Faculty of Mathematics and Physics Charles University in Prague 14th April 2016

C# Made Easy!

Programming II

Workshop o7 – Theme Hospital Lite Part 3 – Code Architecture

Lab 07 Outline

- 1. Test
- 2. Task Architecture Brainstorming
- 3. Full Assignment Specification
 - The Simulation

Find the test here (no-ads):

https://goo.gl/IOSM0B

0 vs. 0, i vs. 1 vs. 1

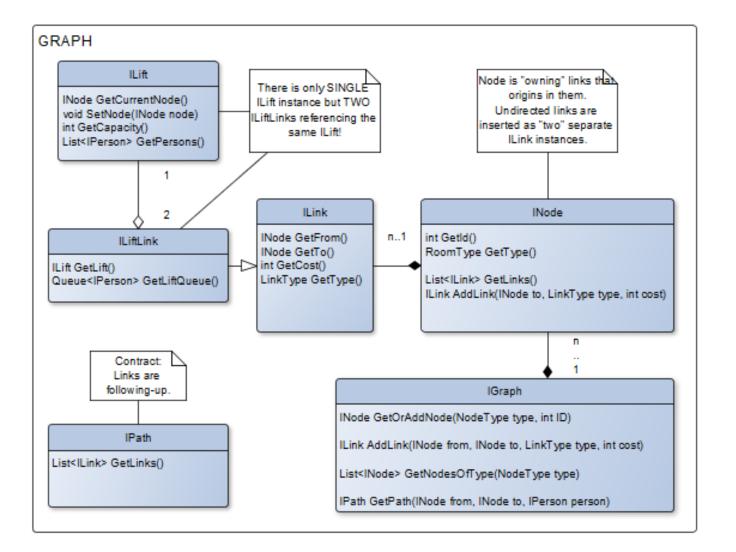
Permanent link:

<u>https://docs.google.com/forms/d/1dvJFH2wEaYNUrdvpV_DXGhYMU33nkZy7HWro-blig-</u> <u>Y/viewform</u>

Time for the test:

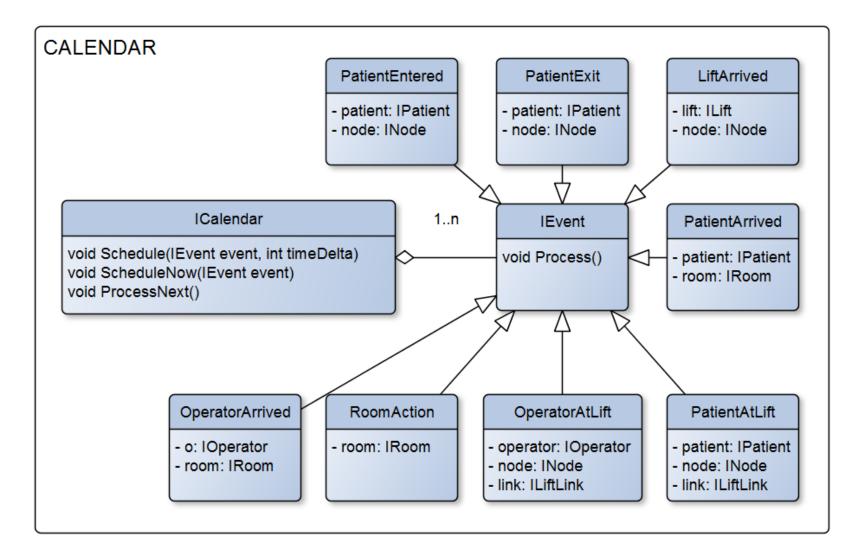
15 min

Topic Let's talk about architecture


Architectural Requirements What functionalities should be modelled?

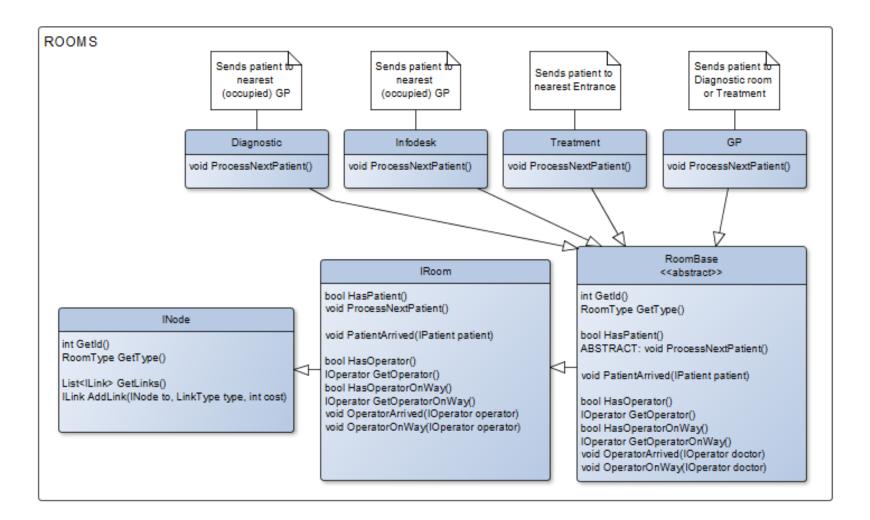

- Let's write them down using plain language:
- Points of focus:
 - How to model LIFTs?
 - https://goo.gl/hGA4kA
 - https://docs.google.com/forms/d/1cNDD3Gt3ngbYNYh-ouJM2-wiqeEEVKxKTL6d91-Kjig/viewform
 - How to model PERSONs?
 - https://goo.gl/41AEeC
 - https://docs.google.com/forms/d/1Q291uruXX4BeBJi8u5_BLFC_qRoCbio9lo-BBwCOmyM/viewform
 - 0 vs. 0, i vs. 1 vs. 1

Architectural Requirements LIFTs (Graph)

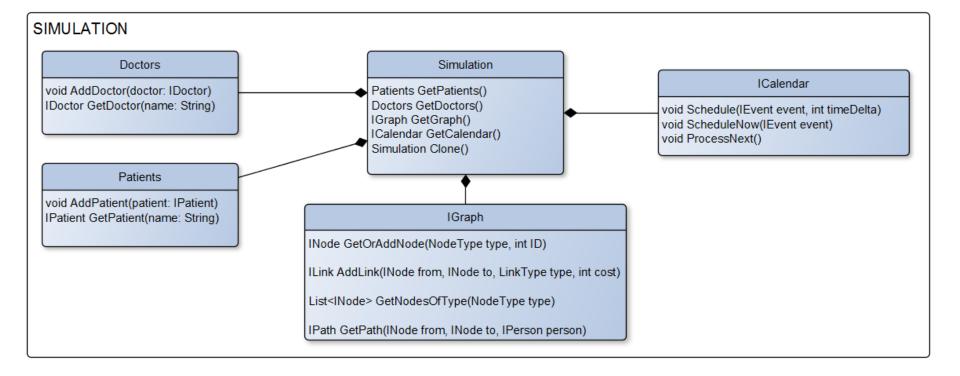


Architectural Requirements Persons

Architectural Requirements LIFTs (Events)



Architectural Requirements What functionalities should be modelled?


- Points of focus:
 - How to model ROOMs?
 - https://goo.gl/hS0jb4
 - https://docs.google.com/forms/d/1PtB3RYJTz3zLJCHMi7IspI8MZY9AGks-ZDSOCWRUeFI/viewform
 - How to prepare for "experimentation with simulation"?
 - https://goo.gl/t70hsS
 - https://docs.google.com/forms/d/1vYmPXVzuW1_s1GoYQdiRmozosHFAQj53lXvvTLBc_Wo/viewform
 - 0 vs. 0, i vs. l vs. 1

Architectural Requirements ROOMs (Events)

Architectural Requirements Simulation

Architectural Requirements RESPONSEs

- Brainstorming results
 - How to model LIFTs?
 - <u>https://docs.google.com/spreadsheets/d/iijUl8jiYaykvamJ5bWuVbbxgygRExRDzw6czK</u> <u>SEzQg/edit?usp=sharing</u>
 - How to model PERSONs?
 - <u>https://docs.google.com/spreadsheets/d/1fyxauTq1g__NOpH_bMUcRiHNgN9CQs5sOR2</u>
 <u>2RFUYFuo/edit?usp=sharing</u>
 - How to model ROOMs?
 - <u>https://docs.google.com/spreadsheets/d/1EGYrAnMLhz4_dfPJjt7-kf3JT8DF6r9rgap2LZFi1Gs/edit?usp=sharing</u>
 - How to prepare for "experimentation with simulation"?
 - https://docs.google.com/spreadsheets/d/1T702bCHi8LBOobc_ot4y6HE4KTb3Rb8YoMov cUMu8Uo/edit?usp=sharing

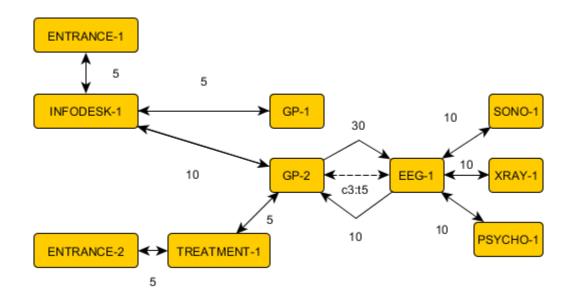
Theme Hospital Lite FULL ASSIGNMENT SPECIFICATION

- 1. Introduction
- 2. Graph & Rooms
- 3. Patients
- 4. Staff (Doctors, Nurses, Secretaries)
- 5. Navigation
- 6. The Simulation
- 7. Input specification
- 8. Output specification
- 9. Task summary

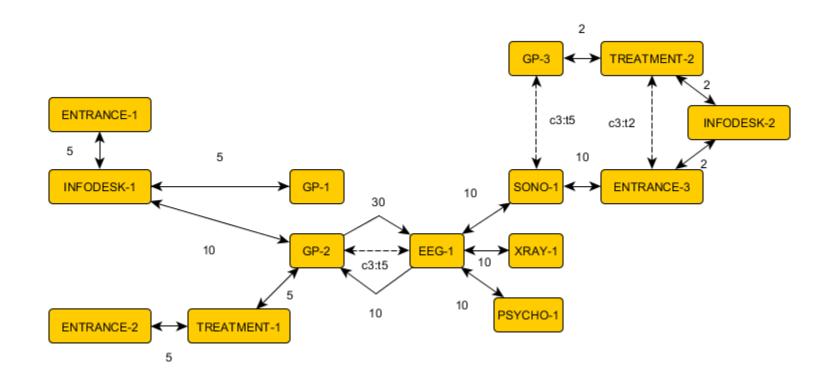
Theme Hospital Lite 1. Introduction

- Rooms / Places
 - Info Desk, GP, EEG, Sono, X-Ray, Psycho, Treatment
- Staff
 - Secretaries, Doctors, Nurses
- Various hospitals
 - Different topologies between rooms
 - Walking / Lift-riding
- Source of income
 - Patients
 - Various age (speed of walking)
 - Various health problems (need special type of diagnoses)
- Our objective
 - Maximize the profits!
 - => Minimize the number of doctors that you need for a given day

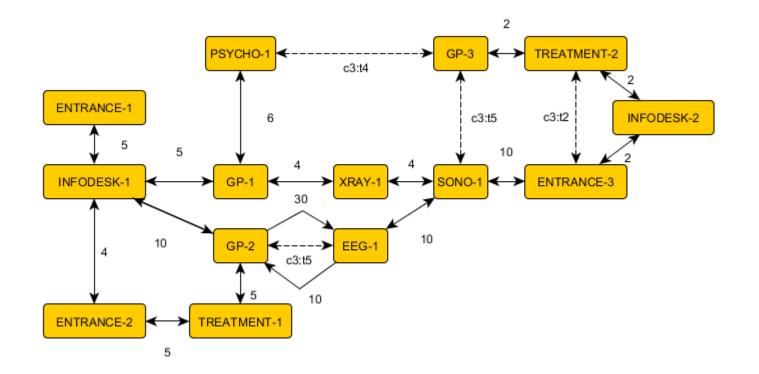
- Hospital == Oriented graph with costs at edges
- Nodes are "Rooms/Places"
 - ENTRANCE
 - INFODESK
 - GP
 - EEG
 - SONO
 - XRAY
 - PSYCHO
 - TREATMENT
 - NODE


There can be multiple places of a given room type!

- Hospital == Oriented graph with costs at edges
- Edges are of two types
 - 1. Corridors/Stairs
 - Oriented edges
 - Has a base cost in "seconds" (positive integer number)
 - Cost is modified by person's WalkingMultiplier!
 - 2. Lifts
 - Non-oriented edges (rides both ways)
 - Always runs between two nodes only
 - Has a maximum capacity
 - Has a base cost in "seconds" (positive integer number)



Example 1



Example 2

Example 3

- The link's cost is always in "seconds"
- So if lift's cost is "10" it means it travels the link in 10 seconds.
- If person with speedMultiplier 2 is travelling through "walk" link of cost 20, then it means it will take them 2*20=40 seconds
- If person with speedMultiplier 2 is travelling through "lift" link of cost 20, then it means it will take them 20 seconds (speedMultiplier does not affect lift-link traversal)

Assignment 5 3. Patients

- Each patient has own health problem / disease
- Each patient enters a hospital from a pre-set entrance (you cannot choose, which entrance the patient use to get into the hospital)
- The type of disease is treated as if "known in advance", it is a part of the input
- List of health problems / diseases:
 - CARDIAC
 - PNEUMONIA
 - HIP-PAIN
 - NEUROTIC

Assignment 5 3. Patients

- The patient's route through the hospital is "fixed" in a sense that they always travel through a "fixed" types of rooms.
 - ENTRANCE (as defined)
 - => INFODESK
 - => GP
 - => specific diagnoses room determined by patient's health problem => GP
 - =>TREATMENT
 - => ENTRANCE (used as exit)
- Mapping between Health problems and Specific diagnostics:
 - CARDIAC -> EEG
 - PNEUMONIA -> XRAY
 - HIP-PAIN -> SONO
 - NEUROTIC -> PSYCHO
- E.g. when the patient has "PENUMONIA" it will travel to "XRAY" room

Assignment 5 4. Staff

- Every room (except node) requires some staff in order to be "functional"; each room may be occupied by single "operator" only
- There are 3 types of staff persons:
 - Doctors GPs, specific diagnose rooms
 - Nurses TREATMENTs
 - Secretaries INFODESKs
- Only doctors are going to be simulated in detail, they will have to travel between their rooms
- Each doctor has own speedMultiplier specified
- Nurses and secretaries will be fixed in a concrete room for the whole day and every such room will have one

Assignment 5 4. Staff

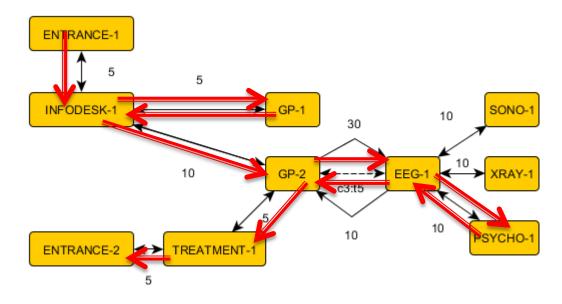
- Every staff member will have serviceSpeed
- Person's serviceSpeed will determine how long it takes to "process" some patient
- As nurses and secretaries won't travel between TREATMENTs resp. INFODESKs, the serviceSpeed will be associated with concrete room
- The same does not apply to GPs and other diagnostic rooms as the time required to "process" a patient there will be determined by a doctor who will work in the room

Assignment 5 5. Navigation

- Only Patients and Doctors needs to be navigated around the hospital
- Patients always travels to the "nearest" room of some type
- Doctors travel between rooms only if some condition is met (typically when they are required somewhere and they are in the room that noone is using / is about to use)

Assignment 5 5. Navigation

- Patient always travels (gets send) to the "nearest" room of some type
- Patient's route always looks like this Patient enters the hospital via pre-set ENTRANCE -> Travels to the nearest INFODESK [waits there to be processed / gets processed] -> Travels to the nearest GP (regardless doctor's presence) [waits there to be processed / gets diagnosed] -> Travels to the nearest diagnose room for patient's health problem doctor's presence) (regardless [waits there to be processed / gets diagnosed] -> Travels to the nearest GP (regardless doctor's presence) [waits there to be proessed / receive final diagnose] -> Travels to the nearest TREATMENT [waits there to be treated / receive treatments] -> Exits via the nearest ENTRANCE


Mapping between health problems and specialized diagnostic rooms:

- CARĎIAC -> EEG
- PNEUMONIA -> XRAY
- HIP-PAIN -> SONO
- NEUROTIC -> PSYCHO

Theme Hospital Lite 5. Navigation

Example for a NEUROTIC Patient who is entering the hospital via ENTRANCE-1 and speedMultiplier 2

Total path cost is: 2*5+2*5+2*5+2*10+5+2*10+2*10+5+2*5+2*5 = 120

Theme Hospital Lite 5. Navigation

- Beware of lifts! You must simulate them!
- Every lift has some capacity and operates between two nodes
- You have to track where the lift is
- And a person (patient or doctor) will have to wait for the lift if not available right now
- Note that a person will only wait if the lift's queue is not bigger than the lift's capacity

Initial state

- Lifts are at their starting node as specified by the input
- All nurses and secretaries are at their TREATMENTs, resp. INFODESKs
- All doctors you wish to "use" in the current simulation run must be placed into some room (mind the requirement that there can be single "operator" within the room only)
- The simulation begins at 8:00:00 (hospital opens at 8:00 AM)

Patients

- Each task defines a set of patients that will visit the hospital during the day; each patient is associated with an arrival time and entrance, which they enter the hospital
- They navigate the hospital as specified within (5)
- They never die due to their health problem

INFODESK / TREATMENT

- Each info desk / treatment has a "service speed associated", that is, how much time it needs to "tell the patient how to navigate around the hospital", resp. "cure the patient"
- This speed is fixed
- There can be any number of patients waiting in the queue of an infodesk / treatment

- GPs / Specific diagnose rooms
 - Similar to INFODESK/TREATMENT, but this time, the speed of service is determined by the doctor who is in the room
 - There can be any number of patients waiting in the queue of this room as well
 - Doctor will never leaves his/her room while there are patients in the queue or patients that are travelling to the room right now

EVENT

Person arrives to the node which they need to use a "lift" from

- Following cases may occur:
- 1. Lift is there => Person will immediately use it
- 2. Lift is not there & Waiting queue is not full & Lift is not riding => Lift gets "called" and starts to travel to the node the person is at, the person will wait for the lift to arrive
- 3. Lift is not there & Is riding & Waiting queue (of lift capacity length) is not full => Person will wait for the lift to arrive
- Lift is not there & Waiting queue is full => Person will take detour

EVENT

 INFODESK / TREATMENT is not working and has a patient in a queue

- Next patient gets "processed" at the speed of the room
- After it gets "processed" it is decided where it will navigate next (the nearest room) and the patient begins to navigate to the next room

EVENT

- GP / Diagnose room has a doctor, who is not working and there is a patient in a queue
 - Next patient gets "processed" at the speed of the doctor
 - After it gets "processed" it is decided where it will navigate next (the nearest room) and the patient begins to navigate to the next room

EVENT

- Doctor finished the last patient within the queue of his/her <u>GP</u> room and there is no patient on their way to doctor's room
 - Two cases may arise
 - There is no other room that has a patient trying to "use" or navigating to in order to "use" it => doctor stays in his/her current GP room
 - 2. There is such a room and
 - 2.1 There is a doctor who is navigating there => doctor ignores it and stays
 - 2.2 There is no doctor travelling there =>
 - 2.2.1 And this doctor is the nearest (speedMultiplicator applies, state of lifts are ignored) one who can leave his/her GP => s/he will travel there
 - 2.2.2 Is not the nearest one => stays in his/her current GP room
 - 3. There is more than one such a room
 - 3.1 Same as "2", rooms are processed in the same order as the need arose there I.e., there will be a queue of "rooms" that require a doctor and you will assign doctors to them in that order.

EVENT

- Doctor finished the last patient within the queue of his/her <u>Specific diagnostic</u> room and there is no patient on their way to doctor's room
 - Whenever there is no queue, two cases may arise
 - There is no other room that has a patient trying to "use" or navigating to in order to "use" it => doctor goes to the nearest unoccupied GP
 - 2. There is such a room and
 - 2.1 There is a doctor who is navigating there => doctor ignores it and stays
 - 2.2 There is no doctor travelling there =>

2.2.1 And this doctor is the nearest one who can leave his/her room => s/he will travel there

2.2.2 Is not the nearest one => stays in his/her current room

- 3. There is more than one such a room
 - 3.1 Same as "2", rooms are processed in the same order as the need arose there I.e., there will be a queue of "rooms" that require a doctor and you will assign doctors to them in that order.

EVENT

Patient starts to navigate to the unoccupied room

- And there is a doctor who is neither working nor has a patient on route
 - => Nearest such a doctor will start to travel to this room
- 2. And there is no free doctor

=> Room is added to the queue of rooms that needs a doctor

- Now you will have to simulate LIFTs!
- This means that you have to know where lift "begins"
- Lift link: [<lift-start-left-link> | <lift-start-rightlink>]
- lift-start-left-link: `L<--(lift:c' <capacity>
 `:t'<cost> `)-->'
- lift-start-right-link: `<--(lift:c' <capacity>
 `:t'<cost> `)-->L'

INPUT: <int> `\n' [<node> ` ' <link/> ` ' <node> `\n']+ <int> `\n' [<patient> `\n']+ <int> `\n' <int> [<infodesk treatment=""> `\n']+ `\n' <int> [<doctor> `\n']+ `\n'</doctor></int></infodesk></int></int></patient></int></node></node></int>	
<node>: <node-type>`-' <id></id></node-type></node>	
<node-type>:</node-type>	[`ENTRANCE' `INFODESK' `GP' `EEG' `SONO' `XRAY' `PSYCHO' `TREATMENT' `NODE']
<id>:</id>	<int></int>
<int>:</int>	[1-9][0-9]{0,1}
<link/> :	[<walk-link> <lift-link>]</lift-link></walk-link>
<walk-link>:</walk-link>	[<non-oriented-walk-link> <oriented-walk-link>]</oriented-walk-link></non-oriented-walk-link>
<non-oriented-walk-link>: `<(walk:' <int> `)>'</int></non-oriented-walk-link>	
<oriented-walk-link>: `(walk:' <cost> `)>'</cost></oriented-walk-link>	
<lift-link>:</lift-link>	[<lift-starts-left-link> <lift-starts-right-link>]</lift-starts-right-link></lift-starts-left-link>
<lift-starts-left-link>: `L<(lift:c' <capacity> `:t'<cost> `)>'</cost></capacity></lift-starts-left-link>	
<lift-starts-right-link>: `<(lift:c' <capacity> `:t'<cost> `)>L'</cost></capacity></lift-starts-right-link>	
<cost>:</cost>	<int></int>
<capacity>:</capacity>	<int></int>

INPUT: <int> `\n' [<node> ` / <link> ` / <node> `\n']+ <int> `\n'
[<patient> `\n']+ <int> `\n' <int> `\n' [<infodesk/treatment>
`\n']+ `\n' <int> `\n' [<doctor> `\n']+ `\n'

<patient>: <name> `:' <speed-multiplier> `:' <healthproblem> `:' <node> `:' <time>

<name>: [A-Z][a-zA-Z]+

<speed-multiplier>: <int>

<health-problem>: [`CARDIAC' | `PNEUMONIA' | `HIP-PAIN' | `NEUROTIC']

<time>: [0-2][0-9] `.' [0-2][0-9] `.' [0-2][0-9]

<infodesk/treatment>: <node> `:' <service-time>

<service-time>: <int>

<doctor>: <name>`:' <speed-multiplier>`:'
<service-time>

Output:

Which doctors are you going to use and in which rooms they should begin in + when the last patient leaves the hospital (reaches his/her exit ENTRANCE node).

The hospital opens at o8:00:00.

The hospital closes at 18:00:00.

[<doctor-start> `\n']+ <finishing-time>

<doctor-start>: <name> `:' <node>

<finishing-time>: <time>

Example output:

DoktorJaroslav:GP-1 DoktorkaJaroslava:GP-2 14.05.26

Theme Hospital Lite 9. Task summary

- You are given
 - A hospital
 - Patients
 - Pool of doctors
- You have to come up with a solution that consists of
 - Which doctors are you going to use for a day
 - Which rooms they will start in (at 8:00:00)
- Such that
 - All patients get treated and exit the hospital by the hospital's closing time (18:00:00)
- Try to come up with the best solution
 - That is to minimize number of doctors you need + finishing the day as fast as possible
 - You can score bonus points if you come up with one of the best solutions! (up to +10)

Assignment 7 Send me an email

- Email: jakub.gemrot@gmail.com
- Subject: Programming II 2016 Assignment 07
- Zip up the whole project and send it
- You WILL NOT find the assignment in CoDex!
- Deadline: **30.9.2016 23:59**

Questions? I sense a soul in search of answers...

- In case of doubts about the assignment or some other problems don't hesitate to contact me!
 - Jakub Gemrot
 - gemrot@gamedev.cuni.cz