
Unreal Engine 4 – Platform Independence

MFF UK
NPGR033
23th March 2016

Jakub Gemrot

Based on “various sources”

 Unreal Engine 1 – May 1998
 Unreal Engine 2 – January 2001
 Unreal Engine 3 – March 2003
 Unreal Development Kit – November 2009
 Unreal Engine 4 – May 2012

~ 20 years of experiences
~ ,,No one knows every corner of UE4 sources.’’

 -- Gerke Max Preussner, UE4 Senior Engineer

 Software
 renderer and
 Glide API (3Dfx)
 Later Direct3D,

OpenGL
 Easy to mod using

UnrealScript
 Networking later on

Unreal

 Software
 renderer and
 Glide API (3Dfx)
 Later Direct3D,

OpenGL
 Easy to mod using

UnrealScript
 Networking later on

Tactical Ops

 Rewritten
renderer

 PS2, Xbox,
GameCube

 Karma Physics
SDK

 64-bit later on

 America’s Army

 DX 9/10
 XBox 360, PS3
 Ported for Stage3D
 Many updates later

on

Gears of War

 UE3 made “public”
 99$ upfront, after

5000$ sales 25%
royalties

 Changed to free and
no royalties under
50000$ sales

 The Ball

 Major rewrite
 Modularization
 UnrealScript

dropped
 New Blueprint

system
 …

 AQP City

 Complete platform abstraction
 Many (cutting edge) rendering & anim. Features
 Landscape features, Level streaming, 8192x8192

terrains
 Physics (no soft bodies yet), Audio, Networking
 UI system (also as in-game textures)
 Extensible editor
 2D Plugin, Blueprints
 Own Game module

 No game specific stuff (inventories, weapons, …)

 Complete platform abstraction
 Many (cutting edge) rendering & anim. Features
 Landscape features, Level streaming, 8192x8192

terrains
 Physics (no soft bodies yet), Audio, Networking
 UI system (also as in-game textures)
 Extensible editor
 2D Plugin, Blueprints
 Own Game module

 No game specific stuff (inventories, weapons, …)

 Complete platform abstraction
 Windows, Mac, Linux, Android, iOS, HTML5, XBox One, PS4

 Custom build tool chain (your solution is a lie)

 Unreal Build Tool (UBT)
 Unreal Header Tool (UHT)
 Unreal Automation Tool (UAT)
 And a few others…

 Modules
 Whole engine is modularized
 Many interfaces, which are then implemented for

respective platforms

 Plug-ins
 Works with the abstraction only
 You can slip in custom plugins into your compiled editor

and export them with your game

 Modules
 Module Types
▪ Developer – Used by Editor & Programs, not Games
▪ Editor – Used by Unreal Editor only
▪ Runtime – Used by Editor, Games & Programs
▪ ThirdParty – External code from other companies
▪ Plugins – Extensions for Editor, Games, or both
▪ Programs – Standalone applications & tools

 Module Dependency Rules
▪ Runtime modules must not have dependencies to Editor or Developer

modules
▪ Plug-in modules must not have dependencies to other plug-ins

 Modules

Module Type Editor App Game

Runtime √ √ √
ThirdParty √ √ √
Plugins √ √ √
Developer √ √ X

Editor √ X X

 Plug-ins
 Loaded dynamically on startup
 Should not depend on other plugins
 Own source, binaries, content, config files

 Plug-ins

 Paper2D

 Custom build tool chain (your solution is a lie)

 Unreal Build Tool (UBT)
▪ Written in C# (may convert to C++ in the future)
▪ Scans solution directory for modules and plug-ins
▪ Determines all modules that need to be rebuilt
▪ Invokes UHT to parse C++ headers
▪ Creates compiler & linker options from .Build.cs & .Target.cs
▪ Executes platform specific compilers (VisualStudio, LLVM)
▪ Auto-generates DLL on Windows
▪ Solution file generation
▪ Remote compilation (iOS, MacOS)

 Custom build tool chain (your solution is a lie)

 Unreal Header Tool (UHT)
▪ Written in C++
▪ Parses all C++ headers containing UClasses
▪ Generates glue code for all Unreal classes & functions
▪ Preprocess specific macros (RTTI, network replication, in-editor

exposure)

▪ Generated files stored in Intermediates directory

 Custom build tool chain (your solution is a lie)

 Unreal Automation Tool (UAT)
▪ Written in C# (may convert to C++ in the future)
▪ Automates repetitive tasks through Automation Scripts
▪ Build, cook, package, deploy and launch projects
▪ Invokes UBT for compilation
▪ Distributed compilation (XGE) & build system integration
▪ Generate code documentation
▪ Automated Testing of code and content
▪ Configurable

 Speaking UE4 Language
 Fundamental types (primitives + a few others)
 Containers
 Delegates
 Common game domain related structures
 Smart pointers (UE4 is not using Boost…)
 Strings
 Macros
 UObjects
 Design principles in general

 Fundamental types
 Custom typedef’s for ints & strings
 GenericPlatform.h

…

 Fundamental types
 Numeric type traits
 NumericLimits.h

…

 Containers
 TArray, TSparseArray – Dynamic arrays
 TLinkedList, TDoubleLinkedList
 TMap – Key-value hash table
 TQueue – Lock free FIFO
 TSet – Unordered set (without duplicates)
 More in Core module

 Delegates
 Single / Multicast / UObject
▪ ExecuteIfBound (as opposed to C#)

 Limited signature
▪ Up-to 4 parameters
▪ Can be with / without return value

 More info in Delegate.h

 Common structures
 FBox, FColor, FGuid, FVariant, FVector, TBigInt,

TRange

 Box.h

 Smart pointers (~ garbage collection)

 TSharedPtr, TSharedRef – for regular C++ objects
 TWeakPtr – for regular C++ objects
 TWeakObjPtr – for UObjects
 TAutoPtr, TScopedPtr
 TUniquePtr
 Also thread-safe variants
 Similar to boost:: & std:: implementations

 Smart pointers

Benefit Description

Clean syntax You can copy, dereference, and compare shared pointers just like regular
C++ pointers.

Prevents memory leaks Resources are destroyed automatically when there are no more shared
references.

Weak referencing Weak pointers allow you to safely check when an object has been
destroyed.

Thread safety Includes thread safe version that can be safely accessed from multiple
threads.

Ubiquitous You can create shared pointers to virtually any type of object.
Runtime safety Shared references are never null and can always be de-referenced.

No reference cycles Use weak pointers to break reference cycles.
Confers intent You can easily tell an object owner from an observer.

Performance Shared pointers have minimal overhead. All operations are constant-
time.

Robust features Supports const, forward declarations to incomplete types, type-casting,
etc.

Memory Only twice the size of a C++ pointer in 64-bit (plus a shared 16-byte
reference controller.)

 Smart pointers (~ garbage collection)

 Various helper functions ~ MakeSharable(void*)

 Up-casting is implicit, just like with C++
pointers
 Dynamically-allocated arrays are not

supported yet
 Related documentation

http://docs.unrealengine.com/latest/INT/Programming/UnrealArchitecture/SmartPointerLibrary/index.html

 String Types
 FString – Regular string
 FText – Localized string, used heavily in Slate UI
 FName – String hash, used heavily in UObjects, case-insensitive!

 String Literals
 TEXT()

▪ Creates a regular(!) string, i.e. TEXT(“Hello”);
 LOCTEXT()

▪ Creates a localized string, i.e. LOCTEXT(“Namespace”, “Name”, “Hello”);
 NSLOCTEXT()

▪ LOCTEXT with scoped namespace, i.e. NSLOCTEXT(“Name”, “Hello”);

 Macros (heavily used!)
 Logging
▪ UE_LOG, also GLog->Logf()

 Assertions
▪ check(), checkSlow(), ensure()

 Localization
▪ LOCTEXT_NAMESPACE, LOCTEXT, etc.

 Slate (UI Framework)
▪ SLATE_BEGIN_ARGS, SLATE_ATTRIBUTE, etc.

 And many others

 UObject
 Run-time reflection of class properties and functions
 Serialization from/to disk and over the network
 Garbage collection
 Meta data
 Also: Blueprint integration

 Decorated regular C++ Classes with UHT Macros
 UCLASS – for class types
 USTRUCT – for struct types
 UFUNCTION – for class and struct member functions
 UPROPERTY – for class and struct variables

 UObject
 No dynamic allocation
UMyObjClass* DynamicObj = NewObject<UMyObjtClass>(this);

 Prototype-like
▪ Using a class default object for initialization of “new UObject”

 Can be root-set (won’t be auto-GCed)
YourObjectInstance->SetFlags(RF_RootSet);

 Always need to be checked for existence
if(!MyGCProtectedObj) return;
if(!MyGCProtectedObj->IsValidLowLevel()) return;

 UObject and INI files
 Hold class default properties
 Will be loaded into CDOs on startup
 Organized in a hierarchy
 Higher INIs override lower ones
 Organized in sections
 Key-value pairs within sections
 Important ones exposed in Editor UI
 Low-level access with FConfig

Class Constructor

BaseXXX.ini

DefaultXXX.ini

XXX.ini

 UObject and INI files

Sections for UObjects
• [/Script/ModuleName.ClassName]
Sections for Custom Settings
• [SectionName]
Supported Value Types
• Numeric values, strings, enums
• Structured data
• Static and dynamic arrays
Automatic serialization for UObject properties

 UObject and INI files

 Principles
 KISS, YAGNI
 Composition vs. inheritance
 Avoid tight coupling of code and modules
 Many trivial instead of few complicated components

 Design Patterns
 SOLID
 Hollywood Principle (especially for Slate & game code)
 GOF, EIP

Initial Stands for Concept

S SRP
Single responsibility principle

a class should have only a single responsibility (i.e. only one potential change in the software's
specification should be able to affect the specification of the class)

O OCP
Open/closed principle

“software entities … should be open for extension, but closed for modification.”

L LSP

Liskov substitution principle

“objects in a program should be replaceable with instances of their subtypes without altering the
correctness of that program.” See also design by contract.

I ISP
Interface segregation principle

“many client-specific interfaces are better than one general-purpose interface.”

D DIP
Dependency inversion principle

one should “Depend upon Abstractions. Do not depend upon concretions.”

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Open/closed_principle
https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/Interface_segregation_principle
https://en.wikipedia.org/wiki/Dependency_inversion_principle

 Prefixes for All Types
 U – UObject derrived class, i.e. UTexture
 A – AActor derrived class, i.e. AGameMode
 F – All other classes and structs, i.e. FName, FVector
 T – Template, i.e. TArray, TMap, TQueue
 I – Interface class, i.e. ITransaction
 E – Enumeration type, i.e. ESelectionMode
 b – Boolean value, i.e. bEnabled

 PascalCase
 Function names and function parameters, too
 Even local and loop variables!

 Concurrency
 Atomics
 Locking
 Signaling & Waiting
 Waiting
 Containers

 Atomics
 FPlatformAtomics
▪ InterlockedAdd
▪ InterlockedCompareExchange (-Pointer)
▪ InterlockedDecrement (-Increment)
▪ InterlockedExchange (-Pointer)
 FPlatformAtomics is “typedefed by platform”

 Atomics

 Locking

 Critical Sections
▪ FCriticalSection implements synchronization object
▪ FScopeLock for scope level locking using a critical section
▪ Fast if the lock is not activated

 Spin Locks
▪ FSpinLock can be locked and unlocked
▪ Sleeps or spins in a loop until unlocked
▪ Default sleep time is 0.1 seconds

 Signaling & Waiting
 FEvent
▪ Blocks a thread until triggered or timed out
▪ Frequently used to wake up worker threads

 FScopedEvent
▪ Wraps an FEvent that blocks on scope exit

 Containers
 General Thread-safety
▪ Most containers (TArray, TMap, etc.) are not thread-safe
▪ Use synchronization primitives in your own code where needed

 TLockFreePointerList
▪ Lock free
▪ Used by Task Graph system

 TQueue
▪ Uses a linked list under the hood
▪ Lock and contention free for SPSC
▪ Lock free for MPSC

 Parallelism
 Threads
 Task Graph
 Processes
 Messaging

 Threads
 FRunnable
▪ Platform agnostic interface
▪ Implement Init(), Run(), Stop() and Exit() in your sub-class
▪ Launch with FRunnableThread::Create()
▪ FSingleThreadRunnable when multi-threading is disabled

 FQueuedThreadPool
▪ Carried over from UE3 and still works the same way
▪ Global general purpose thread pool in GThreadPool
▪ Not lock free

 Threads
 Game Thread
▪ All game code, Blueprints and UI
▪ UObjects are not thread-safe!

 Render Thread
▪ Proxy objects for Materials, Primitives, etc.

 Stats Thread
▪ Engine performance counters

 Threads
 Task Based Multi-Threading

▪ Small units of work are pushed to available worker threads
▪ Tasks can have dependencies to each other
▪ Task Graph will figure out order of execution
▪ Used by an increasing number of systems

 Animation evaluation
▪ Message dispatch and serialization in Messaging system
▪ Object reachability analysis in garbage collector
▪ Render commands in Rendering sub-system
▪ Various tasks in Physics sub-system
▪ Defer execution to a particular thread

 Threads

 Processes
 FPlatformProcess
▪ CreateProc() executes an external program
▪ LaunchURL() launches the default program for a URL
▪ IsProcRunning() checks whether a process is still running
▪ Plus many other utilities for process management

 FMonitoredProcess
▪ Convenience class for launching and monitoring processes
▪ Event delegates for cancellation, completion and output

 Messaging
 Unreal Message Bus (UMB)
▪ Zero configuration intra- and inter-process communication
▪ Request-Reply and Publish-Subscribe patterns supported
▪ Messages are simple UStructs

 Transport Plug-ins
▪ Seamlessly connect processes across machines
▪ Only implemented for UDP right now (prototype)

THAT’S IT FOR TODAY!

LABS => HLSL Part III (last one)

Some interesting stuff:

	Game Engines – Part II
	Unreal Engine�History
	Unreal Engine 1 �May 1998
	Unreal Engine 1 �May 1998
	Unreal Engine 2 �January 2001
	Unreal Engine 3 �March 2002
	Unreal Development Kit�November 2009
	Unreal Engine 4 �May 2012
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Main Points
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Complete Platform Abstraction
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Speaking UE4 Language
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Unreal Engine 4 �Concurrency & Parallelism
	Game Engine�Thank you for you attention!
	Unreal Engine 4 �Solution Structure
	Game Engine�Thanks you for you attention!

