
C# Made Easy!

Faculty of Mathematics and Physics
Charles University in Prague
8th April 2016

Lab 06 –Theme Hospital Lite
Part 2 – The Simulation

1. No Test
2. Revisiting Workshop 05
3. Assignment 06+07

• The Simulation

Find the test here (no-ads):
https://goo.gl/FkyFWX

O vs 0, i vs. l vs. 1

Permanent link:
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGma
WEk/viewform

Time for the test:
3 mins

https://goo.gl/FkyFWX
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform

Have you tried playing it already? Fun guaranteed!

This guy has
Bloaty Head

This has King
Complex

This is
Transparency

disease This is Slack
Tongue

 For the input of graph, rooms, etc. check slides from
previous Lab 05 !

 Now let us revisit some problems from Lab 05
1. Dijkstra’s Algorithm
2. Heap
3. Dictionary
4. WalkLink vs. LiftLink … where to hold GetCapacity()
5. Debugging + ToString()
6. Questions?

Dijkstra’s Algorithm

 Input
 Un/oriented (weighted) graph

 Task
 Find the shortest path between two given nodes

O, T within the graph

 Output
 Valid path within the graph between nodes O and

T that is the shortest given graph’s weights or
“NULL” if no such a path exists

Dijkstra(start, end):
 openList = [start] // priority queue
 closedList = [] // set
 pathCost = {start = 0} // map: node => int
 pathParent = {start = null} // map: node => node

 while (openList is not empty) { // until we have nodes to search through
 node = openList.Dequeue() // get the node with “current shortest path”
 if (node == end) // if it is our TARGET
 return ReconstructPath(end) // we’ve done!
 Expand(node) // otherwise EXPAND it!
 closedList.Add(node) // and mark it as “closed”
 }
 return null // if there is no nodes left, no path exists

Expand(probingNode):
 foreach (link in probingNode.links) { // iterate through all outgoing links
 child = link.otherEnd(probingNode) // get the link’s end
 newCost = pathCost[probingNode.links] + link.cost // calculate path cost to child
 if (child is not in pathCost) // have we touched the child in past?
 { // NO => include child into openList
 pathCost[child] = newCost
 pathParent[child] = probingNode
 openList.Queue(child, newCost)
 } else
 { // YES => compare costs
 oldCost = pathCost[child] // retrieve current cost
 if (newCost < oldCost) { // have we found a better path?
 pathCost[child] = newCost // YES => reinclude child in openList
 pathParent[child] = probingNode
 closedList.Remove(child)
 openList.QueueOrUpdateCost(child, newCost)
 }
 }
 }

Task: Find shortest path between O and T

Step: Init data structures

probingNode = null
openList = [O]
closedList = []

pathCost = { O => 0

 }

pathParent = { O => null

 }

Step 1.1: Examining node O

probingNode = O
openList = []
closedList = []

pathCost = { O => 0

 }

pathParent = { O => null

 }

Step 1.2: Probing links connecting node O

pathCost = { O => 0

 }

pathParent = { O => null

 }

probingNode = O
openList = []
closedList = []

Step 1.3: Probed links connecting node O

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = O
openList = [A,C,B]
closedList = []

Step 1.4: Node O examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = null
openList = [A,C,B]
closedList = [O]

Step 2.1: Examining node A

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = A
openList = [C,B]
closedList = [O]

Step 2.2: Probing links connecting node A

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = A
openList = [C,B]
closedList = [O]

Step 2.3: Probed links connecting node A

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = A
openList = [C,B,D,F]
closedList = [O]

Step 2.4: Node A examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = null
openList = [C,B,D,F]
closedList = [O,A]

Step 3.1: Examining node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = C
openList = [B,D,F]
closedList = [O,A]

Step 3.2: Probing links connecting node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = C
openList = [B,D,F]
closedList = [O,A]

Step 3.3: Probed links connecting node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = C
openList = [B,E,D,F]
closedList = [O,A]

Step 3.4: Node C examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = null
openList = [B,E,D,F]
closedList = [O,A,C]

Step 4.1: Examining node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.2: Probing links connecting node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.3: Probed links connecting node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.4: Node B examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = null
openList = [E,D,F]
closedList = [O,A,C,B]

Step 5.1: Examining node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = E
openList = [D,F]
closedList = [O,A,C,B]

Step 5.2: Probing links connecting node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = E
openList = [D,F]
closedList = [O,A,C,B]

Step 5.3: Probed links connecting node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = E
openList = [D,F,T]
closedList = [O,A,C,B]

Step 5.4: Node E examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = null
openList = [D,F,T]
closedList = [O,A,C,B,E]

Step 6.1: Examining node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = D
openList = [F,T]
closedList = [O,A,C,B,E]

Step 6.2: Probing links connecting node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = D
openList = [F,T]
closedList = [O,A,C,B,E]

Step 6.3: Probed links connecting node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = D
openList = [T,F]
closedList = [O,A,C,B,E]

Step 6.4: Node D examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = null
openList = [T,F]
closedList = [O,A,C,B,E,D]

Step 7.1: Examining node T

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Node T is our target node!

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Result: Shortest path found! O=>A=>B=>D=>T, path cost = 13

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Heap

Dictionary

WalkLink vs. LiftLink

Debugging and ToString

 Default “String” representation of the object, e.g.
Node

 To be used for DEBUGGING only! Do not misuse for
“pretty printing that is handy for your billing
application”!

Theme Hospital - Simulation

 The link’s cost is in “seconds”

 So if lift’s cost is “10” it means it travels the link

in 10 seconds.

 If person with speedMultiplier 2 is travelling
through “walk” link of cost 20, then it means it
will take them “2*20=40” seconds

 Now you will have to simulate LIFTs!

 This means that you have to know where lift
“begins”

Lift link: [<lift-left-link> | <lift-right-link>]

lift-left-link: ‘L<--(lift:c’ <capacity> ‘:t’<cost>

‘)-->’

lift-right-link: ‘<--(lift:c’ <capacity> ‘:t’<cost>
‘)-->L’

 Person (patient or doctor) will always try to use
the lift

 When the person arrives to the lift, following
cases may occur
1. Lift is there => Person will immediately use it
2. Lift is not there & Waiting queue (of lift capacity

length) is not full => Person will wait for the lift to
arrive

3. Lift is not there & Waiting queue is full => Person
will take detour

 Patient’s route:
 Own entrance (you cannot choose this!)
-> nearest INFODESK
-> nearest GP that has a doctor inside
▪ If no such exist, than just “nearest GP”

-> nearest special diagnose room that has a doctor inside
▪ If no such exist, than just “nearest one”

-> nearest GP that has a doctor inside
▪ If no such exist, than just “nearest GP”

-> nearest TREATMENT
-> nearest ENTRANCE

 INFODESK / TREATMENT
 Each info desk / treatment has a „service speed

associated“, that is, how much time it needs to “tell
the patient how to navigate around the hospital”,
resp. “cure the patient”
 This speed is fixed
 There can be any number of patients waiting in the

queue of an infodesk / treatment
 Path is determined by the “start service time”

 GPs / Specific diagnose room
 Similar to INFODESK/TREATMENT, but this time,

the speed of service is determined by the doctor who
is in the room
 There can be any number of patients waiting in the

queue of this room as well

 Doctors & GPs
 While there are patients in the queue of the

room, the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. [GP] There is no other room that has a patient trying to
“use” or navigating to in order to “use” it => doctor stays
in his/her current room

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

 Doctors & Diagnostic rooms
 While there are patients in the queue of the

room, the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. [Diagnostic] There is no other room that has a patient
trying to “use” or navigating to in order to “use” it =>
doctor goes to the nearest unoccupied GP

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

 Doctors & GPs / Diagnoses
 While there are patients in the queue of the room,

the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. There is no other room that has a patient trying to “use”
or navigating to in order to “use” it => doctor stays in
his/her current room

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+ <int> ‘\n’ [<patient> ‘\n’]+ <int> ‘\n’ <int> [
<infodesk/treatment> ‘\n’]+ ‘\n’ <int> [<doctor> ‘\n’]+ ‘\n’

<node>: <node-type> ‘-’ <id>

<node-type>: [‘ENTRANCE’ | ‘INFODESK’ | ‘GP’ | ‘EEG’ | ‘SONO’ | ‘XRAY’ |
 ‘PSYCHO’ | ‘TREATMENT’ | ‘NODE’]

<id>: <int>

<int>: [1-9][0-9]{0,1}

<link>: [<walk-link> | <lift-link>]

<walk-link>: [<non-oriented-walk-link> | <oriented-walk-link>]

<non-oriented-walk-link>: ‘<--(walk:’ <int> ‘)-->’

<oriented-walk-link>: ‘--(walk:’ <cost> ‘)-->’

<lift-link>: [<lift-left-link> | <lift-right-link>]

<lift-left-link>: ‘L<--(lift:c’ <capacity> ‘:t’<cost> ‘)-->’

<lift-right-link>: ‘<--(lift:c’ <capacity> ‘:t’<cost> ‘)-->L’

<cost>: <int>

<capacity>: <int>

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+ <int> ‘\n’
[<patient> ‘\n’]+ <int> ‘\n’ <int> [<infodesk/treatment> ‘\n’
]+ ‘\n’ <int> [<doctor> ‘\n’]+ ‘\n’

<patient>: <name> ‘:’ <speed-multiplier> ‘:’ <health-

problem> ‘:’ <node> ‘:’ <time>

<name>: [A-Z][a-zA-Z]+

<speed-multiplier>: <int>

<health-problem>: [‘CARDIAC’ | ‘PNEUMONIA’ | ‘HIP-PAIN’ |

 ‘NEUROTIC’]

<time>: [0-2][0-9] ‘:’ [0-2][0-9] ‘:’ [0-2][0-9]

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+
<int> ‘\n’ [<patient> ‘\n’]+ <int> ‘\n’ <int> [
<infodesk/treatment> ‘\n’]+ ‘\n’ <int> [<doctor>
‘\n’]+ ‘\n’

<infodesk/treatment>: <node> ‘:’ <service-time>

<service-time>: <int>

<doctor>: <name> ‘:’ <speed-multiplier> ‘:’

 <service-time>

Output:

Which doctors are you going to use and in which rooms they

should begin + when the last patient leaves the hospital
(reaches his/her exit ENTRANCE node).

The hospital opens at 08:00:00.

The hospital closes at 18:00:00.

[<doctor-start> ‘\n’]+ <finishing-time>

<doctor-start>: <name> ‘:’ <node>

<finishing-time>: <time>

 Email: jakub.gemrot@gmail.com

 Subject: Programming II – 2016 – Assignment 07

 Zip up the whole project and send it

 You WILL NOT find the assignment in CoDex!

 Deadline: 30.9.2016

mailto:jakub.gemrot@gmail.com

  In case of doubts about the assignment or some
other problems don’t hesitate to contact me!

 Jakub Gemrot
 gemrot@gamedev.cuni.cz

mailto:gemrot@gamedev.cuni.cz

	Programming II
	Lab 06�Outline
	Test 06�No Test ;)
	Topic�Theme Hospital Lite
	Topic�Navigation
	Topic�Navigation
	Dijkstra’s Algorithm�Explained
	Dijkstra’s Algorithm�Pseudocode
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Dictionary + CompositeKeys
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Debugging + ToString()
	Topic�Discrete Simulation
	Theme Hospital Lite�Navigation - Time
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Design time!
	Assignment 06+07�Send me an email
	Questions?�I sense a soul in search of answers…

