in this thesis and PDF version of this text. Structure of
the CD is described in the readme.txt file in the root directory.

75

