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Abstract 
Episodic memory has been approached from many levels of 
analysis and many of its facets have been modeled computa-
tionally. Recently, several models of episodic memory have 
emerged in the domain of intelligent virtual agents (IVAs). 
Compared to neuro-/psychological models, their plausibility 
is limited. On the other hand, they can store representations 
of large environments and other complex memories over 
long time intervals. This paper presents one such model and 
discusses the possibility of using IVAs as a test-bed to in-
vestigate neuro-/psychological models. The conclusion is 
that IVAs and their virtual environments can constitute an 
ecologically plausible framework allowing for study and in-
tegration of the neuro-/psychological models. 

Introduction  

Episodic memory is a multifaceted phenomenon; there are 
as many computational models as there are facets. Each 
discipline tends to only focus on a narrow range of aspects, 
adopting different terminology and different abstractions.  
They acknowledge the existence of memory phenomena 
out of the main scope of their models, but they do not ad-
dress how their models could explain them. Can this state 
of affairs be improved? 
 The objective of this paper is to point out an emerging 
technology that may help with attempts to unify the pres-
ently fragmented computational research on episodic 
memory. This technology is virtual environments inhabited 
by intelligent virtual agents (IVAs), that is, agents imitat-
ing the behavior of a human or an animal, embodied in a 
2D or 3D virtual world. In a nutshell, the suggestion is that 
this technology can serve as a test-bed for developing, in-
vestigating, and, importantly, integrating computational 
models of episodic memory.  
 The paper will start with a brief summary of computa-
tional models of episodic memory that have been devel-
oped and studied in cognitive psychology and cognitive 
neurobiology. Next, the paper will introduce the concept of 
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IVAs and episodic memory models stemming from this 
field. These models depart from the models studied in cog-
nitive neuro-/psychology (and also robotics) in an impor-
tant way: they are aimed at modeling complex, rich, hu-
man-like episodic memories, which occur over long time 
intervals, e.g. hours, days, or even years; or representations 
of large environments full of land-marks and/or objects 
such as a city. This complexity is due to the relative sim-
plicity of development of virtual environments, sufficiently 
abstract representations of these environments, and a near 
absence of noise from the agent’s sensors. The cost is that 
plausibility of these models is disputable. Nevertheless, 
they are not typically intended to be plausible. 
 The main part of the paper will argue that this difference 
actually makes IVAs a suitable platform for investigating 
more plausible models computationally. For example, the 
last part of the paper will give an overview of our generic 
model, an IVA with a (non-psychologically plausible) epi-
sodic memory. The memory integrates following parts: 
visual short term memory, short term egocentric spatial 
memory, life-long allocentric “what-where” spatial mem-
ory, life-long autobiographic memory, and prospective 
memory (i.e. the agent’s current and future plans). Pres-
ently the agent is partly implemented, both in a 2D virtual 
world and in a rich 3D world. The 3D implementation fea-
tures useful developmental tools, tools for analyzing data 
(Kadlec et al. 2007), and is freely available to download.   
 The extended version of this paper provides more infor-
mation on our model and describes related work (Brom, 
Korenko, and Lukavský 2008).  

Episodic memories in neuro-/psychology 

There are many models of episodic memory. They pre-
dominantly stem from cognitive psychology and neurosci-
ence. While the psychological models tend to be more ab-
stract and symbolic trying to describe mental algorithms, 
the neurobiological ones address how neural structures 
contribute to memory processes (Norman et al. 2008). The 
former predominantly aim at descriptive modeling of phe-
nomena revealed in laboratory experiments like word list 



memorization or arithmetical calculation and produce 
models of verbal working memory or short term declara-
tive memory (e.g. Miyake and Shah 1999). The latter are 
models of the neural substrate of the spatial memory – 
place cells, head-direction cells, and grid cells – or abstract 
connectionist models of formations of simple episodes (see 
Burgess 2007; McNaughton et al. 2006 for a review; see 
also Rolls et al. 2002; Samsonovich and Ascoli 2005).  
 It has been argued that psychological models do not 
support the representation of complex real-world episodes 
(e.g. Kokinov et al. 2007) but neither do neurobiological 
models. Both kinds of models are oriented on short-term 
intervals, e.g. seconds or minutes. Generally, the neurobio-
logical area of work is fragmented, but interested in inte-
grating models of various individual phenomena (e.g. 
Samsonovich and Ascoli 2005; Eichenbaum 2004). This 
fragmentation is apparent in the psychological domain as 
well. It is probably no accident that several cognitive archi-
tectures have been recently extended by complex episodic 
memory models; namely Soar (Nuxoll 2007), ACT-R 
(Schultheis, Lile, and Barkowsky 2007), and LIDA (over-
viewed in Franklin et al. 2005), providing architectural 
frameworks for implementation of agents with both high-
level cognitive and episodic memory abilities. However, 
only few agents have been really implemented within these 
frameworks to date. The important questions now are 
whether IVAs can make the neuro-/psychological models 
better, and how will they do so? 

Episodic memories in IVAs 

The notion of an intelligent virtual agent, basically a piece 
of software that can be considered as autonomous in some 
manner and at the same time graphically embodied in a 2D 
or 3D virtual environment, began to emerge about a decade 
ago, capitalizing on the general agent metaphor (Wool-
dridge 2002). Various kinds of applications feature IVAs, 
including computer games, cultural heritage, cognitive 
science research, and computational ethology.  
 Building IVAs, like agents in general, is hard. Besides 
graphical issues, which can be a major task by themselves, 
there is the behavioral side of the problem. Firstly, IVAs 
act in dynamic, unpredictable, interactive worlds that typi-
cally run in real-time. Secondly, the simulation of IVA 
behavior entails many multifaceted objectives. These range 
from navigation and movement through accomplishing 
complex cognitive tasks, to social interaction, communica-
tion and emotional responsiveness. Large scale projects, 
e.g. computer games, feature scenarios with tens of IVAs 
and moving objects, such as cars.  
 The important concept behind IVAs is believability, 
which, basically, is the imitation of human or animal-like 
behavior to make IVAs life-like. The believability does not 
equal plausibility in the sense of building a computational 
model to verify/falsify a theory/model. Whether an IVA 
will tend to be believable or plausible depends on its au-
thors’ objectives. For computational ethology, the plausi-
bility is most important, but the graphical representation is 

not. In entertainment applications, the believability counts. 
Here, it is important that it is possible in principle to make 
IVAs neuro-/psychologically plausible.  
 Several IVAs with relatively complex episodic memory 
models have been developed recently. Some IVAs have 
been developed with spatial memory to increase believabil-
ity of navigation and/or “what-where” judgments (Thomas 
and Donikian 2006; Strassner and Langer 2005; Peters 
2006; Isla and Blumberg 2002; Noser et al. 1995). Other 
IVAs have been equipped with autobiographic memory for 
the purposes of explaining themselves after they teach a 
lesson (Rickel and Johnson 1999; Dias et al. 2007). Also 
there has been work at the intersection of the IVAs field 
and artificial life, which investigates how different types of 
autobiographic memories can improve an agent’s chances 
of survival (Ho, Dautenhahn, and Nehaniv 2008).  
 Most of these models are symbolic and, typically, are 
loosely inspired by psychological data. For example, they 
tend to reflect the classical short-term/long-term memory 
distinction. The way that these models depart most from 
the neuro-/psychological models is that they are aimed at 
representing complex, rich, human-like episodes, or large 
spaces such as a city with many landmarks and objects, as 
opposed to a list of verbs or a topology of a single location. 
If a forgetting mechanism is implemented, the models can 
be used in scenarios lasting long time intervals, e.g. days.  

IVAs as a cognitive science research platform  

This section will argue that 1) IVAs are in an excellent 
position to constitute a platform for testing and integrating 
neuro-/psychological memory models; and that 2) with 
their help a new set of phenomena concerning representing 
complex episodes, complex environments and life-long 
memory can be investigated computationally. 

1) The virtual worlds plus IVAs constitute the platform. 
The main proposal is that one can integrate his or her 
model, tailored to a restricted set of phenomena, e.g. local-
ization, with a more abstract, but relatively general compu-
tational model, that is, into an episodic memory model of 
an IVA, which is itself only a part of a larger model, that 
is, the IVA’s “mind”. The implanted model will then be-
come a part of the IVA’s perception–action process, which 
itself is “embodied” in a virtual world. This is a relatively 
ecologically plausible model of the real world, it provides a 
semi-continuous stream of rich sensory data (e.g. at 15 Hz) 
as well as a complex environment for acting.  

2) Virtual worlds change one’s thinking. This process of 
implantation forces one to think about new kind of issues. 
Metaphorically, when creating a virtual hippocampus for 
an IVA, one must connect the hippocampus to the whole 
virtual brain, i.e. to create interfaces; otherwise, the IVA 
will not act (but note that the “whole brain” can be quite 
abstract from the point of view of the hippocampal model). 
This requires the developer, at least to some extent, to ex-
plicitly consider issues lying out of the scope of his or her 
model. The input data becomes more rich compared to a 



simple “laboratory environment” created in Matlab. The 
output data has to meaningfully contribute in generating 
complex human-/animal-like behavior. For the similar rea-
sons, many researchers implement their models on robots 
(e.g. Krichmar et al. 2005).  

3) What is so special about virtual worlds in compari-
son to environments of robots? In virtual worlds, the 
walls, objects, and their positions (including IVAs) are 
typically represented explicitly, hence their extraction for 
the purpose of an IVA is much simpler that in robotics. 
Virtual worlds are “more abstract” than the reality, which 
allows one to abstract from many details and concentrate 
on high-level issues (but to also consider the broader con-
text at this higher level of analysis at the same time – see 
§2). Consequently, worlds of IVAs are much larger and 
more complicated than environments of robots. These fea-
tures can facilitate a) the investigation of present-day mod-
els in richer contexts, b) focusing on new issues, e.g. the 
representation of complex spaces and episodes. 
 Virtual reality is quite flexible in levels of modeling, an 
important advantage. On one hand, semantic knowledge 
can be represented within a virtual environment in a highly 
abstract way, e.g. “this is a place from which I can shoot”, 
or “this is an object I can use for accomplishing a goal of 
watering a garden”, a reminiscence of the notion of affor-
dance (Gibson, 1979; see also Brom et al. 2006). This 
“semantic perception” is largely unavailable to robotic 
artifacts (for a robot with a simple episodic memory see 
Dodd 2005). On the other hand, low-level perception proc-
esses can be imitated via ray-casting, a mechanism through 
which an IVA can see the underlying geometry of the vir-
tual world similarly to how robots use their sensors. Both 
approaches can be combined.   

4) Is the level of abstraction appropriate? Summarizing 
the argument so far, virtual reality allows one to avoid 
many low-level issues that need to be addressed in robot-
ics, and, at the same time, forces one to consider new is-
sues stemming from the richer environmental context of a 
virtual world. Going from the robotic world to the virtual 
one brings one closer to reality in one sense at the cost of 
losing some detail in another – this is a trade-off. We argue 
that for the episodic/spatial memory modeling, the time has 
come to follow this path towards the more abstract but 
complex waters because the neural correlates of the de-
clarative memory processes seem to be situated rather at 
higher cortical areas than primary sensory cortices, which 
means that the modeler has to consider inputs which are 
already pre-processed, and thus abstract, in some way. Had 
one modeled the retina or motion generation, robots or a 
“Matlab environment” may have been better choices.  

5) A novel research paradigm. When having a model 
implemented in a virtual world (using an IVA), one can 
collect the data and compare them with data generated by 
real humans acting in the same setting. This setting can be 
more complex than settings of present-days neuropsy-
chological experiments using virtual reality, e.g. one can 
investigate episodic memory of human and artificial play-
ers of a multi-player online role-playing game over weeks. 

An agent with episodic memory 

We have been developing an IVA with episodic memory 
(Brom, Pešková, and Lukavský 2007; Brom, Korenko, and 
Lukavský 2008). The motivation is to create a generic and 
believable agent with episodic memory, which can be used 
in videogames featuring a large world evolving over long 
time. Such a generic agent has not been developed yet, 
though several special-purpose models are already avail-
able (see above). This section illustrates the architecture of 
our IVA and the memory module.  
 Generally, the model stores information in an abstract 
way and also uses abstract input information. It is an on-
going project and presently we have three independent 
implementations of various parts of the model, two of them 
employing a 2D grid world, the last one using a 3D world 
of the action game Unreal Tournament (Epic 2004). All of 
these simulations employ discrete time, one time step in 
the game equates to a couple of seconds. Conceptually, the 
model integrates following parts: a visual short term mem-
ory (visual STM), a short term egocentric spatial memory 
(work-in-progress), a life-long allocentric spatial memory 
for “what-where” information (LTSM), a life-long auto-
biographic memory (LTEM), and a simple prospective 
memory. The most developed part to date is the LTEM.  

Reasoning mechanism. The agent’s overall architecture is 
depicted in Fig. 1. It is a reminiscence of a classical cogni-
tive AI architecture, from which many IVAs have been 
inspired. The IVA is driven by hierarchical reactive plan-
ning with behavior represented by AND-OR trees. The 
AND-OR tree metaphor works with abstract goals repre-
senting what shall be achieved, and tasks representing how 
to achieve the goals. Typically, every goal can be accom-
plished by several tasks, while every task can be achieved 
by adopting some sub-goals. The agent needs to perform 
only one task to achieve a goal, provided there is no failure 
(hence, OR nodes); but to fulfill all sub-goals to solve a 
task (hence, AND nodes). The tasks that cannot be further 
decomposed are atomic actions, i.e. action primitives. 
Every task may need several resources to be performed, i.e. 
objects. Every top-level goal has its activity level based on 
drives, external events, and a schedule. The competition 
among the goals based on this level takes place within the 
goal structure, which also stores the AND-OR trees. The 
winning goal chooses the most appropriate task (e.g. “to 
eat” goal can chose “take something from the fridge”) and 
passes its template to the task field of the short-term mem-
ory. One goal can interrupt another, in which case the tasks 
of the interrupted top-level goal are remembered and can 
be resumed after the more important goal is achieved.  
 From an AI standpoint, this mechanism capitalizes on 
the BDI framework (Bratman 1987; Wooldridge 2002), 
which is employed in many IVAs. Our agent is reactive, 
meaning it considers its actual state and new percepts in 
every time step, but does not create plans for the future. 
Many IVAs work in this way; even though the BDI allows 
for creating future-oriented plans as well. The task field is 
a basic form of prospective memory (and perhaps working 



memory in a broader sense). In our model, this component 
stores the top-level task the IVA is working on to accom-
plish a top-level goal, its subtasks, and possibly other tasks 
that have been interrupted and are to be resumed. Had we 
employed the future-oriented planning, the memory would 
have also stored the future-oriented tasks.  

Visual short term memory. The visual STM holds tem-
plates of objects seen that passed through a simple atten-
tional filter. Visual STMs and attentional filters are com-
mon in current IVAs, for both engineering and believabil-
ity purposes. The object templates are called phantoms in 
our model. Every object is regarded as a tool for action, i.e. 
it is a set of “affordances” (Gibson 1979), meaning it pos-
sesses pointers to the tasks it can be used as a resource for. 
These pointers are actually perceived directly by the agent 
when observing its environment, a demonstration of a 
high-level representation of input information. Objects in 
our experiments are state-less for the sake of simplifica-
tion, though our simulations allow the objects to have 
states as well. Positions are represented in the 2D Cartesian 
frame of reference. Presently, there is no additional infor-
mation stored in this memory. Due to a decay mechanism, 
there can be about 8-10 phantoms in the STM. The mem-
ory can also temporarily hold information about an object 
recalled from the LTEM (MF at Fig. 1).  

LTEM. The LTEM represents what happened to the agent 
in the past. From the point of view of the IVAs field, this 
particular mechanism presents a novel contribution. The 
memory is a tree-like structure comprising all the possible 
tasks the agent can perform (Fig. 2). During recall, two 
types of entities are added into this structure: phantoms, 
and so-called time pointers. Each phantom in the LTEM 
represents an object used as a resource in a task in a par-
ticular moment, or an object that was not used but attracted 
the agent’s attention. The time pointers represent the 
course of events. The remembering happens continuously; 
phantoms are copied from the visual STM and time point-
ers are created based on the content of the task field. It is 
quite straightforward to extend this mechanism by storing 
other information, e.g. the internal state of the IVA.  
 The important feature of the LTEM is forgetting: unim-
portant episodes (i.e. their time pointers and phantoms) are 
being “eaten away” from the bottom of the tree-like struc-
ture (Fig. 3), typically during the night during “consolida-
tion”. The episode’s importance is determined by its age 
and emotional salience. This mechanism allows the IVA to 
forget details of an episode but still remember its “gist”; 
note, however, that it is still “binary” in some sense: a par-
ticular record either present, or not. Episodes can not be 
blended – presently this is the greatest challenge we face.  
 The tree-like structure mirrors the AND-OR trees stored 
within the goal structure, hence it is determined in advance 
by the designer of the system. Consequently, the IVA is 
not able to store what other agents are doing. To do so 
would require a mechanism that would allow the IVA to 
directly perceive symbols denoting actions of the other 
agents, along with templates of these actions prepro-
grammed into the IVA’s tree-like structure. 
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Fig. 1. The overall architecture of our agent. Note the percep-
tion—action cycle. ENV – the environment. PF – phantoms of the 
visual STM. MF – phantoms retrieved from the spatial long-term 
memory. TF – the task field. LTEM – the autobiographic mem-
ory. LTSM – the long-term spatial memory.   
 
 
 
 
 
 
 
Fig. 2a. The tree-like structure of the LTEM, each box represents 
a task. 2b. Storage of a phantom of an object. The object can be 
used as a resource for two tasks (pointers a1, a2). 2c. The tasks 
are sorted by time pointers during storing automatically. 
 
 
 
 
 
 

Fig. 3. The LTEM forgetting schematically depicted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Spatial memory. The glasses links are highlighted. 
 

LTSM. Our IVA “reads” the structure of the environment 
directly from the map of the world, which corresponds to a 
perfect knowledge of the topology. This is implausible and 



it may result in unbelievable behavior. However, topologi-
cal memory is beyond the scope of our present work 
(Thomas and Donikian 2006 address this issue). We fo-
cused on “what-where” memory, i.e. memory for positions 
of objects that are passive but whose locations can be 
changed by external forces.  This is an issue which has yet 
to be addressed appropriately by the IVAs community (for 
a memory of actively moving objects see Isla and Blum-
berg 2002). If a task requires an object that is not seen by 
the agent, i.e. there is no relevant phantom in the visual 
STM, the IVA should query its LTM and initiate the envi-
ronmental search. However, as the virtual world is dy-
namic, positions of objects can change beyond the agent’s 
capabilities. Therefore, if the IVA queries the LTEM, more 
phantoms concerning one object can be found (“where are 
the glasses: at the bedside table, or at the working table?”). 
Using the simple heuristic “pick the most recent phantom” 
often led the agent to search in the wrong places. 
 How can we improve the performance? Consider the 
objects that humans use. Humans have some organization 
of the placement of their belongings. Things are not placed 
randomly within our surroundings. They are clustered pur-
posefully according to our needs and cultural norms. Some 
objects appear regularly at some places (newspapers inside 
a mailbox). Other objects are almost never being relocated 
(a van Gogh’s painting). Yet others are being relocated so 
often that it is not practical to remember their exact posi-
tion. Consequently, when a human searches for an object, 
often, a sort of stimulus-response mechanism is employed. 
For a different object, several places are inspected in a spe-
cific order; sometimes, the whole house is scrutinized but 
starting at a specific place. This brings us to the notion of 
searching rules, which are basically a sequence of places 
that should be inspected when searching for an object of a 
particular kind. By place we mean any logically coherent 
space abstraction independently of its size, capitalizing on 
hierarchical nature of how humans cluster space; e.g. a 
bedside table, a place between this table and the bed, a 
corner of the living room, a living room, a flat, etc.  
 We have developed a mechanism that estimates the like-
lihood of finding an object at various places. This is the 
long-term spatial memory for “what-where” information 
(the LTSM). We hypothesize that if we apply this mecha-
nism in an IVA living in a human-like environment, believ-
able searching rules will emerge. (We mean the believabil-
ity in an intuitive manner for we had and have no data to 
compare the model with). The LTSM is composed of two 
kinds of nodes: objects and places. Object nodes have 
weighted links with place nodes; these stand for “what-
where” information: a possible occurrence of a particular 
object at a particular place. Now, if an object is found by 
the agent, or comes to the agent’s attention, the links to all 
the locations where it has been found are strengthened (e.g. 
the links from the pen to a) the bedside table, b) to the bed-
room, and c) to the whole flat – Fig. 4). Essentially, the 
searching rules emerge from this hierarchical aspect of the 
representation. How is this possible? First, links to nodes 
representing places at a similar level of complexity ap-

proximates the probability distribution of finding the object 
at given places. Secondly, links to nodes representing more 
abstract places are strengthened more often than links to 
nodes of concrete places. Now, if the LTSM is queried for 
an object position, we can sort the place nodes that the ob-
ject node share an edge with according to the strengths of 
the links scaled by the inverse function of the size of the 
places the place nodes are referring to. The object will be 
looked for according to the ordering that is produced. Con-
crete places are searched directly (e.g. the bedside table) 
while abstract places are to be inspected (e.g. scrutinize the 
kitchen). This leads to a searching process that prefers con-
crete places to abstract ones, provided that there are only a 
few concrete places where the object can be found. Other-
wise, the agent prefers to inspect abstract places. 

Summary of results. The model has been tested in scenar-
ios lasting a couple of days, in which the IVA acted in an 
environment the size of a house. Presently, we are working 
on an environment the size of a city. The information in the 
LTEM is used to construct “personal stories” of the agent. 
Regarding the LTEM, we measured how the memory grew 
over time. The amount of stored data was acceptable when 
forgetting was switched on. Regarding the LTSM, we 
mainly looked for the emergence of searching rules. It 
turned out that they really emerged. In sum, both the 
LTEM and the LTSM, the most important and most devel-
oped parts of the model, behaved well, although several 
limitations were revealed. More details can be found in 
(Brom, Korenko, and Lukavský 2008). 

Conclusion and Future Work 

This paper has considered the possibility of using IVAs to 
aid in the computational modeling of episodic memory. 
The main argument was that virtual environments, such as 
the environments of the action game Unreal Tournament 
(Epic 2004), are somewhat ecologically plausible models 
of real worlds, while IVAs present vehicles for testing the 
episodic memory models. They generate input data for 
these models and allow output data to be meaningfully 
manifested. IVAs have quite elaborate architectures, which 
are not monolithic but modular. This allows for the re-
placement of one module with another and allows new 
mechanisms to be added easily to the existing system. 
Compared to a robotic platform, virtual reality is more 
technically accessible and allows for investigation of 
higher-level phenomena, such as complex episodes or evo-
lution of representations of large environments over long 
periods – aspects of episodic memory that have not been 
much studied computationally yet. The drawback of this is 
a loss of detail. This paper has also suggested that it is in 
principle possible to conduct longitudinal studies in virtual 
reality settings with human subjects and compare the data 
gained with data produced by the models embodied in the 
same virtual setting. Our main work in progress includes: 
• Two mechanisms that extend the autobiographic 

memory. The first operates by a kind of activation-
spreading network similar to the one used in ACT-R 



and LIDA, connecting phantoms of objects that has 
some semantic relations. The second is a neural net-
work that mimics biological clocks, which will replace 
time-pointers. These two mechanisms should help the 
modeling the blending of similar episodes and more 
believable cueing on time. 

• A mechanism that will learn space representations.  
Currently the LTSM uses hard-wired representations. 

• A short-term egocentric spatial module which takes 
into account some psychological data.   

• Researching the possibility of underpinning the auto-
biographic memory by a connectionist architecture. 
One possibility being considered is the Kanerva’s 
space distributed memory (Kanerva 1988), an inspira-
tion coming from the LIDA architecture.  
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