
C# Made Easy!

Faculty of Mathematics and Physics
Charles University in Prague
8th April 2016

Lab 06 –Theme Hospital Lite
Part 2 – The Simulation

1. No Test
2. Revisiting Workshop 05
3. Assignment 06+07

• The Simulation

Find the test here (no-ads):
https://goo.gl/FkyFWX

O vs 0, i vs. l vs. 1

Permanent link:
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGma
WEk/viewform

Time for the test:
3 mins

https://goo.gl/FkyFWX
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform

Have you tried playing it already? Fun guaranteed!

This guy has
Bloaty Head

This has King
Complex

This is
Transparency

disease This is Slack
Tongue

 For the input of graph, rooms, etc. check slides from
previous Lab 05 !

 Now let us revisit some problems from Lab 05
1. Dijkstra’s Algorithm
2. Heap
3. Dictionary
4. WalkLink vs. LiftLink … where to hold GetCapacity()
5. Debugging + ToString()
6. Questions?

Dijkstra’s Algorithm

 Input
 Un/oriented (weighted) graph

 Task
 Find the shortest path between two given nodes

O, T within the graph

 Output
 Valid path within the graph between nodes O and

T that is the shortest given graph’s weights or
“NULL” if no such a path exists

Dijkstra(start, end):
 openList = [start] // priority queue
 closedList = [] // set
 pathCost = {start = 0} // map: node => int
 pathParent = {start = null} // map: node => node

 while (openList is not empty) { // until we have nodes to search through
 node = openList.Dequeue() // get the node with “current shortest path”
 if (node == end) // if it is our TARGET
 return ReconstructPath(end) // we’ve done!
 Expand(node) // otherwise EXPAND it!
 closedList.Add(node) // and mark it as “closed”
 }
 return null // if there is no nodes left, no path exists

Expand(probingNode):
 foreach (link in probingNode.links) { // iterate through all outgoing links
 child = link.otherEnd(probingNode) // get the link’s end
 newCost = pathCost[probingNode.links] + link.cost // calculate path cost to child
 if (child is not in pathCost) // have we touched the child in past?
 { // NO => include child into openList
 pathCost[child] = newCost
 pathParent[child] = probingNode
 openList.Queue(child, newCost)
 } else
 { // YES => compare costs
 oldCost = pathCost[child] // retrieve current cost
 if (newCost < oldCost) { // have we found a better path?
 pathCost[child] = newCost // YES => reinclude child in openList
 pathParent[child] = probingNode
 closedList.Remove(child)
 openList.QueueOrUpdateCost(child, newCost)
 }
 }
 }

Task: Find shortest path between O and T

Step: Init data structures

probingNode = null
openList = [O]
closedList = []

pathCost = { O => 0

 }

pathParent = { O => null

 }

Step 1.1: Examining node O

probingNode = O
openList = []
closedList = []

pathCost = { O => 0

 }

pathParent = { O => null

 }

Step 1.2: Probing links connecting node O

pathCost = { O => 0

 }

pathParent = { O => null

 }

probingNode = O
openList = []
closedList = []

Step 1.3: Probed links connecting node O

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = O
openList = [A,C,B]
closedList = []

Step 1.4: Node O examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = null
openList = [A,C,B]
closedList = [O]

Step 2.1: Examining node A

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = A
openList = [C,B]
closedList = [O]

Step 2.2: Probing links connecting node A

pathCost = { O => 0
 A => 2
 B => 5
 C => 4

 }

pathParent = { O => null
 A => O
 B => O
 C => O

 }

probingNode = A
openList = [C,B]
closedList = [O]

Step 2.3: Probed links connecting node A

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = A
openList = [C,B,D,F]
closedList = [O]

Step 2.4: Node A examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = null
openList = [C,B,D,F]
closedList = [O,A]

Step 3.1: Examining node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = C
openList = [B,D,F]
closedList = [O,A]

Step 3.2: Probing links connecting node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A

 }

probingNode = C
openList = [B,D,F]
closedList = [O,A]

Step 3.3: Probed links connecting node C

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = C
openList = [B,E,D,F]
closedList = [O,A]

Step 3.4: Node C examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = null
openList = [B,E,D,F]
closedList = [O,A,C]

Step 4.1: Examining node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.2: Probing links connecting node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 9
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => A
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.3: Probed links connecting node B

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = B
openList = [E,D,F]
closedList = [O,A,C]

Step 4.4: Node B examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = null
openList = [E,D,F]
closedList = [O,A,C,B]

Step 5.1: Examining node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = E
openList = [D,F]
closedList = [O,A,C,B]

Step 5.2: Probing links connecting node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8

 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C

 }

probingNode = E
openList = [D,F]
closedList = [O,A,C,B]

Step 5.3: Probed links connecting node E

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = E
openList = [D,F,T]
closedList = [O,A,C,B]

Step 5.4: Node E examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = null
openList = [D,F,T]
closedList = [O,A,C,B,E]

Step 6.1: Examining node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = D
openList = [F,T]
closedList = [O,A,C,B,E]

Step 6.2: Probing links connecting node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 15
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => E
 }

probingNode = D
openList = [F,T]
closedList = [O,A,C,B,E]

Step 6.3: Probed links connecting node D

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = D
openList = [T,F]
closedList = [O,A,C,B,E]

Step 6.4: Node D examined and moved to closedList

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = null
openList = [T,F]
closedList = [O,A,C,B,E,D]

Step 7.1: Examining node T

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Node T is our target node!

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Step 7.1: Reconstructing path to T given pathParent map

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Result: Shortest path found! O=>A=>B=>D=>T, path cost = 13

pathCost = { O => 0
 A => 2
 B => 4
 C => 4
 D => 8
 F => 14
 E => 8
 T => 13
 }

pathParent = { O => null
 A => O
 B => A
 C => O
 D => B
 F => A
 E => C
 T => D
 }

probingNode = T
openList = [F]
closedList = [O,A,C,B,E]

Heap

Dictionary

WalkLink vs. LiftLink

Debugging and ToString

 Default “String” representation of the object, e.g.
Node

 To be used for DEBUGGING only! Do not misuse for
“pretty printing that is handy for your billing
application”!

Theme Hospital - Simulation

 The link’s cost is in “seconds”

 So if lift’s cost is “10” it means it travels the link

in 10 seconds.

 If person with speedMultiplier 2 is travelling
through “walk” link of cost 20, then it means it
will take them “2*20=40” seconds

 Now you will have to simulate LIFTs!

 This means that you have to know where lift
“begins”

Lift link: [<lift-left-link> | <lift-right-link>]

lift-left-link: ‘L<--(lift:c’ <capacity> ‘:t’<cost>

‘)-->’

lift-right-link: ‘<--(lift:c’ <capacity> ‘:t’<cost>
‘)-->L’

 Person (patient or doctor) will always try to use
the lift

 When the person arrives to the lift, following
cases may occur
1. Lift is there => Person will immediately use it
2. Lift is not there & Waiting queue (of lift capacity

length) is not full => Person will wait for the lift to
arrive

3. Lift is not there & Waiting queue is full => Person
will take detour

 Patient’s route:
 Own entrance (you cannot choose this!)
-> nearest INFODESK
-> nearest GP that has a doctor inside
▪ If no such exist, than just “nearest GP”

-> nearest special diagnose room that has a doctor inside
▪ If no such exist, than just “nearest one”

-> nearest GP that has a doctor inside
▪ If no such exist, than just “nearest GP”

-> nearest TREATMENT
-> nearest ENTRANCE

 INFODESK / TREATMENT
 Each info desk / treatment has a „service speed

associated“, that is, how much time it needs to “tell
the patient how to navigate around the hospital”,
resp. “cure the patient”
 This speed is fixed
 There can be any number of patients waiting in the

queue of an infodesk / treatment
 Path is determined by the “start service time”

 GPs / Specific diagnose room
 Similar to INFODESK/TREATMENT, but this time,

the speed of service is determined by the doctor who
is in the room
 There can be any number of patients waiting in the

queue of this room as well

 Doctors & GPs
 While there are patients in the queue of the

room, the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. [GP] There is no other room that has a patient trying to
“use” or navigating to in order to “use” it => doctor stays
in his/her current room

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

 Doctors & Diagnostic rooms
 While there are patients in the queue of the

room, the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. [Diagnostic] There is no other room that has a patient
trying to “use” or navigating to in order to “use” it =>
doctor goes to the nearest unoccupied GP

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

 Doctors & GPs / Diagnoses
 While there are patients in the queue of the room,

the doctor won’t leave his/her office
 Whenever there is no queue, two cases may arrise

1. There is no other room that has a patient trying to “use”
or navigating to in order to “use” it => doctor stays in
his/her current room

2. There is such a room and
2.1 There is a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
 2.2.1 And this doctor is the nearest one => travel there
 2.2.2 Is not the nearest one => stays in his/her current room

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+ <int> ‘\n’ [<patient> ‘\n’]+ <int> ‘\n’ <int> [
<infodesk/treatment> ‘\n’]+ ‘\n’ <int> [<doctor> ‘\n’]+ ‘\n’

<node>: <node-type> ‘-’ <id>

<node-type>: [‘ENTRANCE’ | ‘INFODESK’ | ‘GP’ | ‘EEG’ | ‘SONO’ | ‘XRAY’ |
 ‘PSYCHO’ | ‘TREATMENT’ | ‘NODE’]

<id>: <int>

<int>: [1-9][0-9]{0,1}

<link>: [<walk-link> | <lift-link>]

<walk-link>: [<non-oriented-walk-link> | <oriented-walk-link>]

<non-oriented-walk-link>: ‘<--(walk:’ <int> ‘)-->’

<oriented-walk-link>: ‘--(walk:’ <cost> ‘)-->’

<lift-link>: [<lift-left-link> | <lift-right-link>]

<lift-left-link>: ‘L<--(lift:c’ <capacity> ‘:t’<cost> ‘)-->’

<lift-right-link>: ‘<--(lift:c’ <capacity> ‘:t’<cost> ‘)-->L’

<cost>: <int>

<capacity>: <int>

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+ <int> ‘\n’
[<patient> ‘\n’]+ <int> ‘\n’ <int> [<infodesk/treatment> ‘\n’
]+ ‘\n’ <int> [<doctor> ‘\n’]+ ‘\n’

<patient>: <name> ‘:’ <speed-multiplier> ‘:’ <health-

problem> ‘:’ <node> ‘:’ <time>

<name>: [A-Z][a-zA-Z]+

<speed-multiplier>: <int>

<health-problem>: [‘CARDIAC’ | ‘PNEUMONIA’ | ‘HIP-PAIN’ |

 ‘NEUROTIC’]

<time>: [0-2][0-9] ‘:’ [0-2][0-9] ‘:’ [0-2][0-9]

INPUT: <int> ‘\n’ [<node> ‘ ’ <link> ‘ ’ <node> ‘\n’]+
<int> ‘\n’ [<patient> ‘\n’]+ <int> ‘\n’ <int> [
<infodesk/treatment> ‘\n’]+ ‘\n’ <int> [<doctor>
‘\n’]+ ‘\n’

<infodesk/treatment>: <node> ‘:’ <service-time>

<service-time>: <int>

<doctor>: <name> ‘:’ <speed-multiplier> ‘:’

 <service-time>

Output:

Which doctors are you going to use and in which rooms they

should begin + when the last patient leaves the hospital
(reaches his/her exit ENTRANCE node).

The hospital opens at 08:00:00.

The hospital closes at 18:00:00.

[<doctor-start> ‘\n’]+ <finishing-time>

<doctor-start>: <name> ‘:’ <node>

<finishing-time>: <time>

 Email: jakub.gemrot@gmail.com

 Subject: Programming II – 2016 – Assignment 07

 Zip up the whole project and send it

 You WILL NOT find the assignment in CoDex!

 Deadline: 30.9.2016

mailto:jakub.gemrot@gmail.com

 In case of doubts about the assignment or some
other problems don’t hesitate to contact me!

 Jakub Gemrot
 gemrot@gamedev.cuni.cz

mailto:gemrot@gamedev.cuni.cz

	Programming II
	Lab 06�Outline
	Test 06�No Test ;)
	Topic�Theme Hospital Lite
	Topic�Navigation
	Topic�Navigation
	Dijkstra’s Algorithm�Explained
	Dijkstra’s Algorithm�Pseudocode
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Dictionary + CompositeKeys
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Debugging + ToString()
	Topic�Discrete Simulation
	Theme Hospital Lite�Navigation - Time
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Design time!
	Assignment 06+07�Send me an email
	Questions?�I sense a soul in search of answers…

