
Abstract 
Hierarchical reactive methods are very popular in 
the field of controlling complex artificial intelligent 
agents. In this paper, we argue that they cannot 
cope with human-like behaviour. We present a 
detailed analysis of behaviour of a relatively simple 
human-like artificial agent, an artificial gardener, 
whose action selection model is based on hierarchi-
cal reactive planning. It is shown that although the 
agent has no troubles with “survival” in a complex 
and dynamic environment, its behaviour is not 
believable in some situations. However, instead of 
rejecting the judged methodology, we propose how 
to extend it using certain features of other action 
selection models. 

1 Introduction 
There are two main characteristics that make hierarchical 
reactive methods of action selection popular in the field of 
controlling complex artificial intelligent agents. The first is 
a top-down recursive decomposition of top-level agents’ 
behaviours to sub-behaviours or sequences of simple 
actions. This decomposition eases the design. The second is 
that an agent’s decision procedure focuses attention only to 
most relevant goals, while ignoring the rest of them 
temporarily. All reactive methods allow for quick switching 
between tasks according to the changing environment and 
agent’s internal drives. Consequently, reactive hierarchies 
reduce combinatorial complexity of control and still can 
cope with large, unpredictable, real-time environments. 

We are working on a research and educational toolkit for 
prototyping human-like artificial agents, i.e. the agents with 
the objective to imitate behaviour of humans (h-agents in 
the following text) [Brom et al., 2005]. One of our 
motivations on this research effort is to find an appropriate 
methodology for controlling h-agents. The methodology 
must allow an easy behavioural design and must be 
computationally effective. Thanks to the aforementioned 
advantages of reactive hierarchies, we turned our attention 
to this branch of methods. So far, we have prototyped 
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several h-agents “living” in a family house utilizing reactive 
hierarchies in order to ascertain their applicability.  

As was expected, partially owing to Bryson’s analysis 
[2000], our h-agents had no troubles with “survival”, that 
means with satisfying own needs. However, it was not 
always straightforward to design their behaviour so that it 
was believable enough. Consequently, h-agents did not 
behave naturally in some situations—i.e., they would not 
pass Turing test. Because the h-agents otherwise performed 
well, we aimed at isolating problems and extending pure 
hierarchical reactive approach, instead of rejecting it. 

In this paper, we present observed limitations on 
believability and suggest how to overcome them. We 
present the results in a case-study example of an artificial 
gardener, whose behaviour is structured by so-called simple 
hierarchical reactive planning (S-HRP). For features that 
could extend this model, we seek both inside and outside of 
hierarchical reactive family. 

In Section 2, we briefly introduce our toolkit and detail 
our motivation. Then, we describe morning tasks of a 
“natural gardener”. This story represents desired behaviour. 
In Section 4, we formalize the S-HRP method and describe 
behaviour of the artificial gardener. In Section 5, we present 
the results, together with suggestions on extensions of S-
HRP. At the end, we discuss applicability of the extended S-
HRP considering related action selection models. 

2 Motivation: Project Ents 
Simulations of artificial humans are becoming increasingly 
more popular both in the academic and industrial domains. 
Typical applications include computer games, virtual 
storytelling, entertainment applications, military simulations 
and behavioural modelling (e.g. [Prendinger et al., 2004]). 

From the technical point of view, each artificial human is 
viewed as an autonomous intelligent agent [Wooldridge, 
2002] that carries out a diverse set of goals in a large 
dynamic environment with the objective to simulate 
believable behaviour of humans; this agent is a so-called h-
agent. One of the key issues in this research field is design 
of a mind of h-agents (i.e., a memory and a procedure that 
decides what to do next—an action selection algorithm).  

Although various theoretical solutions of this issue have 
been proposed so far (e.g. [Newell, 1990]), and a lot of 
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individual applications using h-agents and languages for 
their programming exist, it is hard to find any complex 
toolkit that would couple an artificial environment similar to 
natural world, a neat graphical user interface and a language 
for prototyping h-agents’ minds by means of various dif-
ferent techniques. Such a toolkit would simplify develop-
ment of h-agents, enable verifying theories and it could 
serve as an educational tool for students. 

The project Ents [Brom et al., 2005] is a first generation 
of a toolkit that addresses these issues. It provides: 

• A customizable artificial environment similar to natural 
world, which allows the h-agent to carry out complex 
human-like tasks (among others eating, sleeping and 
going to toilet). 

• E language, which that enables modelling of h-agents 
using various different techniques (including for 
example hierarchical reactive planning, hierarchical 
finite state machines, and classical planning).  

• A linguistic module, which enables talking to h-agents 
(in Czech language). 

• The tool allows for interaction between the h-agents, 
and between h-agent and a user-agent. 

Nevertheless, a toolkit is not just a programming vehicle 
and a bundle of debugging tools. It is also a design 
methodology. Therefore, we are focused not only on how to 
program h-agents, but also on how to design their behaviour 
simply. We are now in the phase of evaluation of the first 
generation of the toolkit and of various models of action 
selection, while specifying requirements on the toolkit’s 
second generation. Hence, we evaluate, whether hierarchical 
reactive planning is the methodology appropriate for h-
agents domain; and that is the topic of this paper. 

The artificial gardener, whose behaviour is observed in 
the case-study, is prototyped in the project Ents. A model of 
a “family-house” is used. A screenshot from the simulation 
is depicted in Fig. 1. More information on the project is 
available at: http://ckl.ms.mff.cuni.cz/~bojar/enti/.  

3 The challenge: natural behaviour 
This section describes a story of a typical human that spends 
his morning gardening. Behaviour of the artificial gardener 
is modelled according to this “natural model” and the course 
of resulting behaviour is compared to it. In what follows, the 
artificial gardener will be denoted as the a-gardener and its 
human model as the n-gardener (we will use masculine for 
the n-gardener, neuter for the a-gardener and feminine for 
both an artificial and a natural neighbour).  

Behaviour is observed from the moment the gardeners are 
going to the garden to the moment they leave it. Two tasks 
are intended: watering and weeding. The scenario follows: 

Because n-gardener knows that a garden hose is 
punctured, he decides to water by a can. He goes to a 
chamber for tools. Because he is intended to weeding 
afterwards, he does not find only a can, but also a bucket, a 
weeder and a little scoop. Then he takes all of that (the 

weeder and the little scoop in the bucket) and goes to the 
garden. He whistles from time to time for joy. 

In the course of watering, two events happen: 
1. A neighbour comes and asks him for a can. He 

promises her to bring the can after he finishes the 
watering. 

2. Nature calls. He puts down the can and goes to the 
toilet. Then he returns and continues with the task. 

When he finishes watering, he goes to lend the can to the 
neighbour. Then he starts weeding.  

In the course of weeding, following event happen: 
3. The neighbour returns the can. The n-gardener leaves 

the can as she has put it down. 
After he completes weeding, he puts all the tools into the 

chamber. Then he goes to eat to the dining room.  

4 A-gardener: the action selection model 
In this section we explain the action selection model of the 
a-gardener—simple hierarchical reactive planning, the S-
HRP, and describe behaviour of the a-gardener. We remark 
that SHRP resembles the planning method of Bryson [2001]. 

4.1 Simple hierarchical reactive planning 
S-HRP is a top-down, reactive method. The former means 
that the overall behaviour is decomposed into specific goals, 
which are recursively decomposed into smaller subgoals, 
until atomic actions are reached. The latter means that the 
next action an agent has to perform is not selected from a 
plan generated before an execution starts, but it is computed 
instantly by means of context-based triggers that 
continuously monitor an environment or the agent’s internal 
drives. Reactive planners do not “look ahead”; instead, they 
compute just the next act in every instant. In S-HRP, the 
problem of what to do next is reduced to switching among 
sets of triggers associated with some subgoals according to 
changing circumstances. 

S-HRP provides four behavioural structures: atomic 
actions, processes, top-level goals and sequences. 

Figure 1: The GUI of the toolkit Ents. From the left: the user-
agent and the artificial gardener. 



• An atomic action (a-action) is the primitive operation 
an h-agent can do. E.g. aStep(hAgentID,placeID). 

• A sequence is a simple sequence of a-actions or 
processes, e.g. <a1, a2, p1, a3, p2> (p denotes a process, 
a denotes an action). 

• A process is a set of process-steps (p-steps), which are 
quadruples <p, r, c, a>, where p is a priority local to 
the process (such that p-steps of one process are total-
ordered by their priorities), r is a releaser, c is an 
optional context and a is an action. Releasers and 
contexts are boolean conditions, an action can be an a-
action, a subprocess or a sequence. In the following we 
will write directly “priorities of releasers” instead of 
“priorities of p-steps”. 

• A top-level goal is quadruple <pr, r, c, f>, where pr is a 
process associated with achieving the goal, r and c are 
releaser and context respectively, and f is a function of 
time that serves as a floating priority of the goal.  

Subprocesses are nested under each top-level goal in a 
tree-like hierarchy. Leaves represent a-actions. The behav-
iour of one agent is represented by a set of such behavioural 
structures and this set is called a betree (it comes from a 
“behavioural tree”). The betree is always provided in 
advance by a behavioural programmer/designer and it is not 
further modified when an h-agent is running (in S-HRP). 

All p-steps and top-level goals of the betree are either 
active or preactive or inactive or sleeping, all a-actions and 
processes are either executed or not-executed. 

At every instant, at least on of top-level goals’ releasers 
must hold. The highest priority goal with the holding 
releaser is active, the other goals with holding releasers are 
preactive; the rest is inactive. 

A sequence, which is a child of an active node (i.e. a p-
step), is executed; other sequences are not-executed. A 
process or an a-action, which is a child of an active node 
(i.e. a p-step or a top-level goal), is executed. Exactly one 
process or exactly one a-action from an executed sequence 
is also executed (the one just being performed). The other 
processes and the a-actions are not-executed. 

Each executed process is associated with several p-steps. 
At every instant, at least one of their releasers must fire. The 
p-step (under an executed process) with holding releaser and 
with the highest priority is called active. Its siblings with 
holding releasers (and lower priority) are called preactive. 
Its siblings without a holding releaser (both with higher and 
lower priority) are called inactive. All p-steps under a not-
executed process are sleeping. In the following, we will 
often write directly “active/ inactive/... releasers” instead of 
“active/inactive/... p-steps/goals”.  

An example of a betree is depicted in Figure 2. Figure 3 
shows the action selection algorithm. This algorithm is 
performed in every time-step by a control unit of an h-agent. 
When the simulation starts, all nodes of the given betree are 
marked as not-executed, or sleeping, except for top-level 
goals, which are inactive.  

When the algorithm starts, it evaluates all releasers of 
top-level goals and identifies an executed process (SELECT-
GOAL). Then it recursively finds in a breath-first manner all 
active, preactive and inactive releasers in the upper layer of 
the subtree of the executed element (A-S). The active re-
leaser in a leaf triggers an a-action and finishes the evalua-
tion (26). A non-leaf active releaser expands the evaluation 
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Fig. 2: An example of a betree. The priorities are written above the 
p-steps. 

SELECT-GOAL( betree ): 
(1) eval ← all releasers of top-level goals of betree  % they “never sleep” 
(2) evaluated ← evaluate eval  
(3) set active/preactive/inactive top-level goals based on evaluated 
(4) set executed/not-executed processes of top-level goals 
(5) p-steps ← all p-steps of executed process 
(6) A-S( third layer of betree, p-steps, betree ) % 3rd layer – see Fig. 2 
A-S( layer, p-steps, betree ): 
(7) releasers ← all releasers of p-steps 
(8) eval ← evaluate releasers  
(9) set active/preactive/inactive p-steps from p-steps based on eval 
(10) set all other nodes % i.e. p-steps % in the layer as sleeping 
(11) act ← the action of the active p-step of p-steps 
(12) if act differs from previously executed action then 
(13) set previously executed flag as not-executed 
(14) if act is "a-action" or "process" then  
(15) EXEC( act, layer, betree )  
(16) else if act is "sequence" then 
(17) if act is not executed then set act as executed 
(18) if act already contains executed element then 
(19) set this element as not-executed          % element = process or 
(20) if this element is not the last element of act then        % a-action  
(21) EXEC( the next element of act, layer, betree ) 
(22) otherwise  % restart the sequence: 
(23) EXEC( the first element of act, layer, betree ) 
EXEC( act, layer, betree ): 
(24) set act as executed 
(25) if act is "a-action" then  
(26) execute( Act ) 
(27) otherwise % act is now a "process" 
(28) A-S( next layer of betree, all p-steps of act, betree ) 

Fig. 3: The S-HRP evaluation algorithm. 
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to the lower layer of the betree (28). Because there is 
exactly one active releaser in each layer, there is also ex-
actly one active p-step in each layer. Subsequently, exactly 
one a-action can be performed in the given time step. This 
a-action can be performed several times, until another leaf 
releaser becomes active. An agent’s attention is switched to 
another branch of the betree, i.e. to another subtask, when 
previously preactive or inactive releaser is activated. That 
happens either when an executed process is finished (i.e. its 
releaser holds not more), or when external/internal circum-
stances are changed. As exactly one branch of the betree can 
be executed, there is no parallelism in S-HRP.  

The asymptotic complexity of the S-HRP-evaluation is 
O(p.l.a), where l is the depth of the betree, p an average 
number of p-steps of one executed process and a a constant 
that limits the time for evaluation of one releaser; provided 
that releasers are re-evaluated in every time step. 
(Complexity can be reduced significantly by utilizing a 
variant of RETE algorithm [Forgy, 1982].) 

The purpose of a context is to interrupt currently executed 
action, even if the releaser holds. As contexts are typically 
conjunctions of releasers with higher priorities, they are 
omitted from the description of the algorithm for the sake of 
simplicity (it is possible to express for example timeouts or 
numbers of retries by means of them). Scheduling of top-
level goals is enabled by their floating priorities.  

The four elements of S-HRP are similar to the elements 
of Byson’s POSH action selection plans [2001] (primitive 
actions, action patterns, competences and drive collections). 
The whole S-HRP-betree resembles to AND-OR tree with 
only AND branches, which are used for example in total-
order simple task network planning [Ghallab et al., 2004]. 

4.2 Behaviour of the artificial gardener 
The behavioural structure of the a-gardener is depicted in 
Figure 5. For simplicity, library functions like searching for 
an object or drinking are not detailed. Figure 4 shows the 
priorities of top-level goals and the whole course of the 
behaviour. The behaviour of the a-gardener is programmed 
in the language E of the project Ent [Brom et al., 2005].  

5 Results: observed limitations 
In this section, we present observed limitations on 
believability of behaviour of the artificial gardener. The 
results clearly reveal four main flaws of the a-gardener and 
thus of the S-HRP method. First, the S-HRP betree does not 
allow for intentions, the best one could do in S-HRP is to 
associate intentions with top-level goals. Second, concurrent 
processes are not allowed—just one a-action can be 
performed in each time step. Third, some situations require 
planning, at least to some extent, but S-HRP avoids classical 
planning. And finally, strong need for transition behaviours, 
i.e. small processes that applies during task switching, has 
been recognised. Unfortunately, it is not straightforward to 
express them in S-HRP. We anticipate that some of these 
limitations can be avoided by utilizing a different reactive 
hierarchical method, but others are more fundamental.  

5.1 Intentions 
Case 1.  Choosing an alternative: 
N-gardener: Before he starts watering, he decides whether to 
hose or to water by a can. 
A-gardener: When the watering goal becomes active (i.e. 
what to do), the a-gardener is not able to choose between 
alternatives (i.e. how to do), because exactly one process is 
associated with the top-level goal. 

watering
(a releaser: true)

toilet
(a releaser: when it must go...)

whistling
(a releaser: true)

50

5

0

30 weeding
(a releaser: true)20

time

priority

Figure 4: Priorities of top-level goals of the a-gardener. The resulting 
course of behaviour (without interaction with the user-agent) is 

indicated by the bold line. The time of switching from watering to 
toilet is based on the incremental rate of the internal drive underlying 

“when it must go” releaser. 

w atering the garden
[ "a t least one bed is  dry" ]

• find& take( can ) [ "can is  not he ld" ]
• fill( can ) [ "can is em pty" ]
• fixa te-on& goto-to( "dry", bed ) [ "a  bed is dry" ]

w atering( bed, can ) [ "the bed is still d ry  &  gardener is  next-to" ]

w eeding the garden
[ "a t least one bed is

w eedy" ]

• find& take( bucket ) [ "bucket is  not have been got" ]
• find& take( w eeder ) [ "w eeder is  not have been got" ]
• find& take( little  scoop ) [ "little  scoop is not have been got" ]
• em pty( bucket ) [ "fu ll bucket" ]
• fixa te-on& go-to( "w eedy", bed ) [ "a  bed is w eedy" ]
{ w eeding( bed, scoop, w eeder ); • m ove-to( w eeds, bucket ) }

[ "the bad is s till w eedy &  gardener is next-to" ]

w histling

to ile t to ile t( to ile t ) [ "gardener is  next-to" ]
• find& go-to( to ile t )

w h is tle

c lean ing up a fter w atering
[ "can is not c leaned up" ] • c lean-up( can ) [ "can is not c leaned up" ]

w atering

w eed ing

• c lean-up( little  scoop ) [ " little  scoop is  not c leaned up" ]
• c lean-up( w eeder ) [ "w eeder is  not c leaned up" ]
• c lean-up( bucket ) [ "bucket is not c leaned up" ]

c lean ing up a fter w eeding
[ "too ls  are  not c leaned up" ]

 

 

Figure 5: The schema of behaviour of the a-
gardener. Parenthesis denotes parameters, 
brackets denote releasers, angle brackets stand 
for a sequence. Arrows denote priorities, the 
p-step with the highest priority is at the top. 
A-actions are marked with ( ), subgoals are 
marked with (•). Contexts are omitted for 
simplicity.  

It is noteworthy, that contrary to other 
hierarchical reactive methods (e.g. [Bryson, 
2001]), the p-steps are written in the 
reversed-order  (the first thing done is on 
the top) and the releasers are expressed in a 
negative form. The reason for this is to 
make the programming simpler.  



Case 2.  Adding a new intention: 
N-gardener: When a neighbour asks for a can, the n-
gardener promises her to bring her the can after he finishes 
watering and then, he becomes intended to this task. 
A-gardener: It completely lacks capability to add itself a 
new intention, that means a new top-level goal. 

Comment: Changes of intentions and feasibility of 
choosing alternative ways how to accomplish a goal are 
basic requirements on action selection model for h-agents. 
These features are not built-ins of S-HRP, but are well-
defined in others hierarchical reactive architectures, namely 
in the Belief Desire Intention (BDI) [Wooldridge, 2002]. S-
HRP could be pushed towards BDI by specifying simple 
goal driven hierarchical reactive planning (S-GHRP): 

1. A new structure of goal is introduced. It is a quintuple 
<{pr}, me, r, c, f>, where {pr} is a set of processes that 
can accomplish the goal, me is a procedure for means-
ends reasoning among the processes, and r, c and f are 
a releaser, a context and a priority, a function of time, 
respectively. A top-level goal is just an ordinary goal. 

2. An extended sequence is a simple sequence of a-
actions, processes or goals. 

3. A p-step is augmented as follows: it is a quadruple <p, 
r, c, ga>, where ga is an extended action, i.e. a subproc-
ess or an a-action or a goal or an extended sequence. 

4. A S-GHRP betree is partially modifiable on-line. When 
an h-agent is running, a new goal can be added to the 
betree, both top-level one and a subgoal. 

5. In S-GHRP, we say that a goal is active, preactive, 
inactive or sleeping iff the p-step encapsulating the 
goal (or a sequence with the goal) is active, preactive, 
inactive or sleeping, respectively. Top-level goals are 
never sleeping, but all top-level goals that are not 
intended (i.e. not a part of the betree) can be con-
sidered as such. From the other hand all not-sleeping 
goals can be regarded as intentions.  

6. The EXEC procedure of the algorithm in Fig. 2 is called 
also when the act variable contains a goal (line (14)) 
and it performs me reasoning in this case (line (25)). 

Notice, that the set of all active and preactive elements of 
the S-GHRP betree is similar to so-called intention structure 
of JAM architecture [Marcus, 1999], which is an 
implementation of BDI. We suggest that implementations of 
BDI can be exploited in solving the issue on intentions. 

5.2 Concurrent processes and interleaving 

Case 3.  Pure parallelism: 
N-gardener: When he is watering, he whistles from time to 
time for joy. 
A-gardener: It lacks capability to do two tasks 
simultaneously. 

Comment: A simulated body of a believable h-agent should 
be viewed as a group of semi-independent resources that can 
perform a-actions concurrently, and S-GHRP should be 
applied in parallel version, where more active nodes can co-
exist in one betree-layer. This idea is hardly surprising and, 
in fact, a lot of reactive hierarchies address this issue (e.g. 
[Blumberg, 1996; Bryson, 2001]). It is also noteworthy, that 
modelling of preferences’ combination may be required. 
That means choosing a compromise action when two (or 
more) concurrent tasks compete for the same resource (for a 
discussion on this topic see [Tyrrell, 1993, p. 185-187]).  

Case 4.  Preparation: 
N-gardener: When he is beginning watering, he goes to a 
chamber and finds a can. Because he knows that he will 
weed afterwards, he finds also a bucket, and puts a weeder 
and a little scoop into it. Then he takes the bucket and the 
can and goes to the garden. 
A-gardener: When it is beginning watering, it takes a can 
from a chamber and goes to the garden. When it finishes the 
watering, it returns to the chamber for a bucket, a weeder 
and a little scoop. 

Comment: Two goals conflict, active watering and inactive 
weeding, but even though inactive, weeding has to manifest 
itself in order to save the second trip to the chamber. Goals 
have to be interleaved. The question is how to give “losers” 
chances to influence overall behaviour out of their time-
slots. Classical solution is to use a planning technique, in 
this case partial-order simple task network planning (STN) 
would be appropriate. Unfortunately, it is not straightfor-
ward (and perhaps even not biologically plausible) to 
combine reactive methods with this kind of planning. 
Therefore, we suggest another solution based on semi-
autonomous fuzzy triggers: 

1. The priority function of a goal, f, is replaced with the 
set of fuzzy-triggers {t+}. 

2. A fuzzy trigger is like a releaser in that it continuously 
monitors an environment, an agent’s body or its mind 
in order to recognise some relevant situations. Unlike a 
releaser, the trigger is able to invoke resource 
negotiation procedure ne(pow) between an active goal 
(or goals) and an inactive/preactive applicant. pow is 
the actual power of the trigger (a value <0, 1>). 

3. Based on the result of ne the applicant can either 
subsume the active goal, or the active goal can let the 
“loser” manifest itself shortly, or the me procedure of 
the active goal can switch to another process1.  

The challenging issue is to identify situations that should 
invoke negotiation. One of such situations is: an h-agent is 
attracted by an object that is supposed to be use later. This 
notion of semi-autonomous triggers puts S-GHRP a bit 
towards Minsky’s Society of Mind [1985]. A fundamental 
question on efficiency of this method rises. What is more 

                                                 
1 We are working on a prototype implementation of negotiation 

procedure using Soar [Newell, 1990].  
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computationally effective? STN planning or a bundle of 
reactive triggers and negotiation procedures?  

Case 5.   Task inhibition: 
(In this case, we assume that a goal of lending a can to the 
neighbour is intended also by the a-gardener.) 
N-gardener: When he finishes watering, he goes to the 
neighbour and lends her the can.  
A-gardener: When it finishes watering, it puts the can to the 
chamber, then it picks it immediately up and goes to lend it 
to the neighbour. 

Comment: There is another kind of situation that should be 
recognised by a trigger: the h-agent attempts to do a task 
whose effect will be later cancelled. This situation is unlike 
Case 4 because the result of negotiation is temporal 
inhibition of a subgoal. To describe this, a new type of 
trigger is useful: an inhibition trigger. It temporarily inhibits 
a releaser of a p-step that would invoke a conflicting goal 
(i.e. putting the can to the chamber).  

Extended definition of a goal is: the goal is a quintuple 
<{pr}, me, r, c, {t+, t-}>. t+ and t- are tuples <t, ne>, where t 
is the trigger and ne is the negotiation procedure. The 
difference between t+ and t- is that t+ starts negotiation in 
order to activate the goal, while t- starts negotiation in order 
to inhibit a releaser of a p-step with an undesirable goal. 

Inhibition is a fundamental feature of architectures like of 
Maes [1991] (an inhibition link) or Minsky [1985] (a 
suppressor and a censor agent). Its need is also mention for 
example in [Charles et al., 2002]. Nevertheless, it is 
typically not a built-in of reactive hierarchies. We will call 
this kind of extended S-HRP negotiatory goal driven 
hierarchical reactive planning, the N-GHRP.  

5.3 Stop and think 

Case 6.   Seeing a distance: 
(This case extends the scenario from Section 2 as it de-
scribes one situation more precisely.) 
N-gardener: When he is preparing tools for weeding, he first 
looks around and then chooses almost optimal way how to 
pick up a bucket, a weeder and a little scoop. 
A-gardener: When it is preparing tools for weeding, it 
follows the priorities of the p-steps and no matter how the 
objects are far it always picks up the bucket, then the 
weeder and finally the little scoop (see Fig. 6). 

Comment: This is an observation of a task with complex 
appetitive behaviour. A question is what we humans do in 
these situations. We think that two cases should be 
distinguished. The first is when a human perceive all objects 

of the interest at once and there are less then three or four of 
these objects. The second case encompasses more 
complicated situations with hidden objects or more objects 
on the scene. We think that in the former case the human 
directly perceive the order of how to pick the objects up2, 
while in the latter case the human consciously stops and 
thinks a bit about what to do next.  

For an a-gardener: The latter case calls for a conventional 
planner that should be invoked by the first subprocess of the 
process with complex appetitive behaviour. The purpose is 
to re-arrange the order of appetitive subtasks (i.e. to change 
priorities of p-steps—it corresponds to stop and think 
activity). The former, direct perceiving, can be simulated by 
using releasers and triggers for each possible ordering.  

Case 7.   A sharp timeout: 
(We assume a can is not in the chamber and must be looked 
for.) 
N-gardener: He remembers that the can is often in the 
chamber. When he does not find it there, he starts searching 
it within the whole house. As time is passing, he becomes 
more and more angry. After a while, he wants to give it up, 
but then he suddenly spot the can in the garage. He picks it 
up and returns to the garden. 
A-gardener: It remembers that the can is often in the 
chamber. When it does not find it there, it starts searching it 
within the whole house. After 14.55 minutes of searching, it 
catches sight of the can in the dining room. It makes two 
steps towards the can, but just before it reaches the can, the 
timeout (15 min.) expires. The task of watering is failed. 

Comment: A sharp timeout can be expressed directly in S-
HRP by a context of a p-step. We suggest that instead of the 
sharp timeout, a soft one should be used. It incorporates not 
only time, but also appropriate environmental/body/mental 
states. N-GHRP triggers serve this purpose better than 
contexts, because they can facilitate negotiation. 

5.4 Transition behaviour 

Case 8.  No transition: 
N-gardener: When nature calls if he is watering, he puts 
down the can and goes to the toilet.  
A-gardener: If it needs to go to the toilet during watering, it 
goes with the can in its hands and puts it down when in the 
toilet. 

Comment: We have stumbled on so-called cleaning 
behaviour, which is in the case of humans performed in 
some of its form as a consequent of a consumatory 
behaviour almost ever. An example of pure cleaning is 
cleaning up the can. This behaviour can be simply described 
in S-HRP by adding one p-step after the consumatory act. 
However, special kind of cleaning behaviours, transitions, 
that mean short behaviours that should automatically apply 

                                                 
2 Here, we refer to the concept of an affordance and direct 

perceiving of James J. Gibson [1979]. However, the discussion on 
this topic is out of the scope of this paper.  
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Fig. 6: The order in which the n-gardener picks the objects up is fixed. 



when two “major” ones are being switched, complicate the 
situation. An example of transition is putting away the can. 
The need for transitions is noted for example in [Blumberg, 
1996; Mateas, 2002]. The problem is that they can not be 
simply expressed in S-HRP. 

We suggest that both for pure cleaning and for transitions 
negotiation from N-GHRP could be utilised as follows:  

1. As the result of negotiation, the incoming goal should 
give a small amount of time to perform cleaning or 
transition process to an outgoing goal. The amount of 
time should be proportional to the ratio of the 
necessities of behaviours. 

2. If an incoming goal is very urgent, transition may be 
also performed as a part of it. As an example, assume a 
case of an attack—the gardener might throw the 
currently holding object at the aggressor, instead of 
putting it down. 

5.5 Other lessons learned 
Here, we briefly mention the remnant of observations. 

Postponement. When the task A is aimed to suspend the 
task B (e.g. eating watering) postponement could be 
negotiated if B is almost finished. This is similar to  Case 
7—when a-gardener is finishing watering, so-called small 
variant of eating could be performed (e.g. eating a tomato 
from the garden instead of lunching), or watering should not 
be interrupted at all. 

Quantities. Serious problem appears when an h-agent is 
confronted with huge amount of objects it is potentially 
interested in. Consider an h-agent aimed to eat a carrot, 
which needs to be pulled out from a garden bed first—there 
are hundreds of such carrots in the garden and typical 
cognitive h-agent’s perception system that is designed to 
perceive all of them, will push this pile into the h-agents’ 
memory. We suggest that in such a situation, the h-agent 
should instead of perceiving some concrete objects rather 
see a container, e.g. the garden bed.  

Blocking behaviour. The common problem is a situation in 
which a process A shortly corrupts its own context. A 
correction process B (typically a sibling from the betree) 
could fix the situation, but then A corrupts the context 
again—that only leads to an infinite loop. Consider the a- 
gardener who must first hold the can to be able to fill it, but 
in order to turn water on, it must temporarily put it down. It 
is the same problem as with Herbert, the robot retrieving 
cans, that blocked by its arm its camera focused on the can, 
when it had begun to pick the can up [Connell, 1990]. An h-
agent must use a memory to remember that it has to avoid 
execution of the correction process. 

6 Discussion: S-HRP vs. related AI models 
We have shown several situations in which S-HRP fails as 
the action selection model for believable h-agents. We 
conclude that this does not mean the methodology has to be 
discarded, but rather reviewed instead. Considering the fact 

that h-agents carry out large number of complex goals in 
unpredictable and dynamic environments, the hierarchies 
together with reactive approach must be utilised anyway. 
There are two main reasons for this. First, hierarchies reduce 
design complexity. Second, because believable h-agents are 
aimed for real simulations with several h-agents running on 
a single PC, their action selection model must be computa-
tionally effective (h-agents belong to the field of applied AI, 
rather then computational psychology or ethology). There-
fore, we think that models based on spreading activation in a 
flat network (e.g. [Maes, 1991]) or in a hierarchical network 
(e.g. [Tyrrell, 1993; Negatu, 2003]) would not fit, because 
they generally suffer from combinatorial complexity. 

What does it mean to review S-HRP? S-HRP is partially 
based on Bryson’s [2001] basic reactive plans. We suggest 
that it can be simply extended into S-GHRP by adding the 
concept of goals. S-GHRP is in fact BDI architecture (e.g. 
[Wooldridge, 2002]), nevertheless, we suggest that GHRP 
can be pushed further towards another approaches. Namely, 
we suggest adding “stop-and-think” planner (but not con-
ventional planning in general) and semi-autonomous trig-
gers that are able to cause resource negotiation, and inhibit 
an undesirable goal. The second concept is inspired by 
Minsky’s Society of Mind [1986] and Maes [1991]. We 
have called such architecture “negotiatory goal driven 
hierarchical reactive planning”, the N-GHRP, and we have 
recommended applying its parallel version. As N-GHRP 
combines reactive approach with conventional planning, it 
might be viewed as a hybrid architecture representative. 

What is the contribution? We see the main contribution of 
the architecture in that the triggers are able to break the 
monolithical reasoning procedure into relatively indepen-
dent modules. Notice, that decomposition of the reasoning 
procedure is neither decomposition of the body (e.g. 
[Blumberg, 1996]) nor decomposition of overall behaviour 
into independent behavioural-modules (e.g. [Bryson, 2003]). 
It is yet another kind of decomposition. 

The decomposition of reasoning blurs the borders 
between behaviours and makes the alternation among 
prescripted plans more “smooth” and thus natural and 
believable (contrary to “rigid ‘artificial’ switching” in S-
HRP and S-GHRP/BDI). For example, sharp timeouts can 
be avoided, undesirable tasks can be inhibited, preactive 
behaviour can be demonstrated shortly without its timeslots, 
transitions can be expressed and postponement can be 
negotiated.  

There is yet another branch of methods that is suitable for 
believable h-agents. It is any-time planning. For example, 
Nareyek uses any-time planning based on structural con-
strained satisfaction [2005] and Charles et al. exploit a 
variant of hierarchical task network planning and heuristic 
search planning [2002]. We think that anytime planning do 
not allow for as easy design as reactive hierarchies do. 
However, the correct comparison between N-GHRP and 
any-time planning methods is a question for future research.  

S-HRP and similar methodologies belongs to the branch 
of so-called forward-chaining methods. To complete the 
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picture, we must mention Soar architecture [Newell, 1990], 
which is one of the most known cognitive forward-chaining 
architectures. Soar is also exploited in h-agents simulations. 
However, it is rather a powerful programming vehicle, not a 
design methodology. For example, S-GHRP as well as 
simple task network planning can be programmed in it. 

7 Conclusion 
In this paper, we have argued that hierarchical reactive 
planning is not able to cope with human-like behaviour. We 
have shown several limitations of this branch of methods 
through behavioural analysis of an artificial gardener, whose 
behaviour have been designed according to simple hierar-
chical reactive planning, the S-HRP. 

The main limitations of S-HRP include: 1) impossibility 
of adding new goals/intentions during execution, 2) the 
shortage of parallel execution and task interleaving, 3) the 
impossibility of inhibition an undesirable subtask, 4) fixed-
ordered steps in appetitive behaviour, 5) rigid “unnatural” 
switching between behaviours, which disable for example 
expressing of transition behaviours and postponement. The 
first one is the limitation only of the S-HRP method. The 
second one is the limitation of all the methods that do not 
allow parallel execution and/or preactive behaviours. The 
third is the limitation of methods that cannot express 
inhibition. The last two are limitations of the whole branch 
of reactive hierarchical family. 

We have suggested a solution to overcome these by 
extending S-HRP to N-GHRP, negotiatory goal driven 
hierarchical reactive planning. It is a hybrid architecture 
representative. The precise comparison between N-GHRP 
and other hybrid approaches, namely any-time planning, is a 
question for future research. 
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