
Abstract
Hierarchical reactive methods are very popular in
the field of controlling complex artificial intelligent
agents. In this paper, we argue that they cannot
cope with human-like behaviour. We present a
detailed analysis of behaviour of a relatively simple
human-like artificial agent, an artificial gardener,
whose action selection model is based on hierarchi-
cal reactive planning. It is shown that although the
agent has no troubles with “survival” in a complex
and dynamic environment, its behaviour is not
believable in some situations. However, instead of
rejecting the judged methodology, we propose how
to extend it using certain features of other action
selection models.

1 Introduction
There are two main characteristics that make hierarchical
reactive methods of action selection popular in the field of
controlling complex artificial intelligent agents. The first is
a top-down recursive decomposition of top-level agents’
behaviours to sub-behaviours or sequences of simple
actions. This decomposition eases the design. The second is
that an agent’s decision procedure focuses attention only to
most relevant goals, while ignoring the rest of them
temporarily. All reactive methods allow for quick switching
between tasks according to the changing environment and
agent’s internal drives. Consequently, reactive hierarchies
reduce combinatorial complexity of control and still can
cope with large, unpredictable, real-time environments.

We are working on a research and educational toolkit for
prototyping human-like artificial agents, i.e. the agents with
the objective to imitate behaviour of humans (h-agents in
the following text) [Brom et al., 2005]. One of our
motivations on this research effort is to find an appropriate
methodology for controlling h-agents. The methodology
must allow an easy behavioural design and must be
computationally effective. Thanks to the aforementioned
advantages of reactive hierarchies, we turned our attention
to this branch of methods. So far, we have prototyped

∗ This research was partially supported by the Program
"Information Society" under project 1ET100300517.

several h-agents “living” in a family house utilizing reactive
hierarchies in order to ascertain their applicability.

As was expected, partially owing to Bryson’s analysis
[2000], our h-agents had no troubles with “survival”, that
means with satisfying own needs. However, it was not
always straightforward to design their behaviour so that it
was believable enough. Consequently, h-agents did not
behave naturally in some situations—i.e., they would not
pass Turing test. Because the h-agents otherwise performed
well, we aimed at isolating problems and extending pure
hierarchical reactive approach, instead of rejecting it.

In this paper, we present observed limitations on
believability and suggest how to overcome them. We
present the results in a case-study example of an artificial
gardener, whose behaviour is structured by so-called simple
hierarchical reactive planning (S-HRP). For features that
could extend this model, we seek both inside and outside of
hierarchical reactive family.

In Section 2, we briefly introduce our toolkit and detail
our motivation. Then, we describe morning tasks of a
“natural gardener”. This story represents desired behaviour.
In Section 4, we formalize the S-HRP method and describe
behaviour of the artificial gardener. In Section 5, we present
the results, together with suggestions on extensions of S-
HRP. At the end, we discuss applicability of the extended S-
HRP considering related action selection models.

2 Motivation: Project Ents
Simulations of artificial humans are becoming increasingly
more popular both in the academic and industrial domains.
Typical applications include computer games, virtual
storytelling, entertainment applications, military simulations
and behavioural modelling (e.g. [Prendinger et al., 2004]).

From the technical point of view, each artificial human is
viewed as an autonomous intelligent agent [Wooldridge,
2002] that carries out a diverse set of goals in a large
dynamic environment with the objective to simulate
believable behaviour of humans; this agent is a so-called h-
agent. One of the key issues in this research field is design
of a mind of h-agents (i.e., a memory and a procedure that
decides what to do next—an action selection algorithm).

Although various theoretical solutions of this issue have
been proposed so far (e.g. [Newell, 1990]), and a lot of

Hierarchical reactive planning: Where is its limit?∗

Cyril Brom
Charles University in Prague

Faculty of Mathematics and Physics
Malostranské nám. 2/25, Prague, Czech Republic

brom@ksvi.mff.cuni.cz

presented at MNAS workshop 2005, Edinburgh, Scotland

individual applications using h-agents and languages for
their programming exist, it is hard to find any complex
toolkit that would couple an artificial environment similar to
natural world, a neat graphical user interface and a language
for prototyping h-agents’ minds by means of various dif-
ferent techniques. Such a toolkit would simplify develop-
ment of h-agents, enable verifying theories and it could
serve as an educational tool for students.

The project Ents [Brom et al., 2005] is a first generation
of a toolkit that addresses these issues. It provides:

• A customizable artificial environment similar to natural
world, which allows the h-agent to carry out complex
human-like tasks (among others eating, sleeping and
going to toilet).

• E language, which that enables modelling of h-agents
using various different techniques (including for
example hierarchical reactive planning, hierarchical
finite state machines, and classical planning).

• A linguistic module, which enables talking to h-agents
(in Czech language).

• The tool allows for interaction between the h-agents,
and between h-agent and a user-agent.

Nevertheless, a toolkit is not just a programming vehicle
and a bundle of debugging tools. It is also a design
methodology. Therefore, we are focused not only on how to
program h-agents, but also on how to design their behaviour
simply. We are now in the phase of evaluation of the first
generation of the toolkit and of various models of action
selection, while specifying requirements on the toolkit’s
second generation. Hence, we evaluate, whether hierarchical
reactive planning is the methodology appropriate for h-
agents domain; and that is the topic of this paper.

The artificial gardener, whose behaviour is observed in
the case-study, is prototyped in the project Ents. A model of
a “family-house” is used. A screenshot from the simulation
is depicted in Fig. 1. More information on the project is
available at: http://ckl.ms.mff.cuni.cz/~bojar/enti/.

3 The challenge: natural behaviour
This section describes a story of a typical human that spends
his morning gardening. Behaviour of the artificial gardener
is modelled according to this “natural model” and the course
of resulting behaviour is compared to it. In what follows, the
artificial gardener will be denoted as the a-gardener and its
human model as the n-gardener (we will use masculine for
the n-gardener, neuter for the a-gardener and feminine for
both an artificial and a natural neighbour).

Behaviour is observed from the moment the gardeners are
going to the garden to the moment they leave it. Two tasks
are intended: watering and weeding. The scenario follows:

Because n-gardener knows that a garden hose is
punctured, he decides to water by a can. He goes to a
chamber for tools. Because he is intended to weeding
afterwards, he does not find only a can, but also a bucket, a
weeder and a little scoop. Then he takes all of that (the

weeder and the little scoop in the bucket) and goes to the
garden. He whistles from time to time for joy.

In the course of watering, two events happen:
1. A neighbour comes and asks him for a can. He

promises her to bring the can after he finishes the
watering.

2. Nature calls. He puts down the can and goes to the
toilet. Then he returns and continues with the task.

When he finishes watering, he goes to lend the can to the
neighbour. Then he starts weeding.

In the course of weeding, following event happen:
3. The neighbour returns the can. The n-gardener leaves

the can as she has put it down.
After he completes weeding, he puts all the tools into the

chamber. Then he goes to eat to the dining room.

4 A-gardener: the action selection model
In this section we explain the action selection model of the
a-gardener—simple hierarchical reactive planning, the S-
HRP, and describe behaviour of the a-gardener. We remark
that SHRP resembles the planning method of Bryson [2001].

4.1 Simple hierarchical reactive planning
S-HRP is a top-down, reactive method. The former means
that the overall behaviour is decomposed into specific goals,
which are recursively decomposed into smaller subgoals,
until atomic actions are reached. The latter means that the
next action an agent has to perform is not selected from a
plan generated before an execution starts, but it is computed
instantly by means of context-based triggers that
continuously monitor an environment or the agent’s internal
drives. Reactive planners do not “look ahead”; instead, they
compute just the next act in every instant. In S-HRP, the
problem of what to do next is reduced to switching among
sets of triggers associated with some subgoals according to
changing circumstances.

S-HRP provides four behavioural structures: atomic
actions, processes, top-level goals and sequences.

Figure 1: The GUI of the toolkit Ents. From the left: the user-
agent and the artificial gardener.

• An atomic action (a-action) is the primitive operation
an h-agent can do. E.g. aStep(hAgentID,placeID).

• A sequence is a simple sequence of a-actions or
processes, e.g. <a1, a2, p1, a3, p2> (p denotes a process,
a denotes an action).

• A process is a set of process-steps (p-steps), which are
quadruples <p, r, c, a>, where p is a priority local to
the process (such that p-steps of one process are total-
ordered by their priorities), r is a releaser, c is an
optional context and a is an action. Releasers and
contexts are boolean conditions, an action can be an a-
action, a subprocess or a sequence. In the following we
will write directly “priorities of releasers” instead of
“priorities of p-steps”.

• A top-level goal is quadruple <pr, r, c, f>, where pr is a
process associated with achieving the goal, r and c are
releaser and context respectively, and f is a function of
time that serves as a floating priority of the goal.

Subprocesses are nested under each top-level goal in a
tree-like hierarchy. Leaves represent a-actions. The behav-
iour of one agent is represented by a set of such behavioural
structures and this set is called a betree (it comes from a
“behavioural tree”). The betree is always provided in
advance by a behavioural programmer/designer and it is not
further modified when an h-agent is running (in S-HRP).

All p-steps and top-level goals of the betree are either
active or preactive or inactive or sleeping, all a-actions and
processes are either executed or not-executed.

At every instant, at least on of top-level goals’ releasers
must hold. The highest priority goal with the holding
releaser is active, the other goals with holding releasers are
preactive; the rest is inactive.

A sequence, which is a child of an active node (i.e. a p-
step), is executed; other sequences are not-executed. A
process or an a-action, which is a child of an active node
(i.e. a p-step or a top-level goal), is executed. Exactly one
process or exactly one a-action from an executed sequence
is also executed (the one just being performed). The other
processes and the a-actions are not-executed.

Each executed process is associated with several p-steps.
At every instant, at least one of their releasers must fire. The
p-step (under an executed process) with holding releaser and
with the highest priority is called active. Its siblings with
holding releasers (and lower priority) are called preactive.
Its siblings without a holding releaser (both with higher and
lower priority) are called inactive. All p-steps under a not-
executed process are sleeping. In the following, we will
often write directly “active/ inactive/... releasers” instead of
“active/inactive/... p-steps/goals”.

An example of a betree is depicted in Figure 2. Figure 3
shows the action selection algorithm. This algorithm is
performed in every time-step by a control unit of an h-agent.
When the simulation starts, all nodes of the given betree are
marked as not-executed, or sleeping, except for top-level
goals, which are inactive.

When the algorithm starts, it evaluates all releasers of
top-level goals and identifies an executed process (SELECT-
GOAL). Then it recursively finds in a breath-first manner all
active, preactive and inactive releasers in the upper layer of
the subtree of the executed element (A-S). The active re-
leaser in a leaf triggers an a-action and finishes the evalua-
tion (26). A non-leaf active releaser expands the evaluation

… …

4 3 2 1

3 2 1 2

2 1

active goal

preactive goal

executed a-action/process
not-executed a-action/process

inactive goal

active p-step

preactive p-step

inactive p-step

sleeping p-step

1

these releasers
fire, but their
priority is low…

this releaser does not
fire, but it is evaluated…

1st layer

2nd layer

3rd layer

Fig. 2: An example of a betree. The priorities are written above the
p-steps.

SELECT-GOAL(betree):
(1) eval ← all releasers of top-level goals of betree % they “never sleep”
(2) evaluated ← evaluate eval
(3) set active/preactive/inactive top-level goals based on evaluated
(4) set executed/not-executed processes of top-level goals
(5) p-steps ← all p-steps of executed process
(6) A-S(third layer of betree, p-steps, betree) % 3rd layer – see Fig. 2
A-S(layer, p-steps, betree):
(7) releasers ← all releasers of p-steps
(8) eval ← evaluate releasers
(9) set active/preactive/inactive p-steps from p-steps based on eval
(10) set all other nodes % i.e. p-steps % in the layer as sleeping
(11) act ← the action of the active p-step of p-steps
(12) if act differs from previously executed action then
(13) set previously executed flag as not-executed
(14) if act is "a-action" or "process" then
(15) EXEC(act, layer, betree)
(16) else if act is "sequence" then
(17) if act is not executed then set act as executed
(18) if act already contains executed element then
(19) set this element as not-executed % element = process or
(20) if this element is not the last element of act then % a-action
(21) EXEC(the next element of act, layer, betree)
(22) otherwise % restart the sequence:
(23) EXEC(the first element of act, layer, betree)
EXEC(act, layer, betree):
(24) set act as executed
(25) if act is "a-action" then
(26) execute(Act)
(27) otherwise % act is now a "process"
(28) A-S(next layer of betree, all p-steps of act, betree)

Fig. 3: The S-HRP evaluation algorithm.

presented at MNAS workshop 2005, Edinburgh, Scotland

to the lower layer of the betree (28). Because there is
exactly one active releaser in each layer, there is also ex-
actly one active p-step in each layer. Subsequently, exactly
one a-action can be performed in the given time step. This
a-action can be performed several times, until another leaf
releaser becomes active. An agent’s attention is switched to
another branch of the betree, i.e. to another subtask, when
previously preactive or inactive releaser is activated. That
happens either when an executed process is finished (i.e. its
releaser holds not more), or when external/internal circum-
stances are changed. As exactly one branch of the betree can
be executed, there is no parallelism in S-HRP.

The asymptotic complexity of the S-HRP-evaluation is
O(p.l.a), where l is the depth of the betree, p an average
number of p-steps of one executed process and a a constant
that limits the time for evaluation of one releaser; provided
that releasers are re-evaluated in every time step.
(Complexity can be reduced significantly by utilizing a
variant of RETE algorithm [Forgy, 1982].)

The purpose of a context is to interrupt currently executed
action, even if the releaser holds. As contexts are typically
conjunctions of releasers with higher priorities, they are
omitted from the description of the algorithm for the sake of
simplicity (it is possible to express for example timeouts or
numbers of retries by means of them). Scheduling of top-
level goals is enabled by their floating priorities.

The four elements of S-HRP are similar to the elements
of Byson’s POSH action selection plans [2001] (primitive
actions, action patterns, competences and drive collections).
The whole S-HRP-betree resembles to AND-OR tree with
only AND branches, which are used for example in total-
order simple task network planning [Ghallab et al., 2004].

4.2 Behaviour of the artificial gardener
The behavioural structure of the a-gardener is depicted in
Figure 5. For simplicity, library functions like searching for
an object or drinking are not detailed. Figure 4 shows the
priorities of top-level goals and the whole course of the
behaviour. The behaviour of the a-gardener is programmed
in the language E of the project Ent [Brom et al., 2005].

5 Results: observed limitations
In this section, we present observed limitations on
believability of behaviour of the artificial gardener. The
results clearly reveal four main flaws of the a-gardener and
thus of the S-HRP method. First, the S-HRP betree does not
allow for intentions, the best one could do in S-HRP is to
associate intentions with top-level goals. Second, concurrent
processes are not allowed—just one a-action can be
performed in each time step. Third, some situations require
planning, at least to some extent, but S-HRP avoids classical
planning. And finally, strong need for transition behaviours,
i.e. small processes that applies during task switching, has
been recognised. Unfortunately, it is not straightforward to
express them in S-HRP. We anticipate that some of these
limitations can be avoided by utilizing a different reactive
hierarchical method, but others are more fundamental.

5.1 Intentions
Case 1. Choosing an alternative:
N-gardener: Before he starts watering, he decides whether to
hose or to water by a can.
A-gardener: When the watering goal becomes active (i.e.
what to do), the a-gardener is not able to choose between
alternatives (i.e. how to do), because exactly one process is
associated with the top-level goal.

watering
(a releaser: true)

toilet
(a releaser: when it must go...)

whistling
(a releaser: true)

50

5

0

30 weeding
(a releaser: true)20

time

priority

Figure 4: Priorities of top-level goals of the a-gardener. The resulting
course of behaviour (without interaction with the user-agent) is

indicated by the bold line. The time of switching from watering to
toilet is based on the incremental rate of the internal drive underlying

“when it must go” releaser.

w atering the garden
["a t least one bed is dry"]

• find& take(can) ["can is not he ld"]
• fill(can) ["can is em pty"]
• fixa te-on& goto-to("dry", bed) ["a bed is dry"]

w atering(bed, can) ["the bed is still d ry & gardener is next-to"]

w eeding the garden
["a t least one bed is

w eedy"]

• find& take(bucket) ["bucket is not have been got"]
• find& take(w eeder) ["w eeder is not have been got"]
• find& take(little scoop) ["little scoop is not have been got"]
• em pty(bucket) ["fu ll bucket"]
• fixa te-on& go-to("w eedy", bed) ["a bed is w eedy"]
{ w eeding(bed, scoop, w eeder); • m ove-to(w eeds, bucket) }

["the bad is s till w eedy & gardener is next-to"]

w histling

to ile t to ile t(to ile t) ["gardener is next-to"]
• find& go-to(to ile t)

w h is tle

c lean ing up a fter w atering
["can is not c leaned up"] • c lean-up(can) ["can is not c leaned up"]

w atering

w eed ing

• c lean-up(little scoop) [" little scoop is not c leaned up"]
• c lean-up(w eeder) ["w eeder is not c leaned up"]
• c lean-up(bucket) ["bucket is not c leaned up"]

c lean ing up a fter w eeding
["too ls are not c leaned up"]

Figure 5: The schema of behaviour of the a-
gardener. Parenthesis denotes parameters,
brackets denote releasers, angle brackets stand
for a sequence. Arrows denote priorities, the
p-step with the highest priority is at the top.
A-actions are marked with (), subgoals are
marked with (•). Contexts are omitted for
simplicity.

It is noteworthy, that contrary to other
hierarchical reactive methods (e.g. [Bryson,
2001]), the p-steps are written in the
reversed-order (the first thing done is on
the top) and the releasers are expressed in a
negative form. The reason for this is to
make the programming simpler.

Case 2. Adding a new intention:
N-gardener: When a neighbour asks for a can, the n-
gardener promises her to bring her the can after he finishes
watering and then, he becomes intended to this task.
A-gardener: It completely lacks capability to add itself a
new intention, that means a new top-level goal.

Comment: Changes of intentions and feasibility of
choosing alternative ways how to accomplish a goal are
basic requirements on action selection model for h-agents.
These features are not built-ins of S-HRP, but are well-
defined in others hierarchical reactive architectures, namely
in the Belief Desire Intention (BDI) [Wooldridge, 2002]. S-
HRP could be pushed towards BDI by specifying simple
goal driven hierarchical reactive planning (S-GHRP):

1. A new structure of goal is introduced. It is a quintuple
<{pr}, me, r, c, f>, where {pr} is a set of processes that
can accomplish the goal, me is a procedure for means-
ends reasoning among the processes, and r, c and f are
a releaser, a context and a priority, a function of time,
respectively. A top-level goal is just an ordinary goal.

2. An extended sequence is a simple sequence of a-
actions, processes or goals.

3. A p-step is augmented as follows: it is a quadruple <p,
r, c, ga>, where ga is an extended action, i.e. a subproc-
ess or an a-action or a goal or an extended sequence.

4. A S-GHRP betree is partially modifiable on-line. When
an h-agent is running, a new goal can be added to the
betree, both top-level one and a subgoal.

5. In S-GHRP, we say that a goal is active, preactive,
inactive or sleeping iff the p-step encapsulating the
goal (or a sequence with the goal) is active, preactive,
inactive or sleeping, respectively. Top-level goals are
never sleeping, but all top-level goals that are not
intended (i.e. not a part of the betree) can be con-
sidered as such. From the other hand all not-sleeping
goals can be regarded as intentions.

6. The EXEC procedure of the algorithm in Fig. 2 is called
also when the act variable contains a goal (line (14))
and it performs me reasoning in this case (line (25)).

Notice, that the set of all active and preactive elements of
the S-GHRP betree is similar to so-called intention structure
of JAM architecture [Marcus, 1999], which is an
implementation of BDI. We suggest that implementations of
BDI can be exploited in solving the issue on intentions.

5.2 Concurrent processes and interleaving

Case 3. Pure parallelism:
N-gardener: When he is watering, he whistles from time to
time for joy.
A-gardener: It lacks capability to do two tasks
simultaneously.

Comment: A simulated body of a believable h-agent should
be viewed as a group of semi-independent resources that can
perform a-actions concurrently, and S-GHRP should be
applied in parallel version, where more active nodes can co-
exist in one betree-layer. This idea is hardly surprising and,
in fact, a lot of reactive hierarchies address this issue (e.g.
[Blumberg, 1996; Bryson, 2001]). It is also noteworthy, that
modelling of preferences’ combination may be required.
That means choosing a compromise action when two (or
more) concurrent tasks compete for the same resource (for a
discussion on this topic see [Tyrrell, 1993, p. 185-187]).

Case 4. Preparation:
N-gardener: When he is beginning watering, he goes to a
chamber and finds a can. Because he knows that he will
weed afterwards, he finds also a bucket, and puts a weeder
and a little scoop into it. Then he takes the bucket and the
can and goes to the garden.
A-gardener: When it is beginning watering, it takes a can
from a chamber and goes to the garden. When it finishes the
watering, it returns to the chamber for a bucket, a weeder
and a little scoop.

Comment: Two goals conflict, active watering and inactive
weeding, but even though inactive, weeding has to manifest
itself in order to save the second trip to the chamber. Goals
have to be interleaved. The question is how to give “losers”
chances to influence overall behaviour out of their time-
slots. Classical solution is to use a planning technique, in
this case partial-order simple task network planning (STN)
would be appropriate. Unfortunately, it is not straightfor-
ward (and perhaps even not biologically plausible) to
combine reactive methods with this kind of planning.
Therefore, we suggest another solution based on semi-
autonomous fuzzy triggers:

1. The priority function of a goal, f, is replaced with the
set of fuzzy-triggers {t+}.

2. A fuzzy trigger is like a releaser in that it continuously
monitors an environment, an agent’s body or its mind
in order to recognise some relevant situations. Unlike a
releaser, the trigger is able to invoke resource
negotiation procedure ne(pow) between an active goal
(or goals) and an inactive/preactive applicant. pow is
the actual power of the trigger (a value <0, 1>).

3. Based on the result of ne the applicant can either
subsume the active goal, or the active goal can let the
“loser” manifest itself shortly, or the me procedure of
the active goal can switch to another process1.

The challenging issue is to identify situations that should
invoke negotiation. One of such situations is: an h-agent is
attracted by an object that is supposed to be use later. This
notion of semi-autonomous triggers puts S-GHRP a bit
towards Minsky’s Society of Mind [1985]. A fundamental
question on efficiency of this method rises. What is more

1 We are working on a prototype implementation of negotiation

procedure using Soar [Newell, 1990].

presented at MNAS workshop 2005, Edinburgh, Scotland

computationally effective? STN planning or a bundle of
reactive triggers and negotiation procedures?

Case 5. Task inhibition:
(In this case, we assume that a goal of lending a can to the
neighbour is intended also by the a-gardener.)
N-gardener: When he finishes watering, he goes to the
neighbour and lends her the can.
A-gardener: When it finishes watering, it puts the can to the
chamber, then it picks it immediately up and goes to lend it
to the neighbour.

Comment: There is another kind of situation that should be
recognised by a trigger: the h-agent attempts to do a task
whose effect will be later cancelled. This situation is unlike
Case 4 because the result of negotiation is temporal
inhibition of a subgoal. To describe this, a new type of
trigger is useful: an inhibition trigger. It temporarily inhibits
a releaser of a p-step that would invoke a conflicting goal
(i.e. putting the can to the chamber).

Extended definition of a goal is: the goal is a quintuple
<{pr}, me, r, c, {t+, t-}>. t+ and t- are tuples <t, ne>, where t
is the trigger and ne is the negotiation procedure. The
difference between t+ and t- is that t+ starts negotiation in
order to activate the goal, while t- starts negotiation in order
to inhibit a releaser of a p-step with an undesirable goal.

Inhibition is a fundamental feature of architectures like of
Maes [1991] (an inhibition link) or Minsky [1985] (a
suppressor and a censor agent). Its need is also mention for
example in [Charles et al., 2002]. Nevertheless, it is
typically not a built-in of reactive hierarchies. We will call
this kind of extended S-HRP negotiatory goal driven
hierarchical reactive planning, the N-GHRP.

5.3 Stop and think

Case 6. Seeing a distance:
(This case extends the scenario from Section 2 as it de-
scribes one situation more precisely.)
N-gardener: When he is preparing tools for weeding, he first
looks around and then chooses almost optimal way how to
pick up a bucket, a weeder and a little scoop.
A-gardener: When it is preparing tools for weeding, it
follows the priorities of the p-steps and no matter how the
objects are far it always picks up the bucket, then the
weeder and finally the little scoop (see Fig. 6).

Comment: This is an observation of a task with complex
appetitive behaviour. A question is what we humans do in
these situations. We think that two cases should be
distinguished. The first is when a human perceive all objects

of the interest at once and there are less then three or four of
these objects. The second case encompasses more
complicated situations with hidden objects or more objects
on the scene. We think that in the former case the human
directly perceive the order of how to pick the objects up2,
while in the latter case the human consciously stops and
thinks a bit about what to do next.

For an a-gardener: The latter case calls for a conventional
planner that should be invoked by the first subprocess of the
process with complex appetitive behaviour. The purpose is
to re-arrange the order of appetitive subtasks (i.e. to change
priorities of p-steps—it corresponds to stop and think
activity). The former, direct perceiving, can be simulated by
using releasers and triggers for each possible ordering.

Case 7. A sharp timeout:
(We assume a can is not in the chamber and must be looked
for.)
N-gardener: He remembers that the can is often in the
chamber. When he does not find it there, he starts searching
it within the whole house. As time is passing, he becomes
more and more angry. After a while, he wants to give it up,
but then he suddenly spot the can in the garage. He picks it
up and returns to the garden.
A-gardener: It remembers that the can is often in the
chamber. When it does not find it there, it starts searching it
within the whole house. After 14.55 minutes of searching, it
catches sight of the can in the dining room. It makes two
steps towards the can, but just before it reaches the can, the
timeout (15 min.) expires. The task of watering is failed.

Comment: A sharp timeout can be expressed directly in S-
HRP by a context of a p-step. We suggest that instead of the
sharp timeout, a soft one should be used. It incorporates not
only time, but also appropriate environmental/body/mental
states. N-GHRP triggers serve this purpose better than
contexts, because they can facilitate negotiation.

5.4 Transition behaviour

Case 8. No transition:
N-gardener: When nature calls if he is watering, he puts
down the can and goes to the toilet.
A-gardener: If it needs to go to the toilet during watering, it
goes with the can in its hands and puts it down when in the
toilet.

Comment: We have stumbled on so-called cleaning
behaviour, which is in the case of humans performed in
some of its form as a consequent of a consumatory
behaviour almost ever. An example of pure cleaning is
cleaning up the can. This behaviour can be simply described
in S-HRP by adding one p-step after the consumatory act.
However, special kind of cleaning behaviours, transitions,
that mean short behaviours that should automatically apply

2 Here, we refer to the concept of an affordance and direct

perceiving of James J. Gibson [1979]. However, the discussion on
this topic is out of the scope of this paper.

1

2

3

Fig. 6: The order in which the n-gardener picks the objects up is fixed.

when two “major” ones are being switched, complicate the
situation. An example of transition is putting away the can.
The need for transitions is noted for example in [Blumberg,
1996; Mateas, 2002]. The problem is that they can not be
simply expressed in S-HRP.

We suggest that both for pure cleaning and for transitions
negotiation from N-GHRP could be utilised as follows:

1. As the result of negotiation, the incoming goal should
give a small amount of time to perform cleaning or
transition process to an outgoing goal. The amount of
time should be proportional to the ratio of the
necessities of behaviours.

2. If an incoming goal is very urgent, transition may be
also performed as a part of it. As an example, assume a
case of an attack—the gardener might throw the
currently holding object at the aggressor, instead of
putting it down.

5.5 Other lessons learned
Here, we briefly mention the remnant of observations.

Postponement. When the task A is aimed to suspend the
task B (e.g. eating watering) postponement could be
negotiated if B is almost finished. This is similar to Case
7—when a-gardener is finishing watering, so-called small
variant of eating could be performed (e.g. eating a tomato
from the garden instead of lunching), or watering should not
be interrupted at all.

Quantities. Serious problem appears when an h-agent is
confronted with huge amount of objects it is potentially
interested in. Consider an h-agent aimed to eat a carrot,
which needs to be pulled out from a garden bed first—there
are hundreds of such carrots in the garden and typical
cognitive h-agent’s perception system that is designed to
perceive all of them, will push this pile into the h-agents’
memory. We suggest that in such a situation, the h-agent
should instead of perceiving some concrete objects rather
see a container, e.g. the garden bed.

Blocking behaviour. The common problem is a situation in
which a process A shortly corrupts its own context. A
correction process B (typically a sibling from the betree)
could fix the situation, but then A corrupts the context
again—that only leads to an infinite loop. Consider the a-
gardener who must first hold the can to be able to fill it, but
in order to turn water on, it must temporarily put it down. It
is the same problem as with Herbert, the robot retrieving
cans, that blocked by its arm its camera focused on the can,
when it had begun to pick the can up [Connell, 1990]. An h-
agent must use a memory to remember that it has to avoid
execution of the correction process.

6 Discussion: S-HRP vs. related AI models
We have shown several situations in which S-HRP fails as
the action selection model for believable h-agents. We
conclude that this does not mean the methodology has to be
discarded, but rather reviewed instead. Considering the fact

that h-agents carry out large number of complex goals in
unpredictable and dynamic environments, the hierarchies
together with reactive approach must be utilised anyway.
There are two main reasons for this. First, hierarchies reduce
design complexity. Second, because believable h-agents are
aimed for real simulations with several h-agents running on
a single PC, their action selection model must be computa-
tionally effective (h-agents belong to the field of applied AI,
rather then computational psychology or ethology). There-
fore, we think that models based on spreading activation in a
flat network (e.g. [Maes, 1991]) or in a hierarchical network
(e.g. [Tyrrell, 1993; Negatu, 2003]) would not fit, because
they generally suffer from combinatorial complexity.

What does it mean to review S-HRP? S-HRP is partially
based on Bryson’s [2001] basic reactive plans. We suggest
that it can be simply extended into S-GHRP by adding the
concept of goals. S-GHRP is in fact BDI architecture (e.g.
[Wooldridge, 2002]), nevertheless, we suggest that GHRP
can be pushed further towards another approaches. Namely,
we suggest adding “stop-and-think” planner (but not con-
ventional planning in general) and semi-autonomous trig-
gers that are able to cause resource negotiation, and inhibit
an undesirable goal. The second concept is inspired by
Minsky’s Society of Mind [1986] and Maes [1991]. We
have called such architecture “negotiatory goal driven
hierarchical reactive planning”, the N-GHRP, and we have
recommended applying its parallel version. As N-GHRP
combines reactive approach with conventional planning, it
might be viewed as a hybrid architecture representative.

What is the contribution? We see the main contribution of
the architecture in that the triggers are able to break the
monolithical reasoning procedure into relatively indepen-
dent modules. Notice, that decomposition of the reasoning
procedure is neither decomposition of the body (e.g.
[Blumberg, 1996]) nor decomposition of overall behaviour
into independent behavioural-modules (e.g. [Bryson, 2003]).
It is yet another kind of decomposition.

The decomposition of reasoning blurs the borders
between behaviours and makes the alternation among
prescripted plans more “smooth” and thus natural and
believable (contrary to “rigid ‘artificial’ switching” in S-
HRP and S-GHRP/BDI). For example, sharp timeouts can
be avoided, undesirable tasks can be inhibited, preactive
behaviour can be demonstrated shortly without its timeslots,
transitions can be expressed and postponement can be
negotiated.

There is yet another branch of methods that is suitable for
believable h-agents. It is any-time planning. For example,
Nareyek uses any-time planning based on structural con-
strained satisfaction [2005] and Charles et al. exploit a
variant of hierarchical task network planning and heuristic
search planning [2002]. We think that anytime planning do
not allow for as easy design as reactive hierarchies do.
However, the correct comparison between N-GHRP and
any-time planning methods is a question for future research.

S-HRP and similar methodologies belongs to the branch
of so-called forward-chaining methods. To complete the

presented at MNAS workshop 2005, Edinburgh, Scotland

picture, we must mention Soar architecture [Newell, 1990],
which is one of the most known cognitive forward-chaining
architectures. Soar is also exploited in h-agents simulations.
However, it is rather a powerful programming vehicle, not a
design methodology. For example, S-GHRP as well as
simple task network planning can be programmed in it.

7 Conclusion
In this paper, we have argued that hierarchical reactive
planning is not able to cope with human-like behaviour. We
have shown several limitations of this branch of methods
through behavioural analysis of an artificial gardener, whose
behaviour have been designed according to simple hierar-
chical reactive planning, the S-HRP.

The main limitations of S-HRP include: 1) impossibility
of adding new goals/intentions during execution, 2) the
shortage of parallel execution and task interleaving, 3) the
impossibility of inhibition an undesirable subtask, 4) fixed-
ordered steps in appetitive behaviour, 5) rigid “unnatural”
switching between behaviours, which disable for example
expressing of transition behaviours and postponement. The
first one is the limitation only of the S-HRP method. The
second one is the limitation of all the methods that do not
allow parallel execution and/or preactive behaviours. The
third is the limitation of methods that cannot express
inhibition. The last two are limitations of the whole branch
of reactive hierarchical family.

We have suggested a solution to overcome these by
extending S-HRP to N-GHRP, negotiatory goal driven
hierarchical reactive planning. It is a hybrid architecture
representative. The precise comparison between N-GHRP
and other hybrid approaches, namely any-time planning, is a
question for future research.

Acknowledgement
The application Ents was developed as a student project at
Faculty of Mathematics—Physics, Charles University,
Prague. Thanks to Vladislav Kuboň for supervising the
project and to Ondřej Bojar, Milan Hladík, Vojtěch Toman,
David Voňka and Mikuláš Vejlupek for their contribution.
Thanks also to Rudolf Kryl, Iveta Mrázová, Kamamúra
Ryšlink, Terezka Slunečnice, Matěj Hoffmann, Tomáš
Bureš and three anonymous referees for their suggestions
and comments.

References
[Blumberg, 1996] Bruce M. Blumberg. Old Tricks, New Dogs:

Ethology and Interactive Creatures. PhD thesis, MIT Media
Laboratory, Learning and Common Sense Selection, 1996

[Brom et al., 2005] Ondřej Bojar, Cyril Brom, Milan Hladík,
Vojtěch Toman. The Project ENTs: Towards Modeling
Human-like Artificial Agents. In SOFSEM 2005
Communications, pages 111–122, Liptovský Ján, Slovak
Republic, January 2005.

[Bryson, 2000] Joanna Bryson. Hierarchy and Sequence vs. Full
Parallelism in Action Selection. In: The Sixth International

Conference on the Simulation of Adaptive Behaviour (SAB00),
pages 147–156. MIT Press, Ma, Cambridge, USA, 2000.

[Bryson, 2001] Joanna Bryson. Intelligence by Design: Principles
of Modularity and Coordination for Engineering Complex
Adaptive Agents. PhD thesis, Massachusetts Institute of
Technology, 2001.

[Bryson, 2003] Joanna Bryson. The Behaviour-Oriented Design of
Modular Agent Intelligence. In: Proceedings of Agent
Technologies, Infrastructures, Tools, and Applications for E-
Services, pages 61-79, Springer LNCS 2592, Germany, 2003.

[Charles et al., 2002] Fred Charles, Miguel Lozano, Steven J.
Mead, Alicia F. Bisquerra, Marc Cavazza. Planning
Formalisms and Authoring in Interactive Storytelling. In: First
International Conference on Technologies for Interactive
Digital Storytelling and Entertainment, Germany, 2002.

[Connell, 1990] Jonathan H. Connell. Minimalist Mobile Robotics:
A Colony-style Architecture for a Mobile Robot. Academic
Press, Cambridge, Ma, 1990.

[Forgy, 1982] Charles L. Forgy. Rete: A Fast Algorithm for the
Many Pattern/Many Object Pattern Match Problem. In:
Artificial Intelligence, 19, pages 17-37, 1982.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, Paolo Traverso.
Hierarchical Task Network Planning. In: Automated Planning:
Theory and Practice, chapter 11, Morgan Kaufmann
Publishers, San Francisco, Ca, USA, 2004

[Gibson, 1979] James J. Gibson. The Ecological Approach to
Visual Perception. Boston: Houghton Miffin, 1979.

[Maes, 1991] Pattie Maes. The agent network architecture (ANA).
In: SIGART Bulletin, 2 (4), pages 115–120, 1991.

[Marcus, 1999] Marcus J. Huber. JAM: A BDI-theoretic mobile
agent architecture. In: Proc. of 3rd International Conference
on Autonomous Agents, pages 236-243, Seatle, USA, 1999.

[Mateas, 2002] Michael Mateas. Interactive Drama, Art and
Artificial Intelligence. Ph.D. Dissertation. Department of
Computer Science, Carnegie Mellon University, 2002.

[Minsky, 1985] Marvin Minsky. The Society of Mind. Simon and
Schuster Inc., 1985

[Nareyek, 2005] Alexander Nareyek. Project Excalibur. An on-
going project on agents for computer games. Homepage:
http://www.ai-center.com/projects/ excalibur/

[Negatu, 2003] Aregahegn S. Negatu, Stan Franklin. An Action
Selection Mechanism for “Conscious” Software Agents. In:
Cognitive Science Quarterly, 2, pages 363-386, 2002.

[Newel, 1990] Alan Newell. Unified Theories of Cognition.
Harward University Press, Cambridge, Masachusetts, 1990.

[Prendinger et al., 2004] Predigner, H., Ishizuka, M. Introducing
the cast for social computing: Life-like characters. In: Life-like
Characters. Tools, Affective Functions and Applications,
Cognitive Technologies Series, Springer, Berlin, p. 3-16, 2004.

[Tyrrell, 1993] Toby Tyrrell. Computational Mechanisms for
Action Selection. Ph.D. Dissertation. Centre for Cognitive
Science, University of Edinburgh, 1993.

[Wooldridge, 2002] Michael Wooldridge. An Introduction to
MultiAgent Systems. John Wiley & Sons, 2002.

