Faculty of Mathematics and Physics
Charles University in Prague
8th April 2016

C# Made Easy!

Programming Il

Lab 06 -Theme Hospital Lite
Part 2 —The Simulation

Lab 06

Outline

No Test
Revisiting Workshop o5
Assignment 06+07

The Simulation

Test 06

No Test ;)

Find the test here (no-ads):
https://goo.gl/FkyFWX

Ovs O, 1 vs. 1 vs. 1

Permanent link:
https://docs.google.com/forms/d/1F2WFyiBkjhEJJxwwxaohPXESHFIW707s0mX59HGmMa

WEk/viewform

Time for the test:
3 mins

https://goo.gl/FkyFWX
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform
https://docs.google.com/forms/d/1F2WFyiBkjhEJxwwxaohPXESHFIW7O7sOmX59HGmaWEk/viewform

Topic
Theme Hospital Lite

This is
Transparency
disease

L SRR e TS
[Phew! Looks like the virus that caused
l that vomit wave has preftty much died

—] _down- Keep your hospital clean in fufure__

. [4‘" i s d e - r————n g b —— i - i
Eyaasnels S EE T e

Cuevue Expected 2

L [e]o][e

Navigation

For the input of graph, rooms, etc. check slides from
previous Lab og !

Now let us revisit some problems from Lab o5

Dijkstra’s Algorithm

Heap

Dictionary

WalkLink vs. LiftLink ... where to hold GetCapacity()
Debugging + ToString()

Questions?

L [e]o][e

Navigation

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Explained

Input
Un/oriented (weighted) graph

Task

Find the shortest path between two given nodes
O, T within the graph

Output

Valid path within the graph between nodes O and
T that is the shortest given graph’s weights or
"NULL" if no such a path exists

Dijkstra’s Algorithm

Pseudocode

Dijkstra(start, end):

openList = [start]
closedList = []

pathCost = {start = 0}
pathParent = {start = null}

while (openList is not empty) {
node = openList.Dequeue()
iT (node == end)
return ReconstructPath(end)
Expand(node)
closedList.Add(node)

return null

Expand(probingNode):
foreach (link in probingNode.links)

//
//
//
//

//
//
/7/
//
/7/
//

//

{

child = link.otherEnd(probingNode)
newCost = pathCost[probingNode.links] + link.cost // calculate path cost to child

ifT (child 1s not in pathCost)

{
pathCost[child] = newCost

pathParent[child] = probingNode

openList.Queue(child, newCost)
} else

oldCost = pathCost[child]
1T (newCost < oldCost) {
pathCost[child] = newCost

priority queue
set

map: node => iInt
map: node => node

until we have nodes to search through

get the node with “current shortest path”
if 1t 1s our TARGET

we’ve donel

otherwise EXPAND it!

and mark 1t as “closed”

ifT there i1s no nodes left, no path exists

// iterate through all outgoing links
// get the link’s end

// have we touched the child i1n past?
// NO => include child into openList

// YES => compare costs

// retrieve current cost

// have we found a better path?

// YES => reinclude child 1n openList

pathParent[child] = probingNode

closedList._Remove(child)

openList.QueueOrUpdateCost(child, newCost)

Dijkstra’s Algorithm

Visualization

Task: Find shortest path between O and T

Dijkstra’s Algorithm

Visualization

Step: Init data structures

probingNode = null

openList = [O]

closedList = []

pathCost = { 0 =>0 pathParent = { 0 => null

Dijkstra’s Algorithm

Visualization

Step 1.1: Examining node O

probingNode =
openList =
closedList =

pathCost = { 0 =>0 pathParent = { 0 => null

Dijkstra’s Algorithm

Visualization

Step 1.2: Probing links connecting node O

probingNode =
openList =
closedList =

pathCost = { 0 =>0 pathParent = { 0 => null

Dijkstra’s Algorithm

Visualization

Step 1.3: Probed links connecting node O

probingNode = O

openList = [A,

closedList = [

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>5 B=>0
C=>14 C=>020

Dijkstra’s Algorithm

Visualization

probingNode

=n

openList = [A,C,B]

closedList = [O]

pathCost ={0=0 pathParent = { O =>
A=>2 A =>
B =>5 B =>
C=>14 c =>

Dijkstra’s Algorithm

Visualization

Step 2.1: Examining node A

probingNode = A

openList = [C,B]

closedList = [O]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>5 B=>0
C=>14 C=>020

Dijkstra’s Algorithm

Visualization

Step 2.2: Probing links connecting node A

probingNode = A

openList = [C,B]

closedList = [O]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>5 B=>0
C=>14 C=>020

Dijkstra’s Algorithm

Visualization

Step 2.3: Probed links connecting node A

probingNode = A

openList = [C,

closedList = |

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D =>09 D => A
F => 14 F=>A

Dijkstra’s Algorithm

Visualization

probingNode = null

openList = [C,B,D,F]

closedList = [0O,A]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D =>09 D => A
F => 14 F=>A

Dijkstra’s Algorithm

Visualization

Step 3.1: Examining node C

probingNode = C

openList = [

closedList = |[O,

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D =>09 D => A
F => 14 F=>A

Dijkstra’s Algorithm

Visualization

Step 3.2: Probing links connecting node C

probingNode = C

openList = [

closedList = |[O,

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D =>09 D => A
F => 14 F=>A

Dijkstra’s Algorithm

Visualization

Step 3.3: Probed links connecting node C

probingNode = C

openList = [B,E,D,F]

closedList = [0O,A]

pathCost = { 0 => pathParent = { O => null

MTMOOwW>O
I
V
OROMRMNO
MTMOOW>O
I
V
O>X>>0>0>

Dijkstra’s Algorithm

Visualization

probingNode = null

openList = [B,E,D,F]

closedList = [O,A,C]

pathCost ={ => pathParent = { => null

MTMOOW>O
I
V
O>X>>0>0>

Dijkstra’s Algorithm

Visualization

Step 4.1: Examining node B

c
probingNode = B
openList = [E.D,F]
closedList = [O,A,C]
pathCost ={ => pathParent = { => null

MTMOOwW>O
I
V
OROMRMNO
MTMOOW>O
I
V
O>X>>0>0>

Dijkstra’s Algorithm

Visualization

Step 4.2: Probing links connecting node B

probingNode = B

openList = [E.D,F]

closedList = [O,A,C]

pathCost = { 0 => pathParent = { O => null

MTMOOwW>O
I
V
OROMRMNO
MTMOOW>O
I
V
O>X>>0>0>

Dijkstra’s Algorithm

Visualization

Step 4.3: Probed links connecting node B

probingNode = B

openList = [E.D,F]

closedList = [O,A,C]

pathCost = { 0 => pathParent = { O => null

MTMOoOOwW>O0
i
\%

O, PA~ANO
MTMOoOOwW>O0
i
\%
O>WO>X>0>S

Dijkstra’s Algorithm

Visualization

probingNode = null

openList = [E.D,F]

closedList = [O,A,C,B]

pathCost ={ => pathParent = { => null

MTMOoOOwW>O0
i
\%
O, PA~ANO
AN

MTMOoOOwW>O0
i
\%
O>WO>X>0>S

Dijkstra’s Algorithm

Visualization

Step 5.1: Examining node E

probingNode = E

openList = [D,F]

closedList = [O,A,C,B]

pathCost = { 0 => pathParent = { O => null

MTMOoOOwW>O0
i
\%

O, PA~ANO
MTMOoOOwW>O0
i
\%
O>WO>X>0>S

Dijkstra’s Algorithm

Visualization

Step 5.2: Probing links connecting node E

probingNode = E

openList = [D,F]

closedList = [O,A,C,B]

pathCost ={0=0 pathParent = { O => null
A=>2 A =20
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E =>C

Dijkstra’s Algorithm

Visualization

Step 5.3: Probed links connecting node E

probingNode = E

openList = [D,F,T]

closedList = [O,A,C,B]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E =>C
T => 15 T =>E

Dijkstra’s Algorithm

Visualization

probingNode = null

openList = [D,F,T]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 15 T =>E

Dijkstra’s Algorithm

Visualization

Step 6.1: Examining node D

probingNode
openList
closedList

>
g
w
m

[t T s | e A
o

pathCost

pathParent = {

ull

AN
—AMTMOTOWW>O
i
\%

I I

i

\%
mOX>WO>O0>S

—AMTMOTOW>O
i
ROORLOPAIANO

o1

Dijkstra’s Algorithm

Visualization

Step 6.2: Probing links connecting nodeD

probingNode =
openList =
closedList =
pathCost =

pathParent = { ull

AN
—AMTMOTOWW>O
i
\%

I I

i

\%
mOX>WO>O0>S

—AMTMOTOW>O
i
ROORLOPAIANO

o1

Dijkstra’s Algorithm

Visualization

Step 6.3: Probed links connecting node D

probingNode =
openList =
closedList =

pathCost =

pathParent = {

ull

AN
—AMTMOTOWW>O
i
\%

I I

i

\%
OOX>»>WO>0>

—AMTMOTOW>O
i
RPOORLOPAIANO

w

Dijkstra’s Algorithm

Visualization

probingNode = null

openList = [T,F]

closedList = [O,A,C,B,E,D]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

Step 7.12: Examining node T

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E =>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

Step 7.1: Node T is our target node!

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Dijkstra’s Algorithm

Visualization

probingNode = T

openList = [F]

closedList = [O,A,C,B,E]

pathCost ={0=0 pathParent = { O => null
A =>2 A=>0
B =>4 B =>A
C=>14 C=>020
D => 8 D =>B
F => 14 F=>A
E =>8 E=>C
T => 13 T =>D

Topic

Navigation

Heap

L [e]o][e

Navigation

Dictionary

Tools of Trade

Dictionary + CompositeKeys

Dicticnary<NodeType, Dicticnary<int, INode>»> nodes = new Dictionary<ModeType, Dictionary<int, IModex>();

Dicticnary<Nodekey, INocde> nodeBykKey new Dicticnary<Nodekey, INodex(};

class Modekey

private int id;
private ModeType type;
private int hashCode;

public NodeKey(int id, MNodeType type)
1
this.id = id;
this.type = type;
this.hashCode = 7 * id + 23 * typeof(NodeType).GetHashCode();

public override bool Equals(cbject obj)

1
if (!(obj is NodeKey)) return false;
Nodekey nodeKey = (Nodekey)obj;
if (id == nodeKey.id &% type == nodeKey.type) return true;
return false;

public override int GetHashCode()
1

}

return hashCode;

L [e]o][e

Navigation

WalkLink vs. LiftLink

L [e]o][e

Navigation

Debugging and ToString

Tools of Trade

Debugging + ToString()

Default "String” representation of the object, e.qg.
Node

public override string ToString()

1
return "Node[" + Enum.GetName(typeof(ModeType), type) + "-" + id + "]";

¥
@ this {Workshop05.Graph} @@ this [Workshop05.Graph}
[@ fromMode {Workshop05.Mode} I @ fromMode {ModeEMTRAMCE-1]}
[@ toMode {Workshop05.Mode} - @ toMode {MNode[INFODESK-1]1}
I @ person {Workshop05.Patient} I @ person {Workshop05.Patient}
I @ item {Workshop05.5earchltem} I @ item {Workshop05.5earchltem}
b @ heap {Woarkshop5.Heap < Workshop05.5earchltern>} b @ heap {Workshopl5.Heap<Workshop05.5earchltern>}
I @ opened Count=10 P @ opened Count=0
I & finished Count=1 - @ finished Count=1

@ pathFound false @ pathFound false

To be used for DEBUGGING only! Do not misuse for
“pretty printing that is handy for your billing
application”!

| [e]o][e

Discrete Simulation

Theme Hospital - Simulation

Theme Hospital Lite

Navigation - Time

The link’s cost is in “seconds”

So if lift's cost is “10” it means it travels the link
in 10 seconds.

If person with speedMultiplier 2 is travelling

through “walk” link of cost 20, then it means it
will take them “2*20=40" seconds

Theme Hospital Lite

Navigation - Lifts

Now you will have to simulate LIFTs!

This means that you have to know where lift
“begins”

Lift link: [<tift-1eft-link> | <lift-right-link>]

lift-left-link: “L<--(lift:c’ <capacity> “:-t’<cost>
()__>,

lift-right-link: “<--(lift:c’ <capacity> “:t’<cost>
‘)__>L7

Theme Hospital Lite

Navigation - Lifts

Person (patient or doctor) will always try to use
the lift

When the person arrives to the lift, following
cases may occur

_ift is there => Person will immediately use it

_ift is not there & Waiting queue (of lift capacity
ength) is not full => Person will wait for the lift to
arrive

Lift is not there & Waiting queue is full => Person
will take detour

Theme Hospital Lite

The Simulation

Patient’'s route:

Own entrance (you cannot choose this!)
-> nearest INFODESK
-> nearest GP that has a doctor inside
If no such exist, than just “nearest GP”

-> nearest special diagnose room that has a doctor inside
If no such exist, than just “nearest one”

-> nearest GP that has a doctor inside
If no such exist, than just “nearest GP”

-> nearest TREATMENT
-> nearest ENTRANCE

Theme Hospital Lite

The Simulation

INFODESK /[TREATMENT

Each info desk / treatment has a ,service speed
associated", that is, how much time it needs to “tell
the patient how to navigate around the hospital”,
resp. “cure the patient”

This speed is fixed

There can be any number of patients waiting in the
queue of an infodesk [treatment

Path is determined by the “start service time”

Theme Hospital Lite

The Simulation

GPs [Specific diagnose room

Similar to INFODESK/TREATMENT, but this time,
the speed of service is determined by the doctor who
is in the room

There can be any number of patients waiting in the
queue of this room as well

Theme Hospital Lite

The Simulation

Doctors & GPs

While there are patients in the queue of the
room, the doctor won't leave his/her office

Whenever there is no queue, two cases may arrise

[GP] There is no other room that has a patient trying to
“use” or navigating to in order to “use” it => doctor stays
in his/her current room

There is such aroom and
2.1 Thereis a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
2.2.1 And this doctor is the nearest one => travel there
2.2.2 Is not the nearest one => stays in his/her current room

Theme Hospital Lite

The Simulation

Doctors & Diagnostic rooms
While there are patients in the queue of the
room, the doctor won't leave his/her office

Whenever there is no queue, two cases may arrise

[Diagnostic] There is no other room that has a patient
trying to “use” or navigating to in order to “use” it =>
doctor goes to the nearest unoccupied GP
There is such a room and
2.1 Thereis a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
2.2.1 And this doctor is the nearest one => travel there
2.2.2 Is not the nearest one => stays in his/her current room

Theme Hospital Lite

The Simulation

Doctors & GPs [Diagnoses

While there are patients in the queue of the room,
the doctor won't leave his/her office

Whenever there is no queue, two cases may arrise

There is no other room that has a patient trying to “use”
or navigating to in order to “use” it => doctor stays in
his/her current room

There is such aroom and
2.1 Thereis a doctor who is navigating there => doctor ignores it
2.2 There is no doctor travelling there =>
2.2.1 And this doctor is the nearest one => travel there
2.2.2 Is not the nearest one => stays in his/her current room

Assignment 6

Theme Hospital Lite

INPUT: <int>'\n'[<node>"’<link>""'<node>'\n’]+ <int> \n’ [<patient> '\n']+ <int> "\n’ <int> [
<infodesk/treatment> *\n’]+ '\n’ <int> [<doctor> \n']+ ‘\n’

<node>: <node-type> -’ <id>

<node-type>: ['ENTRANCE’ | 'INFODESK' ['GP" | 'EEG" | 'SONO' | '*XRAY" |
'‘PSYCHO' | 'TREATMENT' | 'NODE']

<id>: <int>

<int>: [1-9][0-9]{0,1}

<link>: [<walk-link> | <lift-link>]

<walk-link>: [<non-oriented-walk-link> | <oriented-walk-link>]

<non-oriented-walk-link>: ‘<--(walk:’ <int>')-->'
<oriented-walk-link>: *--(walk:’ <cost> ')-->'

<lift-link>: [<lift-left-link> | <lift-right-link>]
<lift-left-link>: ‘L<--(lift:c’ <capacity> “:it'<cost> *)-->’
<lift-right-link>: ‘<--(lift:c’ <capacity> “:t'<cost> ')-->L
<cost>: <int>

<capacity>: <int>

Assignment 6

Theme Hospital Lite Navigation

INPUT: <int>'\n' [<node>""'<link>"' <node>'\n’']+ <int>'\n’
[<patient>'\n']+ <int>'\n’ <int> [<infodesk/treatment>‘\n
]+ '\n’ <int> [<doctor> \n']+ "\n’

I/

<patient>: <name> "' <speed-multiplier>":’ <health-
problem> "’ <node> "' <time>

<name>: [A-Z][a-zA-Z]+
<speed-multiplier>: <int>

<health-problem>: ['CARDIAC' | 'PNEUMONIA' | *HIP-PAIN' |
‘NEUROTIC]

<time>: [0-2][0-9] ;' [0-2][0-9] ;' [0-2][0-9]

Assignment 6

Theme Hospital Lite Navigation

INPUT: <int>'\n’ [<node> "' <link>"'' <node>'\n']+
<int>'\n’ [<patient> \n']+ <int>"\n’ <int> [
<infodesk/treatment> ‘\n’]+ '\n’ <int> [<doctor>
\\nl]+ \\nl

<infodesk/treatment>: <node>‘:’ <service-time>
<service-time>: <int>

<doctor>: <name> "’ <speed-multiplier> "’
<service-time>

Assignment 6

Theme Hospital Lite

Output:
Which doctors are you going to use and in which rooms they

should begin + when the last patient leaves the hospital
(reaches his/her exit ENTRANCE node).

The hospital opens at 08:00:00.
The hospital closes at 18:00:00.

[<doctor-start>'\n’]+ <finishing-time>
<doctor-start>: <name> ‘:’ <node>

<finishing-time>: <time>

Assignment 6

Design time!

[Patients] [ICalendar |Event
void AddPatient(patient: IPatient) ‘ﬁ:l:ld Schedule(lEvent event, int time) void Process()
IPatient GetPatient(name: String) void ProcessMext()
1.n
IPatient [PersonAtLift] [PatientAtRoom]
HealthProblem GetProblem() - person: IPerson - person: |Person
IMode GetEntrance() void Process() void Process()
|Person
String GetName()
int GetSpeedMultiplier()
IDoctor
Doctors]
int GetServiceSpeed())
void AddDoctor(doctor: [Doctor)
IDoctor GetDoctoriname: String)

Doctors

void AddDoctor(doctor: [Doctor)
IDoctor GetDoctor{name: String)

Assignment 06+07

Send me an email

Email: jakub.gemrot@gmail.com

Subject: Programming Il — 2016 — Assignment o7
Zip up the whole project and send it
You WILL NOT find the assignment in CoDex!

Deadline: 30.9.2016

mailto:jakub.gemrot@gmail.com

Questions?

| sense a soul in search of answers...

In case of doubts about the assignment or some
other problems don't hesitate to contact me!

Jakub Gemrot
gemrot@gamedev.cuni.cz

mailto:gemrot@gamedev.cuni.cz

	Programming II
	Lab 06�Outline
	Test 06�No Test ;)
	Topic�Theme Hospital Lite
	Topic�Navigation
	Topic�Navigation
	Dijkstra’s Algorithm�Explained
	Dijkstra’s Algorithm�Pseudocode
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Dijkstra’s Algorithm�Visualization
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Dictionary + CompositeKeys
	Topic�Navigation
	Topic�Navigation
	Tools of Trade�Debugging + ToString()
	Topic�Discrete Simulation
	Theme Hospital Lite�Navigation - Time
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�Navigation - Lifts
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Theme Hospital Lite�The Simulation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite Navigation
	Assignment 6�Theme Hospital Lite
	Assignment 6�Design time!
	Assignment 06+07�Send me an email
	Questions?�I sense a soul in search of answers…

