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Abstract. Reactive or dynamic planning is currently the dominant paradigm for 
controlling virtual agents in 3D videogames. Various reactive planning tech-
niques are employed in the videogame industry while many reactive planning 
systems and languages are being developed in the academia. Claims about ben-
efits of different approaches are supported by the experience of videogame pro-
grammers and the arguments of researchers, but rigorous empirical data corrob-
orating alleged advantages of different methods are lacking. Here, we present 
results of a pilot study in which we compare the usability of an academic tech-
nique designed for programming intelligent agents’ behavior with the usability 
of an unaltered classical programming language.  Our study seeks to replicate 
the situation of professional game programmers considering using an unfamiliar 
academic system for programming in-game agents. We engaged 30 computer 
science students attending a university course on virtual agents in two pro-
gramming assignments. For each, the students had to code high-level behavior 
of a 3D virtual agent solving a game-like task in the Unreal Tournament 2004 
environment. Each student had to use Java for one task and the POSH reactive 
planner with a graphical editor for the other.  We collected quantitative and 
qualitative usability data. The results indicate that POSH outperforms Java in 
terms of usability for one of the assigned tasks but not the other.  This implies  
that the suitability of an AI systems-engineering approach is task sensitive. We 
also discuss lessons learnt about the evaluation process itself, proposing possi-
ble improvements in the experimental design. We conclude that comparative 
studies are a useful method for analyzing benefits of different approaches to 
controlling virtual agents. 
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1 Introduction 

Reactive planning is currently the dominant paradigm for controlling virtual agents in 
3D videogames and simulations. Prominent reactive planning techniques used in the 
industry are derivations of finite state machines (FSMs) [1] and behavior trees [2]. 
Technically, these are implemented in a scripting language, such as general-purpose 
Lua [3] or special-purpose UnrealScript [4], or they are hard-coded in a game’s native 



language, typically C++ [5]. Advantages and drawbacks of different industry ap-
proaches have been commented on widely [6, 7, 8]. The general agreement in the 
academia is that scripting languages do not provide enough expressivity for creating 
complex human-like agents, or it is cumbersome to use them for this task, and that 
there should be a better way for creating virtual agents behaviors. 
At the same time, academia is producing action selection (AS) systems that seek to 
improve cognitive performance of agents. These include the decision making modules 
of cognitive architectures, e.g. Soar and ACT-R [9, 10], stand-alone BDI-based lan-
guages, e.g. GOAL [11], and reactive planners such as POSH [12]. It has been 
demonstrated that some of these systems, e.g. Soar [9], POSH [13], GOAL [11] and 
Jazzyk [14], can be used for controlling virtual agents acting in game-like environ-
ments. However, cognitive performance of an agent is not the only concern of the 
game industry. Ease of use, code readability and re-usability (of parts of code) play an 
important role in eagerness of adoption of new systems. In fact, these features may be 
more important than the agent’s cognitive performance as the industry will be unlike-
ly to adopt systems that are hard to use or produce code incomprehensible to anybody 
except the author. 

Academic approaches often use custom behavioral languages to disguise underly-
ing low-level code (in Lua, C++ etc.) forcing the programmer to think in high-level 
behavioral constructs, such as mental states, goals, action competences or triggers. 
These constructs are also defined explicitly as language primitives to be organized by 
programmers into behavioral plans that are interpreted by an AS system. Still, these 
AS systems are tied with the disguised low-level code for the purpose of communica-
tion with the environment, including information gathering and processing, and action 
executions and monitoring the course of the execution. The high-level languages typi-
cally lack synchronization or generic while statements to deal with application proto-
cols gracefully, therefore AS systems must also define interfaces between these two 
levels. This two-layer architecture is thought to have several positive outcomes: 1) the 
low-level agent “periphery” should be reusable by different high-level plans, 2) well 
structured low-level code should improve comprehensibility, 3) correctly-separated 
high-level constructs should be easier to understand and extend, 4) a high-level plan is 
thought to be easily grasped by non-programmers, such as game designers, as it is 
more intuitive. Essentially, the high-level plan is to the low-level code what SQL is to 
Cobol.  

Technically, one does not need an academic AS system featuring a high-level be-
havioral language to create complex behaviors. An option exists to hard-code every-
thing inside the low-level code as we witness in many computer games. Which ap-
proach is better? 

Two particular scenarios are encountered in game companies often and it is worth 
investigating this question in the context of these situations. First, when an AI devel-
oper leaves a company, somebody needs to continue his or her work. It is desirable 
that a developer’s code is as comprehensible as possible (even without documenta-
tions and code commenting), so that it is easy to extend. Second, if a company creates 
a sequel to its game, it might be desirable that some existing code for the agents’ be-
haviors is reused. Thus, it should be easy to augment or refactor existing behaviors. 



The goal of this paper is to present results of a quasi-experimental, comparative 
study with both quantitative and qualitative measures modeling the abovementioned 
situations of AI developers, a method adopted from psychology and social sciences. 
The study’s goal was to investigate whether an academic approach that combines both 
the lower and the higher level behavior description outperforms an industry approach 
employing only the lower level in the situations in question and at the same time, gain 
insight into the utilization of high-level constructs. We adopt Java as the industry 
approach and POSH reactive planner [12] as the academic approach. Java is at least as 
good as C++ for programming complex agent’s behavior, but it is not a typical game 
industry language. We use it for two reasons. First, all our subjects, [22] university 
computer science students, know Java acceptably well, which models a situation in a 
company where programmers known their programming language. Second, POSH’s 
lower level uses Java. We use POSH because it has been already demonstrated for 
controlling virtual agents [13]. It also benefits from a graphical tool developed for 
visualizing an agent’s behavior plan using high-level constructs only [17]. POSH can 
be thought of as typical of a broad class of academic solutions such as a BDI-based 
systems, that include planning and primitive layers.  

All our subjects attended a course on programming virtual agents for games where 
they learned POSH. Their situation corresponded to situation of game programmers 
considering using an academic system after experimenting with it for about three 
person-days. Our subjects were divided into two groups. Both groups worked on the 
same tasks from a first-person shooter domain using Unreal Tournament 2004 envi-
ronment (UT04), but the first used Java only and the second used POSH to model 
higher level control. Our hypotheses were: 

1. POSH outperforms Java in terms of subjectively-perceived usability and objective 
quality of the resulting agents.  

2. POSH outperforms Java when the task is to catch up upon the work of someone 
else. 

3. POSH outperforms Java when the task is to extend one’s own code (three 
months later). 

Fig. 1. Relation between high-level POSH plan and low-level Java code presenting separa-
tion of high-level behavioral code from the low-level code of sensors and actions. 



If these had been confirmed, there would have been an empirical argument for maturi-
ty of at least one particular academic solution. In fact, no hypothesis was supported by 
the data. This means that it is important to isolate the most beneficial and problematic 
features of POSH to suggest possible improvements. Features shared with different 
academic systems are the most important. 

The rest of the paper is organized as follows. Section 2 presents related work. Sec-
tion 3 introduces POSH [12] explaining its roots, architecture and Behavior Oriented 
Design [15] methodology for the design of virtual agent behaviors. Section 4 de-
scribes the experiment setup and following section 5 presents its results. Section 6 
discusses results and presents ideas for general improvements to AS systems, which 
concludes the paper. 

2 Related work 

Empirical studies of academic AS systems are scarce. In our previous comparative 
study [28], we demonstrated that POSH, enhanced with a GUI, is at least as good as 
Java, but in that study, subjects programmed the high-level code only and for relative-
ly simple tasks, which is a study’s limitation. Doubts about using only the high-level 
constructs for programming complex agents behavior stem from the work of Píbil et 
al. 16, who reports on experiences from the creation of a team of agents solving a 
MAS game-like scenario inside a grid world using vanilla Jason [22] implementation, 
that is, using the Jason’s high-level constructs only without modifying the low-level 
Java code. They report on hard Jason’s corners and the inevitable implementation of 
complex behavior primitives in underlying Java language. 

Hindriks et al. [19] conducted a qualitative analysis of the code of 60 first year 
computer science students developing (in teams) three Capture The Flag agents for 
UT04 using GOAL agent programming language. That work aimed at “providing 
insight into more practical aspects of agent development” and “better understanding 

Fig. 2. The course of the experiment. 



problems that programmers face when using (an agent programming) language” and 
identified a number of structural code patterns, information useful for improvements 
to the language. However, that study was not comparative and did not report the pro-
grammers’ feedback. 

The fact that an AS system’s usability is also closely linked to the quality of de-
velopers’ tools and their ability to visualize complex behaviors in an intuitive way 
was recognized by Heckel et al. [20] in their work on BehaviorShop. A usability 
study of BehaviorShop demonstrated a well-thought GUI for editing high-level be-
havioral plans is easily graspable by non-programmers. However, their study was not 
comparative and they did not allow subjects to work with low-level code, which is 
arguably required for larger behavior modifications as argued by [15, 16]. 

The industry’s interest in simple and intuitive tools is exemplified in Desai’s work 
on ScriptEase [24]. ScriptEase is a graphical authoring tool of the BioWare’s 
NeverWinter Nights game allowing non-programmers to create new game modules. 
She shows that her simplification of the GUI is welcomed by both programmers and 
designers. 

3 POSH 

POSH action selection was originally developed in the late 1990s in response to criti-
cism of what was then an extremely popular agent design approach (at least in aca-
demia): Subsumption Architecture (SA) [23]. SA was used to produce considerable 
advances in real-time intelligent agents, particularly robotics. It consists primarily of 
two components: a highly modular architecture where every action is coded with the 
perception it needs to operate; and a complex, highly distributed form of action selec-
tion to arbitrate between the actions that would be produced by the various modules. 
Although well-known and heavily cited, the SA was seldom really used outside of its 
developers. Bryson hypothesized that the emphasis on modular intelligence was actu-
ally the core contribution of SA, but that the complexity of action selection, while 
successfully enforcing a reactive approach, confused most programmers who were not 
used to thinking about concurrent systems. 

POSH was developed to simplify the construction of action selection for modular 
AI. A programmer used to thinking about conventional sequential programs is asked 
to first consider a worst-case scenario for their agent, then to break each step of the 
plan to resolve that scenario into a part of a reactive plan. Succeeding at a goal is the 
agent’s highest priority, the thing the agent does if it can. The programmer must 
therefore describe for the agent how to perceive that its goal can be met. Then for 
each step leading up to the goal the same process is followed: a perceptual condition 
is defined allowing the agent to recognize if it can take the action leading most direct-
ly to its goal [12]. The actions are each small chunks of code that control the agent 
briefly, so-called behavior primitives (see Fig. 1).  

After a period of experimenting with the system, Bryson embedded POSH in a 
more formal development methodology called Behavior Oriented Design (BOD) 18. 
BOD emphasizes the above development process, and also the use of behavior mod-



ules written in ordinary object-oriented languages (low-level code) to encode the ma-
jority of the agent’s intelligence, including its memory. These modules provide the 
high-level behavior and sensory primitives; methods calls are the interface between a 
high-level POSH plan and the low-level code of the behavior modules (see Fig. 1). 
BOD includes a set of heuristics for recognizing when intelligence should be refac-
tored either from a plan to a behavior module or to decompose a complex module 
using a plan. 

Recently, a graphical editor for POSH plans has been developed. Its new version 
was used in the present study (Fig. 1). 

4 Method 

4.1 Experiment design 

The study compared the usability of an academic AS system, POSH, enhanced with a 
graphical tool for the creation of high- level behavioral plan, and an unenhanced clas-
sical programming language, Java. The context of the comparison was two particular 
situations mentioned in Sec. 1 common in the game company. The study was divided 
into three tasks. Each task was to create a behavior for an agent that had to fulfill a 
game-like goal. Subjects using Java had a complete freedom in the way of coding the 
behavior. Subjects using POSH were constrained by the requirement to separate low-
level Java code into behavior and sensory primitives, specific constructs, which were 
then used inside high-level POSH behavioral plan (see Fig. 1). 

The study was set in an AI course for computer science students in REMOVED. 
Subjects were given a pretest (3 hours) after the course to ensure that they had ac-
quired elementary skills for solving sub-problems from the final exam. Only subjects 
that had passed the pretest were admitted to the final exam. 
The final exam was organized to obtain comparative data on Java and POSH usability 
and provide data for the first game company scenario (see Sec. 1). The final exam 
consisted of two tasks, the Guide Task (3.5 hours) and the Guard Task (3.5 hours), see 
Sec. 4.3. Subjects were split into two groups, the Java group and the POSH group. In 
the first task, subjects were to create the whole Guide behavior from scratch. In the 
second task, each subject received a code from a randomly selected colleague from 
the same group and was asked to extend it into Guard behavior. There was a 30 
minutes long break between the first and the second task. Finally, three months later, 
some subjects participated in the final task, in which every subject was given his code 
from the first task and was asked to extend it into MultiGuide behavior (3.5 hours). 
The follow-up provided data for the second game company scenario. 

Subjects were given 4 questionnaires in total during the final exam (15 minutes 
each) and 2 questionnaires during the follow-up. Subjects solving the follow-up also 
underwent a structured interview that was meant to provide more accurate qualitative 
data as the number of subjects was rather small for quantitative data analysis. The 
course of the experiment is summarized in Fig. 2. Subjects were always informed how 
long the task will take in advance, but the structure and the exact content were re-



vealed only during the study. The assignments were given immediately prior to each 
task. 

The whole package featuring Pogamut platform used, task texts given and ques-
tionnaires used can be downloaded from [29]. 

4.2 Participants 

For the initial study, we recruited 22 students out of 33 attendants of the AI course. 
The study was the course’s final exam and students were given their final grade based 
on performance of their agents in the Guide task. Students had the option of with-
drawing from the study if they preferred a different kind of final exam. 

We excluded 2 students from the analysis due to data incompleteness. In total, we 
analyzed data from 20 students. Students were randomly divided into two groups. The 
random assignment was stratified by year of study in order to guarantee that both 
groups contained similar number of students in each year of study. 

For the follow-up task, we succeeded in recruiting 8 subjects (5 from the Java 
group and 3 from the POSH group) from the original 22. They participated for reward 
30 USD. The number of follow-up participants was too small for statistical analysis, 
but provided qualitative data. 

4.3 Materials 

The Course. The students attended an introductory course on the control of virtual 
characters. The course is intended for students without previous AI or 3D graphics 
knowledge but with previous programming experience. Only students from the se-
cond or a higher year of study could attend. The course comprises of 12 theoretical 
lectures (90 minutes each) and 6 practical lessons at computers (90 minutes each). 
The theoretical classes are detailed in [21]. In practical lessons, the students are taught 
how to work with virtual agent’s library (2 lessons) and develop behavior of virtual 
agents using both Java (2 lessons) and POSH (2 lessons). 

Pretest. The general aim of the Pretest was to rule out subjects that were not suffi-
ciently prepared for the final exam. Unprepared subjects would bias the data as they 
would likely fail during the final exam which would influence their answers in ques-
tionnaires.  

The Pretest task was to create an agent capable of exploring the environment of 
UT04 game and collect items of a specific type. The agent had no adversaries in this 
task. Implementation language was assigned to subjects at random.  

Three programmers skilled in VR technology solved the pretest task in advance to 
calibrate the difficulty of the test. The time allotment (2 hours) was at least three 
times longer than average time needed by these programmers to finish the task. Sub-
jects had 3 attempts to pass the Pretest. Most passed on their first attempt. 

 



Experimental task. 

Guide. The Guide Task was to create an agent capable of finding a lost Civilian agent 
and leading it home. At the beginning, Civilian agent was standing still at random 
position broadcasting its position with a “mobile phone.” The Guide agent must 
communicate with the Civilian agent if it wants the Civilian agent to follow its lead. 
The communication had a fixed and rather simplistic protocol described in the as-
signment. 

Communication was reliable but Civilian was willing to reply to Guide over the 
mobile only if Guide was not too far away. Apart from finding Civilian, there were 
two obstacles that Guide had to overcome in order to successfully lead Civilian home. 
First, Civilian was willing to start following Guide only if Civilian can see Guide. 
Second, if Civilian lost Guide from sight, it stopped walking. Thus, the challenge was 
not only to find Civilian and persuade it to follow Guide home, but also to constantly 
observe whether Civilian is doing so. Once Civilian was home, it restarted itself in 
another location in the map. Guide’s goal was to rescue Civilian as many times as 
possible within 5 minutes. 

Guard. The Guard Task was an extension of the Guide Task. Again, the task of the 
Guard agent was to find and guide the lost Civilian agent home. However, there was 
also an adversary Alien agent in the environment created to hunt down both Guard 
and Civilian. Thus resulting Guard behavior must have correctly prioritized the fol-
lowing intentions: 1) finding a weapon, 2) finding and leading Civilian home, 3) re-
sponding to Alien. For instance, the Guard agent should have stopped leading Civilian 
when Alien was spotted and started attacking Alien. 

MultiGuide (follow-up). The MultiGuide Task was also an extension of the Guide 
Task. This time, there were two Civilian agents in the environment and the 
MultiGuide agent had to get them together first and then lead both home. 

Organization. For all tasks, subjects were told to code both low-level behavior primi-
tives as well as high-level plans. Concerning the lower level, both groups used Java. 
For the higher level, i.e., organizing complex motor primitives based on already pro-
cessed sensory information, Java group subjects hard-coded their own if-then rules or 
finite state machines (simple switch statements), whereas POSH group subjects had to 
use the POSH graphical editor for specification of a high-level POSH plan. POSH 
group was also encouraged to use the BOD design methodology. Tasks were solved 
by two skilled programmers in advance and their feedback was used to adjust the 
tasks difficulty. 

Subjects received the assignment written on the paper prior to every task and they 
were provided with sufficient time (30 minutes) to read it and ask questions to clarify 
ambiguities.  

Groups were working in parallel in two different rooms. Subjects were not al-
lowed to cooperate on the solution but they were allowed to utilize any documentation 
about used virtual agent’s library available on the Internet. 



Questionnaires. Every subject received 4 questionnaires during the initial study and 
participants of the follow-up received an additional 2. 

Questionnaires contained both quantitative (11 level Likert items; 10 maximum, 0 
minimum) and qualitative questions. Questions were designed to 1) control for influ-
ences (comprehensibility of the assignment, task difficulty, whether the course has 
prepared subjects well, etc.), 2) investigate how appropriate was a language for a 
particular task, 3) report on language preferences, 4) report on how easy/hard was to 
extend the received code, 5) identify hard corners of Java/POSH behavior develop-
ment. Follow-up subjects also undergone a structured interview. 

4.4 Data analysis 

All quantitative answers from the questionnaires were analyzed. Quantitative answers 
from the Guide task and Guard task post-questionnaires were compared. Answers 
from Java and POSH groups were also compared. We have used paired and two-
sample t-tests with Welch approximation to compare the means in the two groups. 
Having discrete data, it would seem natural to look for methods using contingency 
tables (chi-square test of independence) or rank-based tests (Wilcoxon test, sign test 
or two-sample Kolmogorov-Smirnov test). However, using contingency tables here 
would suffer from low number of observations in cells while rank-based tests would 
suffer from lots of ties in our data. Moreover, the reasons for rejecting the null hy-
pothesis may not be clear in some situations. Therefore, we have decided to compare 
the means observed in the two groups by applying paired and two-sample t-tests. 
Assuming that two-sided two-sample t-test is used to compare two groups of size 11 
(see Sec. 5) and that the standard deviation is 2, the test detects difference 2 with 
probability approx. 60% and difference 3 with probability more than 90%. Notice that 
Central Limit Theorem guarantees that t-test may be used in this setup because the 
observed means are approximately normally distributed, see also [26, 27] for a more 
detailed justification of this approach. For other data from contingency tables, we 
have used χ2 tests of independence with p-values obtained by Monte Carlo simulation 
in contingency tables. Additionally, agents from the Guide task were tested for quali-
ty. We executed the corresponding task scenario 10 times for each agent (Civilian’s 
random position sequence has been fixed) and checked how many Civilians the agent 
saved in 5 minutes. The agent’s score was computed as the average of all runs. Guard-
task agents were not evaluated as most subjects solved this assignment only partially 
due to insufficient time and increasing fatigue (the study lasted 8 hours). Statistical 
tests were not run for the follow-up questionnaires and the follow-up agents were not 
tested due to the small number of participants. 

5 Results 

Results can be divided into objective performance of created agents and subjective 
assessment of the used tool. We will show quantitative data first and discuss qualita-
tive data later. Only the most important data are reported due to space limitations. 



5.1 Quantitative data 

Quantitative data reports on:  

A. how well the subjects understood the assignment; analyzing answers to the ques-
tion “Have you understood the assignment?”; 

B. how well the subjects were prepared for solving the task; analyzing answers to the 
question “Did practice lessons prepare you well for solving this kind of task?”; 

C. how satisfied they were with the behavior they had created; analyzing answers to 
the question “How do you feel about the behavior you have produced? Is it ok?”; 

D. the agent’s objective performance, in the case of Task 1; 
E. how appropriate the tool the subjects were using was for solving the task; analyz-

ing answers to the Guide Task’s question “Do you find Java to be the appropriate 
for the assignment?”; 

F. satisfaction with comprehensibility of received code, in case of Task 2. 

5.1.1. Task 1 - Guide Agent.  
Ad A. Subjects in both groups understood the assignment very well and there were no 
between-group differences (mean for Java group = 9.36±0.77; mean for POSH group 
= 9.36±0.98). 
Ad B. Subjects in both groups were equally prepared for the Task 1 (mean for Java 
group = 8.91±1.81; mean for POSH group = 8.5±1.9; p-value = 0.621). 
Ad C. Subjects in POSH group were slightly less satisfied with their agents (mean for 
Java group = 7.64±0.67; mean for POSH group = 5.82±2.75; p-value = 0.056). The 
observed difference is not quite statistically significant, but given the low N we report 
the trend. 
Ad D. Agents’ objective performances (Table 1) did not statistically differ between 
the groups (p-value = 0.722). 
Ad E. Satisfaction of subjects with their programming tool in the Guide Task (Fig. 3, 
4) was slightly higher in Java group but the difference was not significant (mean for 
Java group = 8.09±1.81; mean for POSH group = 7.09±3.51; p-value = 0.414). 
 

Table 1. Task 1 agents’ performances. 

Perf. / Group Weak Moderate Good Total 

Java 3 4 4 11 

POSH 1 4 4 9 

Total 4 8 8 20 

5.1.2. Task 2 - Guard Agent. 
Ad A. Subjects in both groups understood the assignment very well and there were no 
between-group differences (mean for Java group = 9.46±0.99; mean for POSH group 
= 9.73±0.62). 



Ad B. Subjects in POSH were prepared slightly better for this task (mean for Java 
group 6.67±3, mean for POSH group 8.8±1.3; p-value = 0.075). Again we report the 
trend due to the low N and weak power of the test. 
Ad C. Subjects in both groups were similarly unsatisfied with their agents (mean for 
Java group = 3.82±2.09; mean for POSH group = 3.36±2.46; p-value = 0.646). 
There was also highly significant shift of satisfaction visible when answers from both 
groups combined from Task 2 were compared to combined answers from the Task 1 
(mean for Task 1 = 6.73±2.16; mean for Task 2 = 3.59±2.24; p-value of paired t-test < 
0.001). 
Ad E. Subjects’ satisfaction with their tool did not differ between groups (Fig. 5, 6, 
mean for Java group = 6.67±2.06; mean for POSH group = 6.64±3.04; p-value = 
0.979). 
Ad F. We also have asked subjects whether they find the received code comprehensi-
ble. The result showed no between-group differences (mean for Java group = 5.8±3.6; 
mean for POSH group = 6.27±2.97; p-value = 0.747). 
 

 
 

Fig. 3. Java group satisfaction with their tool (Task 1). 

 

Fig. 4. POSH group satisfaction with their tool (Task 1). 

5.1.3. Task 3 - MultiGuide Agent. All subjects reported that they understood the 
assignment perfectly (mean for both groups = 10±0). All subjects were able to extend 
their old code and create the MultiGuide agent. Interviews did not bring any dramatic 
comments on comprehensibility of code written in Java vs. POSH. Subjects from both 
group reported that reading through the code took around 10 minutes for both groups. 
Opinions regarding Java/POSH preference are included below. 
 



 

Fig. 5. Java group satisfaction with their tool (Task 2). 

 

Fig. 6. POSH group satisfaction with their tool (Task 2). 

5.2 Qualitative data 

Quantitative results present an overall view on how subjects were satisfied with 
POSH or Java in the situations we modeled. These results have not revealed substan-
tial differences between POSH and Java, suggesting that more fine-grained, qualita-
tive approach is needed. Our qualitative data came from answers to “Explain” ques-
tions to abovementioned questions from questionnaires and from the interviews.  
Answers can be divided into two categories: conceptual, pointing out strong and weak 
points of behavior design using POSH, and technical, such as wrong POSH engine 
settings. We will discuss mainly the former category as technical points might be 
eliminated easily by tweaking our POSH implementation. 

Recall that POSH strictly separates behavior into a high-level plan, which uses 
behavior modules that define low-level code of behavior and sensory primitives (see 
Sec. 3). A well thought out POSH plan depicts how the agent will respond to the envi-
ronment without revealing any technical details of the low-level code. When summa-
rized, the qualitative data revealed rather strong, and opposite, opinions regarding this 
ability of POSH and its graphical editor: this feature was praised but also hated.  

Many subjects found the separate thinking about the high-level behavior plan to be 
positive.  

“I think it is pretty easy to make the idea in POSH and then just write few simple 
methods.” 
“The plan helps you to keep track of the important stuff that your agent does and 
reminds you to keep the behavioral triggers simple.” 
“In POSH, I can clearly distinguish states.” 
“Behavior states written in Java are harder to debug.” 



“POSH enforces good behavior architecture.” 

However, some found that unsuitable to their style of work.  

“The lack of variables at the level of POSH plans that would visualize flow of low-
level data from senses to actions seems limiting.” [POSH does not have variables at 
the high-level] 
“POSH limits you when you’re coding the behavior.” 
“You still need to write Java code.” [note this is intentional in POSH/BOD approach, 
and cf. this with [16], who find it difficult to use vanilla Jason without underlying 
Java] 
“Switching between POSH GUI and Java IDE was confusing me.” [refers to the ne-
cessity of switching between two modes of programming; the low-level and the high-
level] 

The last opinion contrasts with: 

“POSH is a convenient way to clearly write agent decision logic and underlying Java 
is powerful enough to code all details.” 
Some users failed to see any advantages in POSH at all or at least in having a sepa-
rate graphical program and action-selection mechanism to run it. 
“I can simply write POSH decision tree in Java.” 

We noticed that POSH subjects cannot program the required behavior exclusively 
inside the high-level plan. The subjects always coded also their own low-level POSH 
primitives or made changes to primitives of other subjects (Task 2) or their own 
(Task 3). 

POSH was frequently criticized with technical comments. Students usually dis-
liked writing names of actions and senses twice, first in POSH and then in Java. But 
there were a few comments that revealed some conceptual flaws of POSH behavioral 
language as well. 

“POSH has fixed order of action priorities; this becomes too limiting for complex 
behaviors.” [that points to POSH’s (intentionally) simple conflict resolution mecha-
nism] 
“POSH does not provide any mechanisms for action-switching, it is hard to track that 
for yourself.” [like in many other agent-based systems, support for transition behav-
iors, including action-in and action-out constructs, is limited or none, see also [25]] 
“POSH does not support parallel behaviors; parallel behavior is especially hard to 
manage.” [original POSH used on robots allowed for parallel behaviors, but this is 
more difficult in the present VR incarnation due to the game engine] 

Qualitative data provide interesting points for further discussion. Some points can be 
generalized to other agent-based languages. 



6 Discussion and conclusion 

This study has compared the usability of the academic AS system POSH empowered 
with a graphical editor to that of a common programming language Java in two situa-
tions common in a game company: a) catching up upon the work of a colleague, and 
b) extending one’s own work from several months ago. 

Unfortunately quantitative results could only be gathered on two of the three tasks 
we assigned. Here we showed no difference between Java and POSH groups in sub-
jectively reported readiness for utilization of the tool in Task 1 (see Sec. 5.1.1.B). 
Subjects from POSH group reported they were prepared slightly better for Task 2, 
which could be to POSH’s advantage, but the effect was rather small (see Sec. 
5.1.2.B). The qualitative data seem to argue that we prepared the students well for the 
tasks no matter the technique; the groups were not biased. Because there are no dif-
ferences in objective agents’ qualities (see Sec. 5.1.1.D), the first hypothesis that 
POSH is better in terms of usability and efficiency of resulting behavior is not sup-
ported. 

The second hypothesis also has not been supported by the quantitative data from 
the first condition, as subjects did not report improvements to the code’s readability 
due to POSH’s visible organization of the sensory and behavior primitives into a 
high-level plan (see Sec. 5.1.2.F). However, verbal comments are interesting. Where-
as complete freedom of coding high-level behavior in Java was praised by some Java 
group subjects, it was a source of confusion for others. For POSH, negative comments 
were focused only on complexity of behavior primitives in low-level code, constraints 
of the high-level language, but never on the problems with the high-level plan com-
prehensibility (see Sec. 5.2 and below). 

“Single routine from hell.” [a Java subject referring to a single Java method that exe-
cuted the whole behavior] 
“The logic method was a long list of ifs that were kinda obscure and it was unclear to 
me which part was taking care of which part of the behavior.” [a Java subject refer-
ring to overly complex if-then rules in Java, which were mixing high-level behavioral 
code with low-level code] 

That contrasts with negative comments of POSH subjects related to the low-level 
code written by a different subject: 
“Senses and actions were quite complex.” 
“Some of the primitives were unfamiliar; there was some extra stuff I did not under-
stand.” 
“The naming was good, but there were about 5 senses/actions that didn´t do any-
thing.” 

Finally, the third hypothesis also has not been supported (see Sec. 5.1.3). Subjects 
from both groups did not report any problems with reading own code that they had 
created 3 months ago, even if they had not been interacting with the code all over the 
period.  



This last may indicate that Task 1 and 3 were too simple to get much advantage 
from a programming tool, at least for the 8 programmers who had completed Task 2 
and were willing to come to their code again. This is particularly true since the basic 
structure of POSH could be indeed replicated with Java conditional statements if the 
hierarchy or plan was not too complex. Had we been able to complete the full course 
of the study with all programmers, we may have found subjects that the POSH struc-
ture assisted. 

6.1 Main interpretation 

It is useful to conceive the results from the standpoint of the metaphor separating 
behavioral code into the “low-level” and “high-level”. When adopting this perspec-
tive, the results argue that tasks of a medium complexity (compared to common tasks 
of an industry programmer) already imply programming at both levels, and conse-
quently, switching the programmer’s attention between the levels. Note that 
POSH/BOD already recognizes that and the study of Píbil et al. [16] also supports this 
interpretation. However, this cast doubts on the idea that non-programmers, such as 
game designer, could ever use “intuitive high-level languages” only, except for the 
simplest tasks. 

An interesting point is that majority of subjects seem to praise the separation of 
high-level behavior plan from the low-level code, which is a general finding, but they 
were not satisfied with concrete limitations that POSH enforces on the architecture of 
behavior primitives. Still, some subjects seem not to have internalized their thinking 
in terms of this two-level architecture at all and to have problems with switching be-
tween levels of abstraction.  

What we still do not know is whether the explicit materialization of the low-level / 
high-level separation realized in POSH/BOD and agent-based languages in general, 
would eventually turn out to be more of an advantage than a burden. The fact that 
students think the former does not necessarily mean it really is. Some qualitative data 
concerning Guard task and one quantitative outcome (see Sec. 5.1.2.B) suggest that at 
least when one has to read the code of some else, the explicit materialization of high-
level constructs is an advantage. At the same time, however, as said above, some 
qualitative data suggest that some students may have problems when the interface 
between two levels is explicit. This might be similar to object-oriented programming; 
one has to undergo a long journey to fully appreciate the concept, and perhaps some 
programmers are always happier in assembly. Future research is needed to elucidate 
what exactly is a POSH’s and its GUI’s technical limitation and what is a deeper con-
ceptual issue. 

6.2 Generalization 

Many comments on Java vs. POSH can be transposed to other academic AS systems 
due to general approach they all share with POSH. All of them try to separate behav-
ioral code out of low-level code. We will now summarize the study’s results into the 



list of guidelines that should be considered when assessing AS systems for the pur-
pose of authoring behaviors for virtual agents. 

1. The study’s result supported the idea that low-level code should be used for coding 
behavior primitives. A high-level AS system should not try to supply processing of 
sensory information or attempt to supply logic of low-level actions directly. An AS 
system should understand that behavior primitives always need to be created in 
low-level code forming the agent periphery and provide appropriate support for or-
ganizing it. 

2. The interface of an AS system with low-level code should be simple and interface 
requirements should be assessed as they will indicate design patterns a programmer 
will need to follow. If those design patterns are complex or over-constraining, as is 
the case of parameter-less sensor and action methods in POSH, it may lead to time 
consuming implementation of agents’ peripheries. 

3. An AS system should be prepared for the execution of transition behaviors. When-
ever an AS system decides it is time to switch from one action to another, it should 
also notify low-level code it is doing so, i.e., it should be part of AS interface to the 
low-level code.  

From the methodological perspective, the lessons learnt from this study are that both 
quantitative and qualitative data are useful for assessing engineer performance. 
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