
Faculty of Mathematics and Physics
Charles University in Prague
18th April 2016

Lab 08 – UE4 – VXGI (real-time GI)

Compiled from / Based on:
http://simonstechblog.blogspot.cz/2013/01/implementing-voxel-cone-tracing.html

 VXGI – NVidia official site

 VXGI basics (short explanatory video)

 VXGI original paper

 Thorough explanation of the technique (used as
basis for this presentation)
 More links to papers in there

 Another paper on Voxel-Based rendering pipeline

https://developer.nvidia.com/vxgi
https://www.youtube.com/watch?v=_E1oVl2d01Q&feature=youtu.be
http://maverick.inria.fr/Publications/2011/CNSGE11b/GIVoxels-pg2011-authors.pdf
http://simonstechblog.blogspot.cz/2013/01/implementing-voxel-cone-tracing.html
http://maverick.inria.fr/Publications/2011/Cra11/

 (Semi) Official video UE4 + VXGI

 User video UE4 + VXGI 1
 User video UE4 + VXGI 2

 SVOGI (similar technique) in CryEngine on

Kingdom Come: Deliverence

 SVOGI in CryEngine on Miscreated

 Voxel based GI in CryEngine (documentation)

https://www.youtube.com/watch?v=cH2_RkfStSk
https://www.youtube.com/watch?v=3XDe0j906ck
https://www.youtube.com/watch?v=-wmbpL9OvNM
https://www.youtube.com/watch?v=PEfqtOYjolE
https://www.youtube.com/watch?v=PEfqtOYjolE
https://www.youtube.com/watch?v=9d_0YcEueOo
http://docs.cryengine.com/display/SDKDOC2/Voxel-Based+Global+Illumination

 GITHUB - UE 4.10 + VXGI
 How to use PDF

 GITHUB - UE 4.9.2 + VXGI + more NVidia tech

https://github.com/NvPhysX/UnrealEngine/tree/VXGI-4.10
https://github.com/NvPhysX/UnrealEngine/blob/VXGI-4.10/UE4_VXGI_Overview.pdf
https://github.com/GalaxyMan2015/UnrealEngine/tree/4.9.2_NVIDIA_Techs


W

ith
ou

t G
I (

D
ire

ct
 li

gh
tn

in
g

on
ly

)


W

ith
 G

I (
1

bo
un

ce
)

 Given a scene with directly lighting only
 Voxel-based GI involves 5 steps:

1. Voxelize the triangle meshes
2. Construct sparse voxel octree
3. Inject direct lighting into the octree
4. Filter the direct lighting to generate mip-map
5. Sample the mip-mapped values by cone

tracing

LET’S BREAK IT STEP BY STEP

1. Voxelize the triangle meshes

[2] In GS,
select the axis

so you
maximize the

projected
area of the

triangles

[3] In GS,
project the

triangle
and replace
the original

one

[1] A
triangle
made it
into the

Geometry
Shader

(GS)

[4] In GS,
make the
triangle

larger, so top
fragments

are not
clipped out.

[5] Triangle
gets

rasterized
as usual and
we carry on

depth,
color, …

[6] So we
can

postprocess
2D image

into 3D
octree

http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf

http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf

[1] Make sure this
fragment get dispatched

into Fragment Shader

[2] Shift each edge of
the triangle

[3] Possible excess
pixels must be

clipped out within
Fragment Shader

http://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf

2. Construct sparse voxel octree

[1] You
have your

list of
voxels

processed
in parallel

[2] Multiple
nodes will
be falling

into a node
that will

need to be
split

[3] Each
“node to be

split” can
be

processed
in parallel

[4] Until we
reach the atomic
size of the node

and combine
(average) voxel

data

3. Inject direct lighting into the octree

[1] Frankly, render
shadow map from

the point of view of
all lights

[2] Extract world
position and

traverse octree

[3] Combine
reflected radiance

(separately for
diffuse / specular)

Beware of the
shadow map

resolution
artifacts

4. Filter the direct lighting to generate mip-map

[1] In VXGI there are vertex-
centered voxels

[2] Thus lower-level voxels
shares higher-level voxels

[3] So we need to distribute
evenly the contribution

	Graphics for Games
	Resources�Links
	Resources�Links - Examples
	Resources�Links - GITHUB
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�Given a scene with directly lighting only
	Voxel-based Global Ilumination�1. Voxelize the triangle meshes
	Voxel-based Global Ilumination�2. Construct sparse voxel octree
	Voxel-based Global Ilumination�3. Inject direct lighting into the octree
	Voxel-based Global Ilumination�4. Filter the direct lighting to generate mip-map
	Voxel-based Global Ilumination�5. Sample the mip-mapped values by cone tracing
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�VXGI
	1. Voxelize the triangle meshes�Original scene
	1. Voxelize the triangle meshes�Voxelization
	1. Voxelize the triangle meshes�Voxelization
	1. Voxelize the triangle meshes�Voxelization
	1. Voxelize the triangle meshes�Voxelized scene
	Voxel-based Global Ilumination�VXGI
	Construct sparse voxel octree �Transforming voxel fragment list
	Construct sparse voxel octree �The result – Octree over the scene
	Construct sparse voxel octree �The result – Octree over the voxelized scene
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�Inject direct lighting into the octree
	Voxel-based Global Ilumination�Inject direct lighting into the octree
	Voxel-based Global Ilumination�VXGI
	Voxel-based Global Ilumination�Filter the direct lighting to generate mip-map

