
HTN or State Space - Who Should Do Planning in Your Game?

Martin Černý, Jakub Gemrot
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00, Prague 1, Czech Republic
E-mail: cernym@gmail.com, gemrot@ksvi.mff.cuni.cz

KEYWORDS

Action Selection, Planning, HTN, Comparison

ABSTRACT

There is an ongoing discussion in the game AI commu-
nity, whether to use AI planning for controlling non-
player characters (NPCs) in computer games. Recent
years have seen implementations of both state space
and hierarchical task network (HTN) planning in AAA
game titles, each having specific advantages and dis-
advantages. This paper is concerned with the per-
formance aspect of both technologies and proposes a
general methodology for comparing performance of ac-
tion selection mechanisms. Two case studies comparing
NPCs controlled by the JSHOP2 HTN planner and SG-
Plan 6 and Metric-FF state space planners in a game-
like competitive environment are presented and their
results are statistically analyzed. First environment is
a puzzle-like scenario with minor combat element and
strong competition for limited resources. Second envi-
ronment features two pairs of cooperating agents in a
combat scenario inspired by the Gears of War series. It
is concluded that in puzzle-like domains HTN planning
is inferior to state space planning, but for the second
domain, the results are not conclusive.

INTRODUCTION

A large number of contemporary games consist of a
dynamic, continuous real-time world inhabited by the
player and other non-player characters (NPCs). This is
especially true for first person shooters (FPS) and role
playing games (RPG) which represent a significant share
of the game market. Many serious games also have sim-
ilar properties. Since graphical representation of game
worlds has become very close to reality, the perceived
intelligence of the NPCs is starting to be of vital impor-
tance to maintain believability.

One of the cornerstones of AI design for NPCs in games
is the action selection problem — what to do next? The
traditional game industry answer has been to use either
behaviour trees (Champandard 2007) or finite state ma-
chines (Fu and Houlette-Stottler 2004), providing essen-
tially fully preprogrammed responses to various external
stimuli. But this is slowly changing, the need for smarter

AI and lower design complexity has raised demand for
alternative approaches, especially various forms of AI
planning. Both STRIPS-style (Fikes and Nilsson 1972)
and HTN planning (Ghallab et al. 2004) have already
been implemented in multiple AAA game titles (Cham-
pandard 2013).

There is a major lesson learnt during the process of
adapting AI planning as proposed by academia to con-
trolling NPCs in computer games: while planning is con-
sidered a mature technology from the academic point of
view, its application to NPC control is far from straight-
forward and it is often not an appropriate technique. On
the other hand, from the number of succesful implemen-
tations it seems that planning turned out to be benefi-
cial for game AI — at least in some scenarios. So our
first question is: can we determine and classify scenar-
ios where planning is — in some sense — better than
reactive techniques? And can we find out when HTN
planning is more suitable than STRIPS-style planning?

To answer these questions, it is neccessary to first for-
mulate what “better” actually means. In context of ac-
tion selection mechanisms (ASMs) for NPCs there are
at least three points of view relevant to game AI: first
is the performance perspective — how good is the AI at
achieving its goals in the environment? Or, since com-
puting power is a scarce resource for game AI, what is
the tradeoff between performance and resources needed?
Second is the designer perspective — how difficult is it
to design AI using the technique, how much time and
knowledge or skills are needed? Third is the entertain-
ment perspective — whether it is actually fun to play a
game with such AI?

In this paper we propose a general methodology for com-
paring various ASMs from the performance perspective,
but we also briefly touch the designer perspective. The
entertainment perspective has been left out, because the
perceived entertainment is to a large extent influenced
by many factors other than the AI itself which imposes
large methodological complications to the research.

To demonstrate the methodology, we present two case
studies evaluating HTN and STRIPS-style planning in
game-like domains. One of the scenarios is more puzzle-
like with indirect competition, while the other is a highly
dynamic combat situation incorporating multibody co-
ordination.

The rest of the paper is organized as follows: first, the



two planning formalisms studied are presented, then re-
lated work is discussed and the methodology for our
experiments is given. Next, the individual case studies
are described and their results are discussed. The pa-
per ends with conclusions drawn from the results and
discussion of future work.

PLANNING FORMALISMS

In this section we briefly introduce the two AI plan-
ning approaches that we have investigated: STRIPS-
style planning and HTN planning.

STRIPS-style Planning

STRIPS-style planning defines a planning domain in
terms of states and actions. Actions are defined by their
preconditions and effects. Preconditions specify states
in which the action is applicable. Effects describe how
the world state changes once the action is performed. A
planning problem consists of a domain, an initial state
and a goal condition. A solution to the problem is a
sequence of actions that is applicable to the initial state
(all preconditions of actions are met at the time of their
execution) and results in a state that meets the goal
condition.
In the most widely used planning formalism - PDDL
(Fox and Long 2003), the state consists of a truth as-
signment to a fixed set of logical atoms. However such
a representation is often unneccessarily large as many
pairs of atoms are mutually exclusive (e.g. at(home)

and at(garden)). For this reason many PDDL planners
internally represent state by values of a set of discrete
state variables whch are automatically inferred from the
original domain definition (e. g. Metric-FF (Hoffmann
2003)).
There are multiple ways to solve STRIPS-style planning
problems. Currently, the fastest planners perform state-
space planning — a heuristic search over the state space
starting from the initial state. A nice property of this
approach is that complete state information is always
available for checking action preconditions and thus even
complicated preconditions can be easily handled.
The most known planner used in games, GOAP (Orkin
2006) works with state-variables and performs a state-
space search.

HTN Planning

HTN planning takes a rather different approach. A
HTN planning domain consists of two types of tasks:
primitive tasks, which correspond to actions in STRIPS-
style planning and composite tasks. A composite task
corresponds to a higher-level action and provides sev-
eral decompositions — recipes how to accomplish the
task with lower-level actions. Decompositions may be
accompanied with conditions for their applicability. A

planning problem in HTN is to gradually decompose a
given task into a (partially ordered) sequence of primi-
tive tasks such that all the decomposition conditions are
held and the resulting action sequence is applicable to
a given initial state.

RELATED WORK

AI planning has been involved in multiple commercial
games. For a thorough review of both STRIPS-style nad
HTN planning in commercial games see (Champandard
2013).
Some comparison studies of planning and reactive tech-
niques have been made (Hoang et al. 2005, Long 2007,
Cartier 2011). In general, planning techniques are found
to be useful from the performance perspective if the en-
vironment is not too fast paced. In rapidly changing en-
vironments the results are less conclusive. Also only one
of the studies involved statistical analysis of the results
to distinguish between possible random coincidence and
“real” difference.
A simple comparison of PDDL planners and reactive
techniques in various dynamic conditions in a 3D game-
like environment has been performed in our previous
work (Cerny et al. 2013). It showed that, unsurprisingly,
planning is advantageous only when the environment is
small or it is not very dynamic or if it is very hostile.
However the work tries to pinpoint the exact transition
points and has let me test a statistical methodology to
evaluate similar experiments.
We are not aware of any direct comparison of HTN and
STRIPS-style planning.
Some research has also been done in comparing usabil-
ity of agent programming languages to develop virtual
agents (Gemrot et al. 2013). The methodology devised
in the paper and previous work of the authors is inspi-
rative for comparing algorithms from the designer point
of view.

COMPARISON METHODOLOGY

In this section we present a general methodology for
comparing ASMs. We mostly focus on comparisons from
the performance perspective, but a short discussion of
designer persepctive evaluation is also given.
For the purpose of computer games, it does not make
much sense to evaluate the ASM by solving isolated
problems. Thus we propose to incrementally create a
broad set of different game-like environments, primarily
multi-agent, to test the ASMs. Our previous comparison
was done in full-fledged 3D game engine (Cerny et al.
2013), but creating complex scenarios in 3D continu-
ous environments showed to be very time consuming.
Thus for further research we have decided to simplify
the environments to 2D simulations with game-inspired
mechanics but running in discrete space and time. Af-
ter sound results have been established for those simpler



environments a confirmative evaluation should be done
in fully 3D and continuous environments to prove that
the results do generalize.

The agents carry out actions in the environment and
are given a real-valued reward signal at every time step.
The performance of the agents is measured in two ways:
the total reward accumulated during the simulation and
the rank — whether it was better than other agents.
Those data will be statistically rigorously analysed to
determine significance of perceived differences.

Environment simulation is fully dynamic, i. e., it never
waits for the agent to make a decision. One of the inter-
esting questions is how does the performance of various
algorithms change with varying speed of the simulation
— that is, with different amount of processing power
available to the agents. In the first part of the research,
only fully observable domains will be considered, but
some experiments with partial observability will also be
run.

The action selection algorithms are wrapped up in con-
trollers. A controller is responsible for running the al-
gorithm, performing meta-reasoning about the deliber-
ation process (e. g. interrupting a planner if the world
has changed signicifantly since the start of planning)
and gathering the results of the algorithm run.

Every environment has multiple representations. A rep-
resentation is an interface between an environment and
a controller. There may easily be multiple different rep-
resentations (e. g., on a different level of abstraction) of
the same environment for the same controller. The rep-
resentation provides the controller with input data for
the action selection algorithm and also provides informa-
tion for controller’s meta reasoning (e. g., what are the
possible planning goals and what are their priorites, has
the world changed considerably in last x steps, . . . ). The
representation also translates high-level actions from the
controlling algorithm (if any) into simple reactive plans
that can be executed without deliberation (e. g., move
to next room, shoot while the enemy is visible, . . . ).
Thus the algorithms effectively do not need to be aware
of the actual environment. The representations need to
be carefully designed not to create significant advantage
for any particular controller by translating its response
into more powerful reactive plans.

An important part of the project output is a freely avail-
able codebase of environments and controllers 1so that
anybody can a) rerun the experiments and reproduce
the results, b) test a new algorithm against any of the
already connected, provided it can handle data in one
of the supported formats and c) add a new environment
to test the algorithms against as long as relevant repre-
sentations are added.

The evaluation from a designer perspective is method-
ologically more complicated. Reliable results are very

1The work-in-progress codebase is available at
http://code.google.com/p/aiste/

difficult to obtain without user testing (Gemrot et al.
2013). Due to high associated costs, user testing was
not performed as a part of this study and was left for
future work. However, personal experience from devel-
oping individual representations are an indicator of the
actual difficulties

CASE STUDIES

We have performed two sets of experiments to compare
HTN planning using JSHOP2 (Ilghami and Nau 2003)
and two PDDL planners: SGPlan 6 (Hsu and Wah 2008)
and Metric-FF (Hoffmann 2003).
For the purpose of our experiments we have modified
JSHOP2 code slightly. We have added a simplistic
branch and bound optimization scheme to the original
code and performed some technical adjustments for bet-
ter integration in our experimental platform. JSHOP2
was chosen because it is in widespread academic use and
has been repeatedly used in connection with game AI.
JSHOP2 is written in Java.
SGPlan 6 and Metric-FF were chosen because they are
in frequent academic use and have scored well at past
International Planning Competition (IPC). Both plan-
ners use the PDDL language (Fox and Long 2003) as
their input. The winner of the latest IPC (held in 2011),
LAMA 2011 was based on the Fast Downward platform,
which has shown severe obstacles for real-time planning
in our previous study (Cerny et al. 2013) and would re-
quire different environment representation for efficient
planning under severe time constraints, which we could
not provide.
Both environments and all supporting code was writ-
ten in the Java language. All experiments were run on
a dedicated computing server with two AMD Opteron
2431 processors (6 cores each, 2.4GHz, 64bit) and 32GB
RAM. Experiments were run in parallel while ensuring
that each environment and each planner instance can oc-
cupy a full processor core without competing with each
other.

Case Study I - Spy vs. Spy

The first domain is inspired by the 1984 computer game
SpyVsSpy (Anon. author 2012). There are two agents
moving on a grid of rooms. The rooms may contain
one or several items, traps, trap removers and weapons.
There are multiple types of items, traps and trap re-
movers. The agents have the same goal: gather one
instance of each of the item types and reach a goal des-
tination. However, if there is a trap in a room, it has to
be disarmed with a corresponding trap remover, other-
wise an agent trying to pick up anything in this room
dies.
An agent carrying a weapon may attack its opponent
if they are in the same room. Such an attack has a
30% probability of killing the other agent. Weapons are



for single use only. Whenever an agent dies, all its be-
longings are “left on the floor”. Agents are rewarded -50
points for death, 150 for reaching the goal with all items
and -1 for each step of the simulation. The simulation
ends when one of the agents reaches the goal or after a
timeout.
Maps with 15, 30 and 70 rooms were randomly gen-
erated, 15 instances per size. The generation process
ensured, that in the static case (i. e. if only one agent
is present in the environment) the goal state was reach-
able for any starting position. Simulations were run at
three different speeds - 100, 500 and 1000ms delay be-
tween steps. For each map and simulation speed, every
pair of controllers was run twice. For the second run,
the initial starting positions were switched to ensure fair
comparison. This made for a total of 810 experiments.

Results
Let us first examine mean reward generated by each
controller. There are two ways to examine reward.
First is to examine the mean reward over all exper-
iment runs, second is to calculate the win percentage
that is the percentage of runs where the controller gath-
ered greater reward than its opponent. The results for
each controller pair are summarized in Table 1. We see
that SGPlan is better than JSHOP2 and JSHOP2 is in
turn better than Metric-FF and that the differences are
huge. Indeed, the null hypothesis that two controllers
are equally likely to gather greater reward in a single run
has p-value < 10−15 (tested using multiple comparisons
of means with Tukey contrasts (Hothorn et al. 2008)
over an ANOVA fit with a first order generalized linear
model).
It is of interest, that when averaging over runs in a par-
ticular map size or a particular step delay the ordering
is exactly the same and mean rewards and win percent-
age are roughly similar (less than 10% difference). Also
the statistical significance of the differences is still high
(p < 10−5 in all cases).
From the designer perspective JSHOP2 was, in our per-
sonal experience, much more difficult to handle than
PDDL planners. Developing PDDL representation for
SGPlan and Metric-FF was very straightforward - in a
discretized and nearly deterministic environment it is
simple to describe individual actions. Developing HTN
representation for JSHOP2 on the other hand was much
more difficult. A direct decomposition resulted in per-
formance inferior by a large margin to both PDDL plan-
ners. Involving domain-specific heuristics for ordering
possible variable bindings and external A* path finding
were neccessary for JSHOP2 to be competitive.
Domain-specific heuristics allowed JSHOP2 to find rel-
atively good plans, but the planning time was still too
high (432ms for maps of size 15, 647ms for maps of
size 30 and 493ms for maps of size 70). The numbers
should however be interpreted carefully: only succesful
planning runs (those that found a plan) are included in

the statistic, because there are often plenty unsuccesful
runs which finish very quickly. However, succesful plan-
ning runs do not include runs which were terminated by
the end of the simulation or radical change in the en-
vironment state and those interrupted runs tend to be
longer than average (they ran long enough to be inter-
rupted). This explains the decrease in succesful plan-
ning time for JSHOP2 in the largest domains. See the
online appendix to this paper (Cerny 2013) for full plan-
ning statistics data.
The percentage of steps idle (steps agent had no plan
and couldn’t do anything) is a good indicator of plan-
ning performance. Metric-FF had huge issues even in
the smallest domain (87% idle) while the other two plan-
ners had oscillated around 30% steps idle. The variance
of JSHOP2 planning times was remarkably high (sd over
79% of the mean planning time for all map sizes), while
SGPlan 6 has relatively stable performance (sd below
20% of the mean planning time for all map sizes).

Discussion
In Spy vs. Spy scenario, PDDL planning is more benefi-
cial than HTN planning with JSHOP2. PDDL domain
was easier to design than the corresponding JSHOP2
representation, yet with a correct planner, better per-
formance was achieved. This is most likely due to rela-
tively static and puzzle-like nature of the environment,
but implementation details of JSHOP2 and the fact that
it is in Java could have also played a role.

Case Study II - Cover Game

The second environment is called Cover Game. It is
a combat scenario inspired by the Gears of War game
series (Epic Games Inc. 2013) and also takes elements
of gameplay from XCOM: Enemy Unknown (Firaxis
Games 2013). In the scenario two pairs of cooperating
agents fight each other with ranged weapons on a square
grid map with lots of cover spots. Each pair of agents
is controlled by a single controller, issuing actions for
both bodies. In each turn, the agent may either move
up to three squares, shoot at a visible enemy, suppress
a visible enemy with fire (at most once per 2 turns)
and enter full cover mode, if already in cover (full cover
mode significantly increases cover bonus until the agent
moves or fires). The probability of a succesful shooting
is influenced by the distance to the target and its cover
status. Agents that are a target of supression suffer a
large aim penalty, but are not hurt. The damage done
by a single shot is non-deterministic, on average 3 hits
are neccesary to eradicate a target. A killed agent is
respawned at one of the predefined locations. The team
is rewarded +1 point for each kill and -1 for each death
(i.e. it is a zero-sum game) and the game ends after
a specific amount of turns. The agents have unlimited
ammo and start to heal slowly if they are not hit for two
turns.



Table 1: Overall Results for Spy vs. Spy. for every controller pair. The win percentage and mean reward along with
standard deviation (in brackets) is reported.

Controller Opponent % Win Reward
Controller Opponent

SGPlan 6 Metric-FF 92 113.10 (46) -24.45 (47)
SGPlan 6 JSHOP2 86 92.91 (70) -21.13 (53)
JSHOP2 Metric-FF 87 92.94 (56) -28.73 (64)

Figure 1: A sample scenario in Cover Game. 4-sided
cover spots shield all four neighbouring tiles, while hor-
izontal and vertical cover spots shield only the neigh-
bouring tiles in the correct direction. Cover spots pro-
vide 180◦ shelter, e.g. agent B (yellow) is not covered
from agent A (red), but agent C (blue) is. Agent D
(green) cannot shoot at any other agent, neither can
any other agent shoot at him because the line of fire is
blocked by an impassable square.

Three manually created maps of different sizes were
tested. The smallest one (10x10 tiles, called “Simple”) is
shown in Figure 1. There was also a larger map (22x20
tiles, called “Irregular”, because it is not symmetric) and
a very large map (27x37 tiles) inspired by the “Security”
multiplayer map from Gears of War II.

Several different representations of the environment
were developed. Two variants of low-level PDDL rep-
resentation, where single action in the plan corresponds
directly to a single action in the environment were tried.
One forced the planner to alternate actions for one agent
with actions for the other agent (this will be referred to
as “LowAlt”) and one which did not (“Low”). The idea
was that forcing the planner to alternate would make it
more difficult to find a goal, but the plan should com-

plete faster, because of maximal parallelism.

A similarly low-level JSHOP2 representation was not
tested in the final runs because even representation cap-
turing only movement and finding cover had difficulties
finding a single plan in a small environment within sev-
eral seconds. Instead more high-level representations
for both JSHOP2 and PDDL were created where the
actions correspond to assigning “roles” to individual
agents. The set of roles were the same for both represen-
tations and the domains were designed so that very sim-
ilar role assignments are found by both representations.
PDDL planners were thus tested with three representa-
tions. Since we are mostly interested with comparing
techniques, matches between two instance of the same
controller with different representations were excluded.

For each pair of controllers and representations, 4
rounds 200 simulation steps each were run at 100, 500,
1000 and 2000ms per step, resulting in total of 720 ex-
periments.

Results

Results were analyzed with the same methods as in Case
Study I, so refer there for details. A significant amount
of draws were met, so the summary of draw percentages
was added. The results are presented in Table 2. The
message is clear, all of the role representations are sig-
nificantly (all p< 10−4) better than the low-level ones,
regardless of controller. The differences between con-
trollers with the same representation level are however
insignificant (all p> 0.7).

The same pattern of results, although not always statis-
tically significant, is repeated in all map sizes and step
delays. This spares us strong conclusions, except for
the fact that low-level representations are not practical
in highly dynamic and non-deterministic domains.

However, looking at planning statistics reveals some
interesting points. Most notably JSHOP2 plans very
quickly (below 10ms). It was not enough to give him
statistically significant performance advantage proba-
bly because the PDDL planners planned only slightly
above 100ms which was the shortest step delay. The
most likely cause is that PDDL planners are started in
a separate system process and thus had the overhead
of starting the process, while JSHOP2 ran in the same
virtual machine as did the environment. See the online
appendix to this paper (Cerny 2013) for actual numbers.



Table 2: Overall Results for CoverGame for every controller pair. The win and draw percentages and mean reward
along with standard deviation (in brackets) are reported.

Controller Opponent % Win % Draw Reward Significant

SGPlan 6 - Roles Metric-FF - Low 79 6 4.42 (5) yes
SGPlan 6 - Roles Metric-FF - LowAlt 69 6 3.92 (6) yes
SGPlan 6 - Roles Metric-FF - Roles 50 6 0.56 (6) no
SGPlan 6 - Roles JSHOP2 - Roles 48 10 0.33 (5) no

JSHOP2 - Roles Metric-FF - Low 79 10 5.21 (6) yes
JSHOP2 - Roles SGPlan 6 - Low 77 12 4.65 (5) yes
JSHOP2 - Roles Metric-FF - LowAlt 75 12 4.12 (4) yes
JSHOP2 - Roles SGPlan6 - LowAlt 71 19 4.29 (5) yes
JSHOP2 - Roles Metric-FF - Roles 48 10 0.27 (5) no

Metric-FF - Roles SGPlan 6 - Low 77 8 5.54 (7) yes
Metric-FF - Roles SGPlan6 - LowAlt 77 12 4.58 (6) yes

SGPlan 6 - Low Metric-FF - Low 42 21 -0.06 (4) no
SGPlan 6 - Low Metric-FF - LowAlt 41 29 0.37 (4) no

SGPlan6 - LowAlt Metric-FF - LowAlt 38 29 -0.08 (3) no
SGPlan6 - LowAlt Metric-FF - Low 35 38 0.58 (4) no

From our personal experience, implementing the high-
level role representations for both PDDL and HTN plan-
ners was of roughly the same difficulty. But the design
of the low level domain was quite cumbersome, as the
mechanics of the domain such as probability to hit are
not easily represented as logical atoms.

Discussion

The experiment could not determine, whether HTN or
PDDL planning is better, because the level of repre-
sentation seemed to be the sole important factor. An
interesting point is that the abstract domains with roles
were only slightly more complicated than a simple be-
havior tree, but planners still needed a lot of time to
evaluate it. For PDDL planners it is impossible to de-
termine whether this was simply an overhead of start-
ing a new system process, but JSHOP2 yields itself to
more detailed analysis. 5ms is still a lot for a behavior
tree evaluation, and translating the problem instance to
JSHOP2 formalism is not included in this time. Also
no string operations are performed during the trans-
lation or inside JSHOP2, as all atoms are encoded as
integers. Profiling the JSHOP2 code showed, that over
90% of the time is spent working with variable bindings
- although the domain would work exactly the same if
variable binding changed to parameter passing. This
could be of importance in practical HTN applications
— if variable binding is not strictly neccessary, do not
use it.

CONCLUSIONS AND FUTURE WORK

We have outlined a methodology for comparing action
selection mechanisms and performed two case studies
followin the methodology. The first case study showed
than in puzzle-like environments, PDDL planning seems
to be better than HTN planning. Results for highly dy-
namic CoverGame domain were not conclusive due to
low statistical significance. But still the methodology
showed to be feasible to apply and provide statistically
supported results about various action selection mecha-
nisms.

We have also noted that variable binding is an important
performance factor in JSHOP2, even if the domain is so
simple, that it is not needed. This should be noted for
practical deployments of HTN planning.

An interesting point is that performance of both HTN
and PDDL planners seemed to suffer similar penalty
when scaled to larger domains or when under more time
pressure.

As for designer perspective, our personal experience has
shown that in a puzzle-like world, designing a HTN im-
plementation requires much more effort than its PDDL
counterpart.

Next steps consist of both extending the set of environ-
ments and connecting other action selection mechanisms
such as reinforcement learning implementations and off-
the-shelf probabilistic planners to the environments al-
ready designed. More thorough experimentation with
the two domains presented in this paper should also
yield further insights into HTN and PDDL planning ap-
plicability.

As a part of the research an open-source toolkit for



evaluating various techniques in game-like scenarios is
being created. The toolkit will allow researchers from
diverse fields to easily apply a novel technique to game-
like domains and measure its performance therein. Such
toolkit would foster interdisciplinary communication
and has the potential to bring a unifying view on AI
evaluation in games across the whole field.
From our previous experience in evaluating techniques
from the designer perspective, the most promising ap-
proach for future work is to conduct user-studies as a
part of labs or examination of students of relevant AI
courses. The students will try to implement representa-
tions of the same environment for the individual algo-
rithms (e.g. a PDDL domain description, a feature set
for reinforcement learning). Then it will be measured
how succesful agents are with those representations and
the students will be asked to both quantitatively and
qualitatively describe their desginer experience.

ACKNOWLEDGEMENTS

This work was partially supported by the student re-
search grant GA UK 559813/2013/A-INF/MFF, by the
SVV project number 267 314 and by the Czech Science
Foundation under the contract P103/10/1287 (GAČR).

REFERENCES

Anon. author, 2012. “Spy vs. Spy (1984 video
game)”. URL http://en.wikipedia.org/wiki/

Spy_vs._Spy_%28computer_game%29.

Cartier J.F., 2011. Étude Comparative des Planifica-
teurs Appliqués au Domaine des Jeux-Vidéos. Mas-
ter’s thesis, Université de Montréal, Québec, Canada.

Cerny M., 2013. “HTN or State Space - Who
Should Do Planning in Your Game?: Online ap-
pendix”. URL http://popelka.ms.mff.cuni.cz/

~cerny/pddl_vs_htn_online_appendix.pdf.

Cerny M.; Bartak R.; Brom C.; and Gemrot J., 2013.
“Reactive and Planning Agents in Dynamic Game En-
vironments: An Experimental Study”. In Proceedings
of the 5th International Conference on Agents and Ar-
tificial Intelligence.

Champandard A., 2007. “Understanding behavior
trees”. AIGameDevcom. URL http://aigamedev.

com/open/article/bt-overview/.

Champandard A., 2013. “Planning in Games: An
Overview and Lessons Learned”. AIGameDev-
com. URL http://aigamedev.com/open/review/

planning-in-games/.

Epic Games Inc., 2013. “Gears of War”. URL http:

//gearsofwar.xbox.com.

Fikes R. and Nilsson N., 1972. “STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving”. Artificial intelligence, 2, no. 3-4, 189–
208.

Firaxis Games, 2013. “XCOM: Enemy Unknown”. URL
http://www.xcom.com/enemyunknown/.

Fox M. and Long D., 2003. “PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains”.
Journal of Artificial Intelligence Research, 20, 61–124.

Fu D. and Houlette-Stottler R., 2004. “The ultimate
guide to FSMs in games”. In AI Game Programming
Wisdom II, Charles River Media. 283–302.

Gemrot J.; Hlávka Z.; and Brom C., 2013. “Does high-
level behavior specification tool make production of
virtual agent behaviors better?”. In Cognitive Agents
for Virtual Environments, Springer, vol. LNCS 7764.
167–183.

Ghallab M.; Nau D.; and Traverso P., 2004. Automated
Planning: Theory and Practice, Morgan Kaufmann,
chap. Hierarchical Task Network Planning. 229–252.

Hoang H.; Lee-Urban S.; and Muñoz-Avila H.,
2005. “Hierarchical plan representations for encod-
ing strategic game AI”. In Proceedings of the First
Artificial Intelligence and Interactive Digital Enter-
tainment Conference. 63–68.

Hoffmann J., 2003. “The Metric-FF Planning System:
Translating “Ignoring Delete Lists” to Numeric State
Variables”. Articial Intelligence, 20, 291–341.

Hothorn T.; Bretz F.; and Westfall P., 2008. “Simulta-
neous inference in general parametric models”. Bio-
metrical Journal, 50, no. 3, 346–363.

Hsu C.W. and Wah B.W., 2008. “The SGPlan planning
system in IPC-6”. Proceedings of the Sixth Interna-
tional Planning Competition, 5–7.

Ilghami O. and Nau D.S., 2003. “A general approach
to synthesize problem-specific planners”. Tech. rep.,
University of Maryland Institute for Advanced Com-
puter Studies.

Long E., 2007. Enhanced NPC behaviour using goal
oriented action planning. Master’s thesis, School of
Computing and Advanced Technologies, University of
Abertay Dundee, Dundee, UK.

Orkin J., 2006. “Three states and a plan: the AI of
FEAR”. In Game Developers Conference. vol. 2006,
1–18.


