
C# Made Easy!

Faculty of Mathematics and Physics
Charles University in Prague
5th May 2016

Workshop 10 – XP

1. Test
2. Extreme Programming
3. Homework

Find the test here (no-ads):
https://goo.gl/xJVsRH

Permanent link:
https://docs.google.com/forms/d/177cyBCR07Zw1uLH2YNKmsH64ARGmrXt1Ttg7fepyVl
U/viewform

Time for the test:
5 min

https://goo.gl/xJVsRH
https://goo.gl/xJVsRH
https://docs.google.com/forms/d/177cyBCR07Zw1uLH2YNKmsH64ARGmrXt1Ttg7fepyVlU/viewform
https://docs.google.com/forms/d/177cyBCR07Zw1uLH2YNKmsH64ARGmrXt1Ttg7fepyVlU/viewform
https://docs.google.com/forms/d/177cyBCR07Zw1uLH2YNKmsH64ARGmrXt1Ttg7fepyVlU/viewform

What the
customer

wants.

How are we
supposed to
implement it

What are we
going to do

next?

Clearing
implementation

doubts

We’re
working like

mad!

Does it meet
customer’s

expectations
?

Let the
customer to

use it.

1-3 weeks

Today, a programmer needs to be able to do all kinds of “jobs”.

 Important for teams!
 Which we sort-of lack here…

 Alas, we’re going to investigate the following:
 The Code is The Documentation

=> The code should speak for itself

 Pair Programming
=> Helps you to focus your thoughts and write bug-less code

 Apart from obvious naming conventions…

 Name your temporary variables well

public Node Add(int num) {
 Node n = new Node(num);
 …
 return n;
}

public Node Add(int num) {
 Node result = new
 Node(num);
 …
 return result;
}

 Apart from obvious naming conventions…

 Avoid obvious I, J, K variable names in for-loops

for (int i = 0;
 i < lines.Count();
 ++i) {
…
}

for (int lineIndex = 0;
 lineIndex < lines.Count();
 ++ lineIndex) {
…
}

 Apart from obvious naming conventions…

 Document the idea behind the code, not what the code is
doing

 Document contracts

 // Returns ROOT node
public NODE GetRoot();

// Returns ROOT of the tree that is
guaranteed to remain the same
throughout the life of the TREE
object
public NODE GetRoot()

 WHY WE NEED DOCUMENTATION?

 The code is the imperfect translation into a programming language of the programmer’s
imperfect understanding about what the program should do.

⇒ If unsure how to code your idea, write down your idea/objective in plain language
(e.g. as a comment to a class, a method or code block) and leave it there after you
code it
 And after you code your idea/objective, review your comment if it still holds!

 WHY WE SOMETIMES HATE DOCUMENTATION?

 The documentation is a set of hypotheses to be tested and not a set of axioms
to be trusted. And it ages…

⇒ You will never know whether the method/class/sub-system behaves as documented /
expected until you try == first-hand experience is the best

⇒ If you are unsure about the technology, do not go on wild implementing features in
real-project, play with the technology elsewhere, safely

 (~ sort of SPIKEs in XP terminology)

 Two roles: Driver and Navigator

 Driver
 Writes the code

 Navigator (preferably in this order)
1. Reviews each line of the code

▪ Typos
▪ Coding standards
▪ Bugs!!!

2. Thinks about “next step”
3. Thinks about the overall architecture

 Let’s form pairs!

 Download the template: http://goo.gl/WkLMWR

 Provide a way to visualize a binary search tree
 Come up with a metaphore for the visualization
 Binary tree-like layout

▪ Node as a circle with a number in its center
▪ Edges between parent-child

 Repaint on screen resize
 Always fit into “the entire window”
 And be warned… the customer will likely need to change this

layouting in the future!
=> Try to separate “drawing commands” from the “layouting algorithm”

http://goo.gl/WkLMWR

 Fixed Layout
 Tree Height / Layer-depth determines the layout

 Fixed Layout
 Tree Height / Layer-depth determines the layout
 Even if the tree is not full, the positions of respective nodes do not

changes

 GOOD LUCK!

1. Decide on Driver & Navigator
2. Analyze existing code base together
3. Analyze the task together and come up with solution for

the layouting algorithm
4. Design an architecture for algorithm implementation
 Beware, the layouting algorithm will likely be changed in the

future
 But do not over-engineer this!

5. Code it!

Continue the work on your code alone and:
1. Provide a way to add “multiple numbers comma separated” at

once (new text box, new button)
2. Implement flexible layout for the tree

 Fixed Layout

 Fixed Layout
 Tree Height / Layer-depth determines the layout

 Flexible Layout
 Sub-tree width determines the layout

 Email: jakub.gemrot@gmail.com

 Subject: Programming II – 2016 – Assignment 10

 Body: state who you have coded the assignment with

 Zip up the whole solution and send it

 You WILL NOT find the assignment in CoDex!

 Deadline:
 12.5.2015 23:59

 Points: 10 + 5 (meeting the deadline)

mailto:jakub.gemrot@gmail.com

  In case of doubts about the assignment or some
other problems don’t hesitate to contact me!

 Jakub Gemrot
 gemrot@gamedev.cuni.cz

mailto:gemrot@gamedev.cuni.cz

	Programming II
	Workshop 10�Outline
	Test 10�Test
	Extreme Programming�Software Development Methodology
	Extreme Programming�Software Development Methodology
	Extreme Programming�Software Development Methodology
	Extreme Programming�Software Development Methodology
	Extreme Programming�The Code is The Documentation
	Extreme Programming�The Code is The Documentation
	Extreme Programming�The Code is The Documentation
	Extreme Programming�The Code is The Documentation
	Extreme Programming�Pair Programming
	Extreme Programming�Task – Visualization of Binary Search Tree
	Extreme Programming�The Task – Visualization of Binary Search Tree
	Extreme Programming�The Task – Visualization of Binary Search Tree
	Extreme Programming�The Task – Visualization of Binary Search Tree
	Extreme Programming�Homework – Flexible Layout for Binary Tree
	Extreme Programming�Homework – Flexible Layout for Binary Tree
	Extreme Programming�Homework – Flexible Layout for Binary Tree
	Extreme Programming�Homework – Flexible Layout for Binary Tree
	Assignment 10�Send me an email
	Questions?�I sense a soul in search of answers…

