
C# Made Easy! 

Faculty of Mathematics and Physics 
Charles University in Prague 
4th May 2015 

Workshop 11 – Functional Testing 



1. Test 
2. Functional Testing – What, Why, How 
3. Homework 

 
 
 



Find the test here (no-ads): 
http://goo.gl/bgQp7p 
 

Permanent link: 
https://docs.google.com/forms/d/1Cqmf-
U46l08KlYpAmF3pBLF4b8xuIeesjLbiBn98IwI/viewform 
 

Time for the test: 
8 min 

http://goo.gl/bgQp7p
https://docs.google.com/forms/d/1Cqmf-U46l08KlYpAmF3pBLF4b8xuIeesjLbiBn98IwI/viewform
https://docs.google.com/forms/d/1Cqmf-U46l08KlYpAmF3pBLF4b8xuIeesjLbiBn98IwI/viewform


WHAT? 



 Unit testing is a software development process in 
which the smallest testable parts of an application, 
called units, are individually and independently 
scrutinized for proper operation. 
 

To put it simply… 
 

 Running a code that executes another code and 
compares results with pre-computed/pre-specified 
ones. 

 



 Simple example 
 

class Calc { 
  int Add(int a1, int a2) 
} 
 
class CalculatorTest { 
 
  public boolean TestAdd() { 
   Calc c = new Calculator(); 
   if (c.Add(1, 1) == 2) return true; 
   return false; 
  } 
 
} 
 

 



WHY? 



Because TIME (translates as MONEY) matters! 







 Tests reduce bugs in existing features 
 Tests reduce bugs in new features 
 Tests (of complex code base) are good documentation 
 Tests improve design 
 Tests reduce cost of change 
 Tests constrain features 
 Tests reduce fear of making changes 
 For your colleagues as well as you! 
 
 
 
 

 



WHY NOT TO? 



 It takes too much time to write tests 
 It takes too much time to execute tests 
 It’s not your job to test the code 
 I don’t really know how the code should behave so I 

can’t test it! 
 
 
 
 
 

 



 It takes too much time to write tests 
 But you have time to hunt bugs down? 

 It takes too much time to execute tests 
 It’s not your job to test the code 
 I don’t really know how the code should behave so I 

can’t test it! 
 
 
 
 
 

 



 It takes too much time to write tests 
 But you have time to hunt bugs down? 

 It takes too much time to execute tests 
 You are running your tests manually … and the same time 

you’re considering yourself to be THE programmer? 
 It’s not your job to test the code 
 I don’t really know how the code should behave so I 

can’t test it! 
 
 
 
 
 



 It takes too much time to write tests 
 But you have time to hunt bugs down? 

 It takes too much time to execute tests 
 You are running your tests manually … and the same time 

you’re considering yourself to be THE programmer? 
 It’s not your job to test the code 
 Oh, and you expect to have customers? 

 I don’t really know how the code should behave so I 
can’t test it! 
 
 
 
 



 It takes too much time to write tests 
 But you have time to hunt bugs down? 

 It takes too much time to execute tests 
 You are running your tests manually … and the same time 

you’re considering yourself to be THE programmer? 
 It’s not your job to test the code 
 Oh, and you expect to have customers? 

 I don’t really know how the code should behave so I 
can’t test it! 
 You should have not started writing such code from the very 

beginning! 
 
 



HOW? 





Show time… 



Create two (Class Library) projects 
1. Fist will contain your classes (unit) for testing 

 Name it e.g.: MyLibrary 
2. Second will contain TESTs that will be executed to test your 

first project 
 Name it e.g.: MyLibrary.Test 





Import required libraries / packages that you will need to run 
tests, perform code coverage and generate reports. 













After you install NUnit, you 
will be asked, which 
projects will need to use it. 

 
Select your “second” project, 

that is “one containing 
TESTs”. We have suffixed its 
name with “.Test”. 



In order to be able to test code that exists in MyLibrary, we have 
to tell Visual Studio that project MyLibrary.Test references 
MyLibrary in order to be able to use namespaces from 
MyLibrary within MyLibrary.Test. 



Right-click 
MyLibrary.Test 
and navigate 
to Add-> 
Reference. 





When “building” the solution Visual 
Studio will create .dll files of your 
libraries. We will need both to perform 
tests and generate reports about code 
coverage. 



Navigate to the folder of your solution. 
There you will find subdirectory 

‘packages’. 
The content should looke like the picture 

to the right. 
 



Now you will need to create 3 batch files that will  
1. Run tests 
2. Perform code coverage 
3. Generate HTML report 

 
Put those batch files into the folder of your solution. 



del TestResult.xml 
.\packages\NUnit.Runners.2.6.4\tools\nunit-console.exe 

.\MyLibrary.Test\bin\Debug\MyLibrary.Test.dll /noshadow 
 
You might need to adjust texts in red to match your configuration 
 
Explanation: here we’re running NUnit that executes code within your 

“.Test” project producing “TestResult.xml” file with the report. 
 

Batch File 1: test.bat 
2 lines 



del results.xml 
.\packages\OpenCover.4.5.3723\OpenCover.Console.exe -target:test.bat -

register:user -filter:+[MyLibrary]*  
 
 
You might need to adjust texts in red to match your configuration 
 
Explanation: here we’re running tests again but now under observation of 

OpenCover that will generate Code Coverage report for namespace 
“MyLibrary” (that’s why you might need to change that…). 

 

Batch File 2: test-cover.bat 
2 lines 



call test-cover.bat 
.\packages\ReportGenerator.2.1.4.0\reportgenerator.exe -

reports:results.xml -targetdir:coverage   
start firefox file://%CD%/coverage/index.htm 
 
You might need to adjust text in red to match your configuration. 
 
Explanation: Here we run ReportGenerator on the report generated by the 

OpenCover producing HTML pages visualizing the report. 

Batch File 3: test-cover-report.bat 
3 lines 



Don’t forget to rebuild your solution 
every time you do any changes to any 
of your projects! 



 Download the template: http://alturl.com/vebg2 
 http://artemis.ms.mff.cuni.cz/gemrot/lectures/prg2/2015/Workshop

11-Homework.zip 
 

 Code Heap tests to provide complete code coverage! 
 

 

http://alturl.com/vebg2
http://artemis.ms.mff.cuni.cz/gemrot/lectures/prg2/2015/Workshop11-Homework.zip
http://artemis.ms.mff.cuni.cz/gemrot/lectures/prg2/2015/Workshop11-Homework.zip


 Email: jakub.gemrot@gmail.com 
 

 Subject: Programming II – 2015 – Assignment 11 
 

 Zip up the whole solution and send it 
 

 You WILL NOT find the assignment in CoDex! 
 

 Deadline:  
 10.5.2015 23:59 

 
 Points: 10 + 3 (meeting the deadline) 

 
 

mailto:jakub.gemrot@gmail.com


 
 

  Sadly, I do not own the patent for perfection 
(and will never do) 

 

 In case of doubts about the assignment or some 
other problems don’t hesitate to contact me! 

 

 Jakub Gemrot 
 gemrot@gamedev.cuni.cz 
 

 

mailto:gemrot@gamedev.cuni.cz

	Programming II
	Workshop 11�Outline
	Test 11�Test
	Testing�What?
	Testing�What?
	Testing�What?
	Testing�Why?
	Testing�Why?
	Testing�Why?
	Testing�Why?
	Testing�Why?
	Testing�Why not to?
	Testing�Why not to write tests?
	Testing�Why not to write tests?
	Testing�Why not to write tests?
	Testing�Why not to write tests?
	Testing�Why not to write tests?
	Testing�How?
	Testing�How?
	Testing�How?
	Testing�Creating projects
	Testing�Creating projects
	Testing�Creating projects
	Testing�Importing required libraries via NuGet
	Testing�Importing required libraries via NuGet
	Testing�Importing required libraries via NuGet
	Testing�Importing required libraries via NuGet
	Testing�Importing required libraries via NuGet
	Testing�Reference NUnit
	Testing�Add Reference
	Testing�Add Reference to MyLibrary
	Testing�Add Reference to MyLibrary
	Testing�Build the solution
	Testing�Running the tests
	Testing�Running the tests
	Testing�Running the tests
	Testing�Running the tests
	Testing�Running the tests
	Testing�Be sure to rebuild the solution
	Extreme Programming�Task – Visualization of Binary Search Tree
	Assignment 11�Send me an email
	Questions?�I sense a soul in search of answers…

